This application is based on Patent Application No. 2001-024548 filed Jan. 31, 2001 in Japan, the content of which is incorporated hereinto by reference.
1. Field of the Invention
The present invention relates to a printing apparatus and a printing data producing method, and specifically, to a printing apparatus performing printing in which gradation levels of a print image are expressed by a combination of different sizes of printed dots and production of printing data used in such printing apparatus.
2. Description of the Related Art
As a representative of such a printing apparatus, an ink jet printing apparatus that prints an image by applying inks of the same color and of a plurality of different ejection amounts is known. Printing data used in this ink jet printing apparatus is obtained through a conversion of image data which expresses gradations in a multi-level form (for example, 0-255 by 8 bits) into final ejection data in a binary level form, for each pixel. For example, the image data is, based on a value shown thereby, converted into pattern data of plural bits which expresses the gradation of one of several levels and further index patterns, which express predetermined dot arrangements for respective levels expressed by the pattern data, are used to obtain the binary ejection data for forming dots of the arrangement. Thus, the gradation and maximum density of a printed image can be set by determining the index patterns appropriately.
For example, in a configuration that the image data of 256 gradation levels 0-255 is converted into the pattern data of 4 bits (expressed as 0000-0101 of 4 bits) which expresses one of 9 values (levels 0-8), and the converted pattern data is converted into the binary data by using the index pattern corresponding to the converted pattern data, the index patterns are set so that large and small dots are arranged correspondingly to the respective 9 levels. Thus, the multi-value image data can be converted into the ejection data (binary data) for each nozzle of a printing head, which corresponds to a large or small size of an ink droplet ejected from the printing head.
The index pattern is one of the factors that determine characteristics of a printed image, such as a gradation image. In general, since a highlight portion of the printed image appears to be more granular when a relatively large amount of ink is used in this portion, the index patterns are such that, for example, smaller dots are arranged up to one of the nine levels which corresponds to an intermediate gradation range and larger dots start to be arranged at the next higher level corresponding to the next larger gradation value.
However, the index patterns are such that the arrangements of larger and smaller dots are uniformly determined therebetween correspondingly to pattern data and the larger and smaller dots are uniformly assigned to each level over the range of gradation values that can be expressed by image data. Accordingly, it is likely that only smaller dots are arranged at levels with smaller gradation values.
As a result, in a highlight portion of the image or an intermediate gradation portion with a higher density than that of the highlight portion, which portions are expressed by levels with only such smaller dots arranged thereat, the following problems may occur. Since a relatively small amount of ink (small droplet) forming small dots has relatively low kinetic energy induced by ejection, vibration of a mechanical portion associated with a printing operation or an air stream occurring when the printing head moves may cause an ejecting state of the small droplet to be disturbed (that is, biased), thereby causing deviation of positions of dots formed. This deviation is recognized as a decrease in quality of the printed image. In particular, since the intermediate gradation portion has a higher dot density than the highlight portion, in the former portion, stripes (bands) or the like due to the deviation of the formed dot become more noticeable.
The present invention can provide a printing apparatus and a printing data producing method which can reduce a degradation in quality of an image printed by forming dots of a plurality of sizes, especially in quality of a highlight or intermediate portion thereof.
In a first aspect of the present invention, there is provided a printing apparatus which uses a printing head provided with printing elements different in a size of dot formed by the printing elements to perform printing on a printing medium, the apparatus comprising:
Here, the predetermined condition for producing the printing data may be a condition that a change in density of an image, which is printed with dots formed based on the printing data corresponding to each of the printing elements different in the size of dot formed, is linear.
In a second aspect of the present invention, there is provided a method of producing printing data used in a printing apparatus which uses a printing head provided with printing elements different in a size of dot formed by the printing elements to perform printing on a printing medium, the method comprising the steps of:
Here, the predetermined condition for producing the printing data may be a condition that a change in density of an image, which is printed with dots formed based on the printing data corresponding to each of the printing elements different in the size of dot formed, is linear.
According to the above configuration, printing data corresponding to a plurality of printing elements of a printing head, which form different sizes of dots, is produced under a predetermined condition such that an overall change in gradation realized with dots formed by these printing elements is made linear, and therefore, when the produced printing data is converted into dot data for forming the different sizes of dots to be arranged in one pixel, the conversion process can be executed for each of the plurality of the different sizes of dots, without considering the predetermined condition. Consequently, the conversion process can be arbitrarily set for each size of dot under the predetermined condition.
Further, larger dots can be arranged at densities equal to or lower than an intermediate value in the range of density values that are expressed by dot formation, thereby enabling larger and smaller dots to be mixed at these densities.
The above and other objects, effects, features and advantages of the present invention will become more apparent from the following description of embodiments thereof taken in conjunction with the accompanying drawings.
Embodiments of the present invention will be described below in detail with reference to the drawings.
In the example shown in
In the example shown in
Further, the illustrated head chips for each color ink are bonded to each other to form an integral printing head.
The example in
This embodiment uses one of the above-stated printing beads, each having nozzles from which larger or smaller ink droplets of a predetermined color are ejected, and produce printing data for the respective nozzles as described later in
Further,
As shown in
On the other hand, it may be considered that contents of the index patterns are adjusted to also dispose larger dots at the intermediate level. However, supposing that the larger dots are disposed at the level at which normally the larger dots are not disposed, since that level corresponds to a relatively low gradation range in a form of the image data as described previously, the larger dots are disposed at a range from the highlight portion to the intermediate gradation, for example. In this case, if the ejection data is produced by using the index pattern disposing larger dots only, without considering gradation characteristics, a problem that the highlight portion appears to be more granular may occur. Further, if changing the threshold values, which determine a correspondence between the image data and each level of the index patterns, in order to dispose the larger dots at the intermediate range, discontinuance of print density may occur at changes of the index pattern and the smooth gradation cannot be realized.
In this embodiment, the arrangements of dots can be relatively easily changed while keeping the smooth gradation, by using the following configuration:
When a host computer executes a process for a color image and then transfers the image data as a result of the processing to this apparatus, a process of inputting signals R, G, and B is executed at step S71. Then, at step S72, these signals are subjected to a color correction process to obtain signals R′, G′, and B′ of 8 bits.
Furthermore, at step S73, a color transformation process is executed. More specifically, the image data R′ G′ B′, which is image data of a color space formed by R G B, is converted into image data of a color space formed by C M Y K, which is suitable for ink colors used in the printing apparatus of this embodiment. This process is executed with reference to an LUT (Look Up Table) having C, M, Y and K values already stored therein correspondingly to the R′, G′ and B′ input signals.
Then, at step S74, a conversion to n-value process is executed on the image data K, C, M, SC, SM and SY of 8 bits obtained by the color transformation process. In this embodiment, the conversion to n-value process is executed for each color image data to obtain 5-value data. This conversion to 5-value process provides data of 4 bits (0000-0100) and then binary data for ink ejection can be obtained based on index patterns corresponding to these 5 values. That is, as described in detail in
A print driver 211, shown in this figure, is software for producing the image data in a host apparatus and for transferring the produced data to this printing apparatus.
A controller 200 of the printing apparatus of this embodiment causes a distribution circuit 207 to write data K, C, M, Y, SC, SM and SY for each pixel, obtained through steps S71 to S74, to corresponding print buffers 205 as 2-bit data for each color (step S75).
More specifically, for example, upon writing, for data of the cyan C, 2-bit data to one pixel of 360 dpi, in this embodiment, a total of 4 bits are written to the corresponding print buffers, that is, respective 2 bits are written to respective buffers C1 and C2 corresponding to nozzles C1 and C2, respectively, of larger ink droplets. By this distribution process, for each of two nozzles C1 and C2 for ejecting the larger ink droplets, 0-2 ink droplets of ejection is set for one pixel and then a total of 0-4 larger ink droplets of ejection can be set. Similarly, for the data SC corresponding to smaller cyan ink droplets, a total of 4 bits are written to the print buffers, that is, 2 bits are written to each of the buffers SC1 and SC2 for nozzles SC1 and SC2 for smaller ink droplets to set 0-4 smaller ink droplets of ejection. As the arrangement of the nozzles for ejecting the larger and smaller ink droplets, any of the arrangements shown in
More specifically, when the nozzles of the head reach a pixel position at which the inks are to be ejected from the nozzles, the data in the corresponding buffers is loaded into registers in the head to execute an ejection operation of the corresponding inks. Thereby, the respective dot arrangements for the larger and smaller ink droplets can be realized independently, for example, as shown in
Specifically,
As shown in
Further, the thus obtained respective printing data of 8 bits for the larger and the smaller ink droplets is, as described before, made to be printing data of 4 bits corresponding to two respective nozzles, for each pixel by means of the conversion to 5-value process. An arrangement pattern of the larger and smaller ink dots (contents of the index pattern in this embodiment) determined by this converted data of 4 bits can be adjusted independently for the respective larger and smaller dots. Specifically, as described above, the color transformation table (LUT) shown in
Furthermore, even if, in a design, a relative balance between the amounts of ink droplets changes, this can be easily dealt with simply by changing the contents of the look up table for the color conversion process or of the n-value conversion process.
At a left end portion, in
In the above embodiment, the head from which ink is ejected has been described by way of example, but of course the application of the present invention is not limited to this example. The present invention is applicable to any head comprising print elements that can vary the sizes of dots to be formed.
<Other Embodiments>
As described above, the present invention is applicable either to a system comprising plural pieces of equipment (such as a host computer, interface device, a reader, and a printer, for example) or to an apparatus comprising one piece of equipment (for example, a copy machine or facsimile terminal device).
Additionally, an embodiment is also included in the category of the present invention, wherein program codes of software such as those shown in
In this case, the program codes of the software, for example, shown in
The storage medium storing such program codes may be, for example, a floppy disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a magnetic tape, a non-volatile memory card, or a ROM.
In addition, if the functions of the above-described embodiments are implemented not only by the computer by executing the supplied program codes but also through cooperation between the program codes and an OS (Operating System) running in the computer, another application software, or the like, then these program codes are of course embraced in the embodiments of the present invention.
Furthermore, a case is of course embraced in the present invention, where, after the supplied program codes have been stored in a memory provided in an expanded board in the computer or an expanded unit connected to the computer, a CPU or the like provided in the expanded board or expanded unit executes part or all of the actual process based on instructions in the program codes, thereby implementing the functions of the above-described embodiments.
According to the embodiments of the present invention, printing data, corresponding to a plurality of printing elements of a printing head, which form different sizes of dots, is produced under a predetermined condition such that an overall change in gradation realized with dots formed by these printing elements is made linear, and therefore, when the produced printing data is converted into dot data for forming the different sizes of dots to be arranged in one pixel, the conversion process can be executed for each of the plurality of the different sizes of dots, without considering the predetermined condition. Consequently, the conversion process can be arbitrarily set for each size of dot under the predetermined condition.
Further, larger dots can be arranged at densities equal to or lower than an intermediate value in the range of density values that is expressed by dot formation, thereby enabling larger and smaller dots to be mixed at these densities.
As a result, for example, even if landed positions of the smaller amount of ink droplets are deviated on the sheet or are otherwise affected, the disturbance of the image can be restrained. Further, the image is affected if the dot arrangement is unnaturally switched (unnatural junction) in using the index pattern of the prior art, but the present invention allows the arrangement to be easily changed simply by changing the output table or the like, thereby improving the degree of freedom of the design.
The present invention has been described in detail with respect to preferred embodiments, and it will now be apparent from the foregoing to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and it is the intention, therefore, that the appended claims cover all such changes and modifications as fall within the true spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2001-024548 | Jan 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5648801 | Beardsley et al. | Jul 1997 | A |
5975673 | Ohtsuka et al. | Nov 1999 | A |
6030065 | Fukuhata | Feb 2000 | A |
6089697 | Tajika et al. | Jul 2000 | A |
6120129 | Iwasaki et al. | Sep 2000 | A |
6120141 | Tajika et al. | Sep 2000 | A |
6149260 | Minakuti | Nov 2000 | A |
6312096 | Koitabashi et al. | Nov 2001 | B1 |
6390586 | Takahashi et al. | May 2002 | B1 |
6540326 | Matsubara et al. | Apr 2003 | B2 |
Number | Date | Country |
---|---|---|
0 958 924 | Nov 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20020105557 A1 | Aug 2002 | US |