This application claims priority under 35 U.S.C. §119 from Japanese Patent Application No. 2007-311760 filed on Nov. 30, 2007. The entire subject matter of the application is incorporated herein by reference.
1. Technical Field
The present invention relates to an inkjet printing device and a computer-readable record medium storing a program for an inkjet printing device.
2. Prior Art
There have been widely known inkjet printing devices capable of forming (printing) an image on a sheet (paper, OHP sheet, etc.) by discharging ink onto the sheet from a print head which is mounted on a carriage facing the sheet and moving to and fro in a main scan direction. Many of such inkjet printing devices are designed to detect the width of the sheet in the main scan direction by use of a sensor mounted on the carriage, by which discharge of the ink to the outside of the sheet is prevented.
In a technique disclosed in Japanese Patent Provisional Publication No. 2007-245626 (paragraph 0026, etc., hereinafter referred to as a “patent document #1”) in regard to such an inkjet printing device, in cases of full-page printing (borderless printing), the width of the sheet in the main scan direction is detected by use of a sheet detecting unit which is mounted on the carriage, by moving the carriage in the main scan direction at a detecting speed (lower than the speed of the carriage during printing) without making the print head discharge ink drops.
However, with the technique described in the patent document #1 (detecting the width of the sheet by moving the carriage at a detecting speed lower than the speed during printing), the detection of the sheet width (requiring detection of right/left edges of the sheet) takes a long time even though the sheet width can be detected with increased accuracy.
Meanwhile, there are cases where a user of an inkjet printing device loads an erroneous sheet in the device and a sheet in a size different from a sheet size specified by a print command is fed to the print head. In such cases, if the printing on the sheet (in the different size) is carried out by the print head, the ink can be wasted and the inside of the inkjet printing device can be smeared with ink drops missing the sheet.
Thus, appropriate measures have to be taken in such cases where a sheet in a different (incorrect) size has been fed, and in order to take such measures, a technique capable of detecting and checking whether a sheet in a size different from the sheet size specified by the print command has been fed or not with ease and in a short time is being requested. It is of course possible to make the judgment (whether the sheet which has been fed is in the sheet size specified by the print command or not) by detecting the width of the sheet by use of the technique described in the patent document #1. However, the detection of the sheet width by the technique of the patent document #1 takes a long time as mentioned above.
The present invention, which has been made in consideration of the above problems, is advantageous in that an inkjet printing device capable of checking whether a sheet in a size different from a sheet size specified by a print command has been fed or not with ease and in a short time can be provided. The present invention also provides a computer-readable record medium storing a program for implementing such an inkjet printing device.
In accordance with an aspect of the present invention, there is provided an inkjet printing device comprising a print head which discharges ink onto a sheet, a carriage on which the print head is mounted and which moves to and fro in a main scan direction while facing the sheet, a detector unit which is mounted on the carriage and detects whether or not the sheet exists at a position facing a detecting position as a prescribed position of the carriage in the main scan direction, an acquisition unit which acquires a print command including size information specifying size of the sheet for which printing is requested, a setting unit which sets the detecting position depending on the size information included in the print command acquired by the acquisition unit, a moving unit which moves the carriage to the detecting position set by the setting unit, and a checking unit which checks whether the sheet exists at the position facing the detecting position or not by use of the detector unit after the carriage is moved to the detecting position by the moving unit and before the printing on the sheet is started.
In the inkjet printing device configured as above, when a print command (including the size information specifying the size of the sheet for which printing is requested) is acquired by the acquisition unit, the detecting position is set by the setting unit depending on the size information included in the print command. The detecting position is a prescribed position of the carriage in the main scan direction, at which the detector unit mounted on the carriage detects whether or not the sheet exists at the position facing the detecting position. After the carriage is moved to the detecting position by the moving unit and before the printing on the sheet is started, whether the sheet exists at the position facing the detecting position or not is checked by the checking unit by use of the detector unit. Therefore, it is unnecessary to detect the right and left edges (width) of the currently fed sheet by reciprocating the carriage in the main scan direction in order to judge whether or not (the size of) the sheet which has been fed is identical with that specified by the print command. The judgment can be made just by moving the carriage to the detecting position (which is set depending on the sheet size specified by the print command) and checking the presence/absence of the sheet at the (one) detecting position. Therefore, whether a sheet in a size different from the sheet size specified by the print command has been fed or not can be checked with ease and in a short time.
In accordance with another aspect of the present invention, there is provided a computer-readable record medium storing computer-readable instructions that cause a computer of an inkjet printing device (equipped with a print head which discharges ink onto a sheet, a carriage on which the print head is mounted and which moves to and fro in a main scan direction while facing the sheet, and a detector which is mounted on the carriage and detects whether or not the sheet exists at a position facing a detecting position as a prescribed position of the carriage in the main scan direction) to execute an acquisition step of acquiring a print command including size information specifying size of the sheet for which printing is requested, a setting step of setting the detecting position depending on the size information included in the print command acquired by the acquisition step, a moving step of moving the carriage to the detecting position set by the setting step, and a checking step of checking whether the sheet exists at the position facing the detecting position or not by use of the detector after the carriage is moved to the detecting position by the moving step and before the printing on the sheet is started.
By making a computer of an inkjet printing device operate according to the computer-readable instructions acquired (loaded, installed, etc.) from the computer-readable record medium, effects similar to those of the inkjet printing device described above can be achieved.
According to a further aspect of the invention, there is provided a method of checking presence/absence of a sheet for an inkjet printing device which is equipped with a print head which discharges ink onto a sheet, a carriage on which the print head is mounted and which moves to and fro in a main scan direction while facing the sheet, and a detector which is mounted on the carriage and detect presence/absence of the sheet at a detecting position. The method includes an acquisition step of acquiring a print command including size information specifying size of the sheet for which printing is requested, a setting step of setting the detecting position depending on the size information included in the print command acquired by the acquisition step, a moving step of moving the carriage to locate the detector at the detecting position set by the setting step; and a checking step of checking presence/absence of the sheet at the detecting position by use of the detector located at the detecting position.
According to the above method, effects similar to those of the inkjet printing device described above can be achieved.
Other objects, features and advantages of the present invention will become more apparent from the consideration of the following detailed description taken in conjunction with the accompanying drawings.
Referring now to the drawings, a description will be given in detail of a preferred embodiment in accordance with the present invention.
As shown in
Each sheet stored in a tray (3, 4) is fed to an inkjet print head 21 installed inside the housing 2, undergoes the printing by the inkjet print head 21, and is ejected onto the top surface of the upper tray 4. Thus, the upper tray 4 serves also as an output tray for holding the printed sheets. The upper tray 4 is equipped with a stopper 4a which is drawable in the direction opposite to the arrow A in
An image scanning unit 5 for performing document scanning (scanning of an image on a document) for the copy function and the facsimile function is provided at the top of the housing 2. The image scanning unit 5 is capable of rotating (opening upward and closing downward) with respect to the main body of the MFP 1 around an unshown axial part at the rear and of the housing 2. The top of the image scanning unit 5 is formed of a glass plate, on which the document to be scanned is placed. The glass plate is covered by a document cover 6 which is rotatable (upward and downward) around an axis extending in a rear part of the image scanning unit 5. After the document cover 6 is opened upward and the document to be scanned is placed on the glass plate by the user, the image on the document is scanned by a document image scanner (e.g. CIS (Contact Image Sensor)) which moves to and fro in the main scan direction beneath the glass plate.
A front part of the top of the housing 2 (in front of the document cover 6) is provided with an operation panel 7 including various operation buttons and a liquid crystal display 8 for displaying operational instructions, status of a process in progress, etc. The operation buttons include a start button and a stop button. In response to various user operations (pressing of the operation buttons), a variety of necessary information (settings of the MFP 1, operational instructions, messages, etc.) is displayed on the liquid crystal display 8.
An upper part of the front of the housing 2 (above the opening 2a) is provided with an external memory slot 11 into which an external memory (Compact Flash®, Smart Media®, Memory Stick®, SD Card®, xD-Picture Card®, etc.) can be inserted. Date stored in the external memory inserted in the external memory slot 11 can be loaded into an internal memory of the MFP 1 and printed on a sheet by the inkjet print head 21.
Next, the internal structure of the housing 2 will be described below referring to
As shown in
Each (uppermost) sheet in the sheet stack stored in a tray (3, 4) is pulled out by the sheet feed roller 10, passes through the feeding path H, and is fed by the pair of feed rollers 23 to the position between the inkjet print head 21 and the platen 22. After undergoing the printing by the inkjet print head 21, the printed sheet is ejected onto the top surface of the upper tray 4.
The sheet feed unit K mainly includes the lower tray 3, the upper tray 4, the sheet feed roller 10 which is placed above the upper tray 4, an arm 24 which is supported to be rotatable (swingable) and equipped with the sheet feed roller 10 at an end (distal end), and a moving mechanism I which moves the arm 24 (sheet feed roller 10) in a direction intersecting with the surface of the sheet stack stored in each tray (3, 4).
The lower tray 3 is formed substantially in a box shape with no top as shown in
As shown in
Inside the lower tray 3, slide guides (unshown) capable of symmetrically shifting from both sides (side plates 16) toward the center of the lower tray 3 are provided in order to guide (restrict) the sheet stack in its width direction. With the slide guides, the center (center line extending in the sheet feed direction) of the stack of sheets stored in the lower tray 3 can be aligned with that of the lower tray 3 irrespective of the sheet size.
Meanwhile, the upper tray 4 is formed in a flat plate-like shape as shown in
The upper tray 4 has a concave part 9 extending from the rear end toward the front of the tray and having a prescribed width, in which a stack of sheets is stored. The width of the concave part 9 is smaller than that of the lower tray 3. Thus, the upper tray 4 in this embodiment is used for storing sheets in relatively small sizes (L size (89 mm×127 mm), postcard, Japanese postcard (100 mm×148 nm), 4″×6″ (101.6 mm×152.4 mm), etc.), while the lower tray 3 is used for storing sheets in relatively large sizes (letter (215.9 mm×279.4 mm), A4 (210 mm×297 mm), B5 (182 mm×257 mm), B6 (128 mm×182 mm)).
The center (center line extending in the sheet feed direction) of the sheet stack stored in the upper tray 4 is aligned with that of the sheet stack stored in the lower tray 3. Thus, the central position (in the width direction) of each sheet extracted and fed from the upper tray 4 coincides with that of each sheet extracted and fed from the lower tray 3.
As shown in
As shown in
The proximal end of the arm 24 is formed to have a projection 24a as shown in
Incidentally, when a tray 3 or 4 is loaded into the housing 2, the arm 24 is rotated clockwise by an unshown mechanism for smooth loading of the tray.
A bracket 49, penetrated by the first and second shafts 25 and 26, is placed beside the arm 24. A sheet sensor 50 for detecting the sheet stack stored in the tray 3 or 4 (see
As shown in
The sheet sensor 50 outputs an ON signal when the angle between the surface of the sheet stack and a part (line) of the probe correcting the proximal end and the folding point is within a prescribed angle, while outputting an OFF signal when the angle exceeds the prescribed angle. Incidentally, the sheet sensor 50 is placed at an appropriate position (relative to the arm 24 (sheet feed roller 10)) so that the sheet feed roller 10 is necessarily in contact with the sheet stack when the sheet sensor 50 is outputting the ON signal (i.e. when the angle is within the prescribed angle).
The moving mechanism I, for integrally moving the arm 24 and the sheet feed roller 10 in the direction intersecting with the surface of the sheet stack stored in each tray (3, 4), includes a pair of rack gears 27a and 27b (each having numbers of cogs (unshown) arranged in a line parallel to the Leaned rear plate 17) situated at positions sandwiching the trays 3 and 4 in the width direction and a pair of pinion gears 28a and 28b engaging with and moving along the rack gears 27a and 27b, respectively, as shown in
Support plates 29a and 29b (as a pair) stand inside the main body to sandwich the trays 3 and 4 in the width direction, and the rack gears 27a and 27b are fixed on the support plates 29a and 29b, respectively. Specifically, the rack gear 27a is fixed on a surface of the support plate 29a opposite to the trays 3 and 4, while the rack gear 27b is fixed on a surface of the support plate 29b facing the trays 3 and 4.
The support plate 29a has an elongated hole 30a extending in parallel with the leaned rear plate 17 (in parallel with the rack gears 27a and 27b), while having a link plate 31a fixed on its surface opposite to the rack gear 27a. Similarly, the support plate 29b has an elongated hole 30b extending in parallel with the leaned rear plate 17 (in parallel with the rack gears 27a and 27b), while having a link plate 31b fixed on its surface opposite to the rack gear 27b.
The first shaft 25 supporting the arm 24 is linked with the link plates 31a and 31b. An end of the first shaft 25 on the link plate 31a side is linked with an LF (Line Feed) motor 32 (mounted on the link plate 31a) via an unshown gear mechanism. The driving force of the LF motor 32 is transmitted to the sheet feed roller 10 via the first shaft 25 and the gear wheels of the arm 24.
Meanwhile, the second shaft 26 penetrates the elongated hole 30a of the support plate 29a, the link plate 31a, the elongated hole 30b of the support plate 29b, and the link plate 31b. Both ends of the second shaft 26 are firmly fit into the pinion gears 28a and 28b, respectively. An end of the second shaft 26 on the link plate 31b side is linked with an elevator motor 33 (mounted on the link plate 31b) via an unshown gear mechanism.
In the moving mechanism I configured as above, when the elevator motor 33 is activated, the pinion gears 28a and 28b (connected together by the second shaft 26) rotate accordingly and move along the rack gears 27a and 27b, respectively. In conjunction with the movement of the pinion gears 28a and 28b, the link plates 31a and 31b and the first shaft 25 also move along the rack gears 27a and 27b. Consequently, the arm 24 (supported by the first shaft 25) and the sheet feed roller 10 move integrally along the rack gears 27a and 27b.
Since the rack gears 27a and 27b extend in the direction intersecting with the surface of the sheet stack stored in each tray (i.e. in parallel with the leaned rear plate 17), the moving mechanism I is capable of integrally moving the arm 24 and the sheet feed roller 10 in the direction intersecting with the surface of the sheet stack (i.e. in parallel with the leaned rear plate 17).
Thus, the angle between the arm 24 and the surface of the sheet stack can be set at an appropriate angle depending on the sheet type even when the height of the sheet stack decreases with the consumption of the sheets stored in the tray. Therefore, stable sheet feeding performance can be realized irrespective of the amount and type of the sheets stored in each tray (3, 4).
The feed rollers 23 and the sheet ejection roller 62, on the upstream side and downstream side of the inkjet print head 21 (carriage 20) in the sheet feed direction, are both driven by driving force transmitted from the LF motor 32. The feed rollers 23 and the sheet ejection roller 62 are driven in sync with each other (intermittently during printing), by which the sheet is repeatedly fed in units of a prescribed linefeed width (length) when it undergoes the image printing by the inkjet print head 21.
The carriage 20 is driven (slid) by driving force which is transmitted from a CR motor 73 (see
The main frame of the MFP 1 is equipped with a linear encoder 77 (see
Meanwhile, the carriage 20 is equipped with an unshown optical sensor (as a transmissive sensor corresponding to the linear encoder 77) at a position corresponding to the encoder strip. Together with the carriage 20, the optical sensor moves to and fro along the length of the encoder strip while detecting the pattern of the encoder strip, by which the position of the carriage 20 in the main scan direction can be detected.
The carriage 20 is further equipped with a media sensor 51 (see
The ROM 66 stores programs and data for controlling various operations of the MFP 1, such as a print processing program 66a for executing a printing process which will be explained later referring to
A print command memory 67a is reserved in the RAM 67, in which the contents of a print command inputted to the MFP 1 is temporarily stored when the printing process (explained later referring to
The ASIC 70 executes rotation control of the elevator motor 33, by generating phase excitation signals, etc. (for driving the elevator motor 33) according to instructions from the CPU 65 and supplying the signals to a drive circuit 82 of the elevator motor 33.
The drive circuit 82, as a circuit for driving the elevator motor 33 linked with the moving mechanism I, generates an electric signal for rotating the elevator motor 33 according to the signals supplied from the ASIC 70. The torque of the elevator motor 33 rotating in response to the electric signal is transmitted to the pinion gears 28a and 28b of the moving mechanism I, by which the arm 24 and the sheet feed roller 10 are moved in conjunction with the pinion gears 28a and 28b.
A drive circuit 75 is a circuit for making the inkjet print head 21 selectively discharge the inks onto the sheet with proper timing. The drive circuit 75 executes the drive control of the inkjet print head 21 in response to a signal which is generated and outputted by the ASIC 70 based on a drive control procedure supplied from the CPU 65.
The ASIC 70 further executes rotation control of the CR motor 73, by generating phase excitation signals, etc. (for driving the CR motor 73) according to instructions from the CPU 65 and supplying the signals to a drive circuit 74 of the CR motor 73.
The drive circuit 74, as a circuit for driving the CR motor 73 linked with the carriage 20, generates an electric signal for rotating the CR motor 73 according to the signals supplied from the ASIC 70. The torque of the CR motor 73 rotating in response to the electric signal is transmitted to the carriage 20 via an unshown belt drive mechanism, by which the reciprocation (to-and-fro movement) of the carriage 20 is controlled.
The ASIC 70 further executes rotation control of the LF motor 32, by generating phase excitation signals, etc. (for driving the LF motor 32) according to instructions from the CPU 65 and supplying the signals to a drive circuit 72 of the LF motor 32.
The drive circuit 72, as a circuit for driving the LF motor 32 linked with the sheet feed roller 10, the feed rollers 23 and the sheet ejection roller 62, generates an electric signal for rotating the LF motor 32 according to the signals supplied from the ASIC 70. The torque of the LF motor 32 rotating in response to the electric signal is transmitted to the sheet feed roller 10, the feed rollers 23 and the sheet ejection roller 62 via a driving mechanism.
The sheet sensor 50 (for detecting the sheet stack stored in each tray (3, 4)), the media sensor 51 (mounted on the carriage 20 for detecting the presence/absence of a sheet at the “detecting position” facing itself), the linear encoder 77 (for detecting the moving distance (position) of the carriage 20), and a rotary encoder 76 for detecting the rotating angle of the feed rollers 23 are also connected to the ASIC 70.
Further connected to the ASIC 70 are a scanner unit 12, the operation panel 7 (operated by the user for inputting instructions, etc.), the external memory slot 11 (into which an external memory can be inserted), a parallel interface 78 for data communication with an external device via a parallel cable, and a USB interface 79 for data communication with an external device via a USB cable. For the implementation of the facsimile function, an NCU (Network Control Unit) 80 and a modem 81 are also connected to the ASIC 70.
In the following, the printing process which is executed by the MFP 1 of this embodiment will be explained referring to
At the start of the printing process (in response to the print command from a personal computer, for example), the MFP 1 (specifically, the CPU 65 (ditto for the following steps)) executes an initialization process (S1). In the initialization process, various settings, flags, etc. of the MFP 1 are initialized and the print command supplied from the personal computer is stored in the print command memory 67a. The print command includes information on the size of the sheet to be printed on, the resolution of the image to be printed, the number of copies, layout, etc. After finishing the initialization process (S1), the MFP 1 generates print data according to the contents of the print command and starts processing the first page (S2).
In the processing of the first page (currently processed page), the MFP 1 first judges whether the resolution specified by the print command is lower than 600×600 dpi or not (S3). When the resolution is lower than 600×600 dpi (S3: YES), the MFP 1 carries out the printing of the first page (currently processed page) (S10) without executing a front end detecting process (S4) or a width detecting process (S9) which will be explained later. By the omission of the front end detecting process (S4) and the width detecting process (S9), the printing of the image can be executed at high speed in the case where the resolution specified by the print command is lower than 600×600 dpi, even though the image quality can become lower since the position of the sheet in the sheet feed direction and in the main scan direction with respect to the print head 21 can not be recognized correctly.
On the other hand, when the resolution is 600×600 dpi or higher in S3 (S3: NO), the MFP 1 executes the front end detecting process (S4) which will be explained later, by which the front end of the sheet being fed at the position facing the carriage 20 is detected. Subsequently, the MFP 1 judges whether or not the front end of the sheet has been detected successfully by the front end detecting process (S5).
When the front end of the sheet has not been detected (S5: NO), the MFP 1 (judging that a sheet in a size different from the sheet size specified by the print command has been fed) displays error information (S12). For example, a message “INCORRECT SHEET SIZE. PLEASE SET SHEET OF CORRECT SIZE” is displayed on the liquid crystal display 8. Thereafter, the MFP 1 ejects the currently fed sheet without executing the printing thereon (ejection process) (S13) and ends the printing process of
Since the sheet (in an incorrect size) is immediately ejected from the MFP 1 without being printed on, wastage of the inks (due to useless printing on the sheet in an incorrect size) and smearing of the inside of the MFP 1 (due to ink drops missing the sheet) can be prevented.
On the other hand, when the front end of the sheet has been detected in S5 (S5: YES), the MFP 1 judges whether the resolution is 600×600 dpi or not (S6). When the resolution is not 600×600 dpi (S6: NO), the MFP 1 judges whether or not the resolution is higher than 1200×1200 dpi (S7).
When the resolution is equal to or less than 1200×1200 dpi (S7: NO), the MFP 1 judges whether the currently processed page is the first page or not (S8). If affirmative (S8: YES), the MFP 1 executes the width detecting process (S9).
When the resolution specified by the print command is higher than 1200×1200 dpi (S7: YES), the MFP 1 executes the width detecting process (S9) while skipping the step S8.
As above, the width detecting process (S9) is executed when the resolution specified by the print command is higher than 1200×1200 dpi, and when the resolution specified by the print command is equal to or less than 1200×1200 dpi (according to the embodiment, when the resolution is 600×1200 dpi or 1200×1200 dpi) and the currently processed page is the first page.
In the width detecting process (S9), the carriage 20 is gradually moved in the main scan direction and the position of the sheet (which has been fed to the position facing the carriage 20) in the main scan direction is detected by the media sensor 51 mounted on the carriage 20.
Thus, a high-quality image can be printed on the sheet thanks to the correct recognition of the position of the sheet in the main scan direction with respect to the print head 21 when the resolution specified by the print command is higher than 1200×1200 dpi, and when the resolution specified by the print command is 600×1200 dpi or 1200×1200 dpi and the currently processed page is the first page.
When the resolution specified by the print command is judged to be 600×600 dpi in S6 (S6: YES) or the currently processed page is judged not to be the first page (i.e. judged to be the second page or after) in S8 (S8: NO), the MFP 1 carries out the printing of the currently processed page (S10) without executing the width detecting process (S9).
Thus, in the case where the resolution specified by the print command is 600×600 dpi (S6: YES) and in the case where the resolution specified by the print command is 600×1200 dpi or 1200×1200 dpi (S7: YES) and the currently processed page is the second page or after (S8: NO), the image printing can be executed at higher speed (thanks to the omission of the width detecting process (S9)) compared to the above case where the step S9 is executed, even though the position of the sheet in the main scan direction with respect to the print head 21 can not be recognized correctly.
After carrying out the printing of the currently processed page (S10), the MFP 1 judges whether the printing has been finished for all pages or not (S11). If not finished (S11: NO), the MFP 1 returns to S3 to repeat the process from S3 for the next page. If finished (S11: YES), the MFP 1 ends the printing process of
Next, the details of the front end detecting process (S4 in
In
The front end detecting process is a process for detecting whether or not the front end S of the sheet P being fed in the auxiliary scan direction (sheet feed direction) exists at (passes through) the position facing the media sensor 51 mounted on the carriage 20. Further, the position of (the front end S of) the sheet P in the sheet feed direction with respect to the print head 21 is determined (detected) based on the detection of the passage of the front end S by the media sensor 51. By the front end detecting process, whether a sheet in a size different from the sheet size specified by the print command has been fed or not can be checked with ease and in a short time.
First, the MFP 1 (specifically, the CPU 65 (ditto for the following steps)) judges whether or not the sheet size specified by size information included in the print command is 4″×6″ or less, A6, postcard size, double postcard size or one of various envelope sizes (S20). When the specified sheet size is 4″×6″ or less, A6, postcard size, double postcard size or one of various envelope sizes (S20: YES), the MFP 1 moves the carriage 20 so as to place the media sensor 51 at the detecting position K1 (facing the central position C) and makes the media sensor 51 detect whether or not the sheet exists at the position (i.e. whether or not the front end S of the sheet passes through the position (ditto for the following explanation)) facing the detecting position K1 (i.e. facing the media sensor 51) (S21).
As shown in
Meanwhile, there is a possibility that a postage stamp has already been affixed to a corner of a postcard, double postcard or envelope. Thus, in cases where the sheet specified by the print command is a postcard, double postcard or envelope, it is possible to prevent false detection by the media sensor 51 (erroneously detecting the postage stamp), by setting the detecting position at the detecting position K1 (at the center).
Returning to
Specifically, the width of a sheet of the 4″×6″ size is approximately 102 mm, and thus the distance (in the main scan direction) between the central position C and the outermost position through which the 4″×6″ sheet can pass is approximately 51 mm (half width as shown in
Therefore, a sheet P1 having a width less than or equal to that of the 4″×6″ sheet (4 inches=approximately 102 mm) does not pass through the position facing the detecting position K2 and is not detected by the media sensor 51.
Examples of such a sheet P1 (whose width is less than or equal to that of the 4″×6″ sheet) include an L-size sheet (width: approximately 89 mm), a postcard (width: approximately 97 mm), a Japanese postcard (width: approximately 100 mm) and the 4″×6″ sheet (width: approximately 102 mm). Since the width of such a sheet P1 is less than or equal to that of the 4″×6″ sheet (102 mm), the half width of the sheet P1 from the central position C is of course less than 60 mm, and thus the sheet P1 does not pass through the position facing the detecting position K2 and is not detected by the media sensor 51.
In this case where the sheet is not detected at the detecting position K2, it can be presumed that a sheet P1 of a size smaller than or equal to 4″×6″ has been fed even though the sheet size specified by the print command is larger than 4″×6″ and smaller than or equal to the letter width (S22: YES). Thus, in this case, the MFP 1 ejects the currently fed sheet without executing the printing thereon as explained above.
As above, in the case where the sheet size specified by the print command is larger than 4″×6″ and smaller than or equal to the letter width (S22: YES), at least whether the sheet which has been fed is smaller than the sheet size specified by the print command or not can be checked with ease and in a short time by moving the carriage 20 (media sensor 51) to the detecting position K2 and detecting (checking) whether the sheet exists at the detecting position K2 or not before executing the printing.
Returning to
Specifically, the width of a sheet of the letter size is approximately 216 mm, and thus the distance (in the main scan direction) between the central position C and the outermost position through which the letter-size sheet can pass is approximately 108 mm (half width as shown in
Therefore, a sheet (P1, P2) having a width less than or equal to that of the letter-size sheet (approximately 216 mm) does not pass through the position facing the detecting position K3 and is not detected by the media sensor 51.
Examples of the size of such a sheet (whose width is less than or equal to that of the letter-size sheet) include 2 L (width: approximately 127 mm), B6 (width: approximately 128 mm), duodecimo (width: approximately 128 mm), A5 (width: approximately 148 mm), B5 (width: approximately 182 mm), A4 (width: approximately 210 mm), legal (width: approximately 216 mm) and letter (width: approximately 216 mm), in addition to the aforementioned L size, postcard, Japanese postcard and 4″×6″. Since the width of such a sheet is less than or equal to that of the letter-size sheet (216 mm), the half width of the sheet from the central position C is of course less than 115 mm, and thus the sheet does not pass through the position facing the detecting position K3 and is not detected by the media sensor 51.
In this case where the sheet is not detected at the detecting position K3, it can be presumed that a sheet of a size smaller than or equal to the letter size has been fed even though the sheet size specified by the print command is larger than the letter size (S22: NO). Thus, in this case, the MFP 1 ejects the currently fed sheet without executing the printing thereon as explained above.
As above, in the case where the sheet size specified by the print command is larger than the letter size (S22: NO), at least whether the sheet which has been fed is smaller than the sheet size specified by the print command or not can be checked with ease and in a short time by moving the carriage 20 (media sensor 51) to the detecting position K3 and detecting (checking) whether the sheet exists at the detecting position K3 or not before executing the printing.
While a description has been given above of a preferred embodiments in accordance with the present invention, the present invention is not to be restricted by the particular illustrative embodiment and a variety of modifications, design changes, etc. are possible without departing from the scope and spirit of the present invention described in the appended claims.
For example, while the detecting position for the media sensor 51 is selected (depending on the sheet size) from three detecting positions (K1, K2, K3) in the above embodiment, the number of the detecting positions is not restricted to three. For example, it is possible to set four or more detecting positions corresponding to typical sheet sizes. In this case, the judgment on whether a sheet in a size different from the sheet size specified by the print command has been fed or not can be made more precisely.
While whether to execute the width detection process (detecting the position of the sheet in the main scan direction) or not is determined depending on the resolution specified by the print command in the printing process (
While the MFP 1 in the above embodiment ejects the currently fed sheet without executing printing thereon when the sheet is not detected at the detecting position, the MFP 1 may also be configured to detect the width of the sheet with the media sensor 51 when the sheet is not detected at the detecting position, process the print data so that the inks will not be discharged to the outside of detected sheet width, and execute the printing on the sheet by use of the processed print data.
While an MFP has been described as an example of an inkjet printing device in the above embodiment, the present invention is of course applicable to various types of inkjet printing devices (inkjet printer, facsimile machine employing an inkjet printing unit, etc.).
Number | Date | Country | Kind |
---|---|---|---|
2007-311760 | Nov 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6164740 | Hirai et al. | Dec 2000 | A |
20050220524 | Ouchi | Oct 2005 | A1 |
20060045601 | Endo | Mar 2006 | A1 |
20060114281 | Otsuki | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
4-368877 | Dec 1992 | JP |
HEI08-160685 | Jun 1996 | JP |
9-76487 | Mar 1997 | JP |
10-126611 | May 1998 | JP |
2004-66717 | Mar 2004 | JP |
2005-41079 | Feb 2005 | JP |
2005-288753 | Oct 2005 | JP |
2006-62142 | Mar 2006 | JP |
2007-245626 | Sep 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20090141067 A1 | Jun 2009 | US |