Printing device and method

Information

  • Patent Grant
  • 6814421
  • Patent Number
    6,814,421
  • Date Filed
    Thursday, October 24, 2002
    22 years ago
  • Date Issued
    Tuesday, November 9, 2004
    20 years ago
Abstract
In accordance with one embodiment, a printing device includes a plurality of print cartridges arranged in an array. The printing device also includes a plurality of modular cleaning units for servicing the plurality of print cartridges, the modular cleaning units being arranged to allow the plurality of print cartridges to be serviced simultaneously.
Description




BACKGROUND




Ink jet printing systems typically operate by applying ink from one or more print cartridges onto a print media such as paper. The print cartridges contain multiple nozzles that may be controlled to selectively eject ink. Servicing the print cartridges may allow such printing systems to function more reliably and produce higher quality images. In some applications, such as those utilizing multiple print cartridges, servicing the print cartridges becomes difficult. A need therefore exists for servicing multiple print cartridges.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a block diagram that illustrates various components of an exemplary printing device in accordance with one embodiment.





FIG. 2

shows an exemplary print cartridge in accordance with one embodiment.





FIG. 2



a


shows an enlarged portion of the exemplary print cartridge shown in FIG.


2


.





FIGS. 3-3



a


illustrate an exemplary cleaning unit in accordance with one embodiment.





FIG. 4

illustrates an exemplary cleaning unit in accordance with one embodiment.





FIG. 5

illustrates an exemplary printing system in accordance with one embodiment.





FIG. 5



a


illustrates an alternative embodiment of a portion of the exemplary printing system shown in FIG.


5


.





FIG. 6

shows a flow diagram comprising acts in accordance with one exemplary method in accordance with one embodiment.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In accordance with various embodiments, a modular cleaning unit is provided and functions to service individual print cartridges. The modular cleaning unit may provide one or more of the functions of wiping, receiving ink (“spitting”), and capping.




The modular cleaning unit may be a freestanding unit for servicing a single print cartridge. The cleaning unit may also be configured wherein multiple cleaning units are grouped together for simultaneously cleaning multiple print cartridges in a particular printing device. By servicing the print cartridges, the printing device is less likely to malfunction and is better able to produce high quality images. Other advantages will be apparent to those of skill in the art.





FIG. 1

illustrates various components of an exemplary printing device


100


. Printing device


100


may include one or more controllers that are embodied as one or more processors


202


to control various printing operations, such as media handling and ink ejection.




Printing device


100


may have an electrically erasable programmable read-only memory (EEPROM)


204


, ROM


206


(non-erasable), and a random access memory (RAM)


208


. Although printing device


100


is illustrated having an EEPROM


204


and ROM


206


, a particular printing device may only include one of the memory components. Additionally, although not shown, a system bus may connect the various components within the printing device


100


.




The printing device


100


may also have a firmware component


210


that is implemented as a permanent memory module stored on ROM


206


. The firmware


210


is programmed and tested like software, and is distributed with the printing device


100


. The firmware


210


may be implemented to coordinate operations of the hardware within printing device


100


and contains programming constructs used to implement such operations.




Processor(s)


202


process various instructions to control the operation of the printing device


100


and to communicate with other electronic and computing devices. The memory components, EEPROM


204


, ROM


206


, and RAM


208


, store various information and/or data such as configuration information, fonts, templates, data being printed, and menu structure information. Although not shown, a particular printing device may also include a flash memory device in place of or in addition to EEPROM


204


and ROM


206


.




Printing device


100


may also include a disk drive


212


, a network interface


214


, and a serial/parallel interface


216


. Disk drive


212


provides additional storage for data being printed or other information maintained by the printing device


100


. Although printing device


100


is illustrated having both RAM


208


and a disk drive


212


, a particular printing device may include either RAM


208


or disk drive


212


, depending on the storage needs of the printer. For example, some printing devices may include a small amount of RAM


208


and no disk drive


212


, thereby reducing the manufacturing cost of the printing device.




Network interface


214


provides a connection between printing device


100


and a data communication network. The network interface


214


allows devices coupled to a common data communication network to send print jobs, menu data, and other information to printing device


100


via the network. Similarly, serial/parallel interface


216


provides a data communication path directly between printing device


100


and another electronic or computing device. Although printing device


100


is illustrated having a network interface


214


and serial/parallel interface


216


, a particular printing device may only include one such interface component.




Printing device


100


may also include a user interface and menu browser


218


, and a display panel


220


. The user interface and menu browser


218


allow a user of the printing device


100


to navigate the printing device's menu structure. User interface


218


may be implemented as indicators or a series of buttons, switches, or other selectable controls that are manipulated by a user of the printing device. Display panel


220


is a graphical display that provides information regarding the status of the printing device


100


and the current options available to a user through the menu structure.




Printing device


100


also includes a print unit


224


that includes mechanisms arranged to selectively apply ink (e.g., liquid ink) to a print media such as paper, plastic, fabric, and the like in accordance with print data corresponding to a print job.




Print unit


224


may comprise a print stall


240


and a print cartridge


242


. A print stall is a structure or mechanism that holds a print cartridge in a desired orientation. A print cartridge


242


positioned in a print stall


240


may be referenced as a “print cartridge assembly”, as will be discussed below. In the operation of printing device


100


, the print stall in the illustrated and described embodiments may be stationary and the print media moved relative to the print stall. Such need not, however, always be the case. For example, in some embodiments, the stall may move in addition to, or alternatively to, the print media being moved.




Individual print cartridges


242


may comprise a print head


244


that has a plurality of firing nozzles


246


through which ink is ejected. The firing nozzles


246


are fired individually to deposit drops of ink onto the print media according to data that is received from the processor


202


. As an example, the print head


244


might have firing nozzles


246


that number into the hundreds. A “firing” is the action of applying a firing pulse or driving voltage to an individual firing nozzle


246


to cause that firing nozzle to eject an ink drop or droplet.




The printing device


100


may also comprise a service station


250


that includes one or more cleaning units


252


for servicing the print cartridges


242


. Individual cleaning units


252


may include a wiping component


254


, a fluid receiving “spitting” component


256


, and a capping component


258


.




The wiping component


254


may clean or wipe material from a surface of the print head


244


through which ink is ejected from the firing nozzles


246


. The wiping component


254


may remove materials such as ink droplets that have accumulated on the print head, as well as foreign material such as paper fibers from the print media.




The spitting component or “spittoon”


256


allows ink to be cleared from the firing nozzles


246


to prevent clogging. The capping component


258


may selectively cover and seal nozzle


246


to reduce drying of the firing nozzles


246


when the print cartridge


242


is not in use.





FIG. 2

shows a perspective view of an exemplary print cartridge


242


, such as an ink jet print cartridge.

FIG. 2



a


shows an enlarged view of a portion of the print cartridge. The print cartridge


242


can function as an image forming means to allow a printing device to form a desired image. The print cartridge has a generally planar print head


244


through which a plurality of firing nozzles


246


are arranged. Generally, the print head


244


defines a bottom surface of the print cartridge


242


and is disposed proximate the print media on which an image is intended to be printed.




The firing nozzles


246


may be arranged in one or more linear, or generally linear, nozzle array(s)


302


(shown

FIG. 2



a


). By way of example, and as shown in

FIG. 2



a,


the firing nozzles


246


are arranged in three generally linear and generally parallel nozzle arrays


302


. Each of the three nozzle arrays


302


may be oriented generally parallel to a long axis of the print cartridge


242


. For example, a long axis of the print cartridge may be seen in FIG.


2


and is designated as “p”.




The nozzles arrays


302


have a length l that may represent a maximum print coverage swath attainable by the print cartridge


242


. An image that is wider than the print coverage swath may be formed in various ways such as moving either or both the print cartridge and the print media relative to the other, to allow adjacent swaths to be completed. Other suitable configurations will be described in more detail below in relation to FIG.


5


.





FIGS. 3-3



a


and


4


show an exemplary modular cleaning unit


252


that can function as a servicing means for servicing a print cartridge in accordance with one embodiment. In this embodiment, the cleaning unit


252


comprises a wiping component


254


, a spitting component


256


, and a capping component


258


that are in this embodiment arranged along a long axis x of the cleaning unit, though they can be arranged in other configurations and/or along other axes. The cleaning unit


252


has a housing that in this embodiment comprises a top cover


400


and a bottom cover


401


.




In this embodiment, the wiping component


254


comprises two wiper blades


402




a


and


402




b.


The capping component


258


comprises a cap


403


, a cap base


404


, a cover


405


, a spring


406


, a pivot


408


, and one or more engagement structure(s)


410


for engaging a print cartridge. Cam rods


412


which ride within associated cam slots


414


in the top and/or bottom cover may ramp or “cam” the capping component


258


vertically as will be discussed in more detail below.




Alignment structures


416




a


and


416




b


may be utilized to aid alignment of a print cartridge relative to the cleaning unit.

FIG. 4

shows one such example where the alignment structures (


416




a


and


416




b


) may be received in corresponding slots


450




a


and


450




b


in a print stall


240




a


to provide improved alignment between a print cartridge


242




a


and the cleaning unit


252




a


for servicing the print cartridge. Other suitable embodiments may utilize the alignment structures in various other configurations to improve alignment between a print cartridge and a cleaning unit for servicing of the print cartridge.




Returning to

FIGS. 3 and 3



a,


wiper blades


402




a


and


402




b


are configured to clean the exposed surface


247


of the print head


244


(shown

FIG. 2



a


) and may be constructed of any suitable flexible material. Exemplary materials from which the wiper blades


402




a


and


402




b


may be formed include, but are not limited to ethylene propylene diene monomer (EDPM) and silicon rubber among others.




The spitting component or spittoon


256


may receive ink ejected or “spit” from a print cartridge's firing nozzle(s)


246


(shown

FIG. 2



a


) that is not intended for printing, but instead to improve print quality by clearing the firing nozzle(s). The spitting component


256


may be any suitable shape, such as dish-shaped, and may be configured with an absorbent material lining its bottom to absorb ink. The spitting component


256


, as shown in

FIGS. 3 and 3



a,


is molded into the top cover


400


, though other suitable configurations will be recognized by the skilled artisan.




The spitting component


256


may have a capacity suitable for the intended use of the printing device in which it is employed. Printing devices that are configured for intermittent printing may utilize a larger capacity spitting component


256


than other printing devices that run generally continuously.




The useful capacity of the spitting component


256


may be increased by spitting in various locations of the spitting component rather than positioning the print cartridge in exactly the same place each time spitting is conducted. Stalagmites of dried ink may prematurely cause the spitting component to require servicing or replacement before it has actually reached its holding capacity. Problems associated with stalagmite formation may be mitigated by, among other ways, varying the location of the spit ink and/or by including a leveler in the spitting component


256


to knock down any such build up.




The capping component


258


may function to seal the print cartridge's print head


244


(shown

FIG. 2

) to reduce desiccation of ink in the firing nozzles


246


(shown FIG.


2


). Specifically, when a printing device is not printing, ink may dry in the firing nozzles and form a plug which may block some or all of the firing nozzles and cause a malfunction. During periods when printing is not taking place, the capping component


258


may seal around a portion of the print cartridge containing the print head to reduce air exchange around the firing nozzles


246


(shown

FIG. 2



a


) and thereby slow the drying process.





FIG. 3



a


shows an exploded view of the cleaning unit


252


shown in FIG.


3


. This view allows some of the elements comprising the cleaning unit to be seen in a little more detail.




The capping component


258


, shown in

FIG. 3



a,


comprises the cap


403


for sealing around a print cartridge. The cap


403


is positioned by a cap base


404


. The cover


405


is positioned adjacent the cap base


404


and is urged against the cap base by a spring


406


that is biased against and held by the pivot


408


.




In this embodiment, the cover


405


is formed from Mylar which is advantageously easy to assemble, though other suitable materials may be used. Though not shown, a small channel in the cap base


404


may allow air to escape during capping of a print cartridge. This configuration may advantageously reduce the chance of air being forced up into the firing nozzles of the print cartridge during capping.




The pivot


408


is further configured to allow the cap


403


and cap base


404


to gimbal so that the cap may rotate slightly to align with the print head. Such a configuration provides desirable sealing characteristics between the cap


403


and the print cartridge, especially if there is any misalignment of the print cartridge


242


(shown

FIG. 2

) relative to the cap


403


.




As may be best appreciated from

FIG. 3

, the capping component


258


is configured to ramp or cam upwardly when contacted by a print cartridge or print cartridge assembly (described below). A print cartridge, such as print cartridge


242


(shown in FIG.


2


), may travel along or parallel to the cleaning unit's long axis x, as shown in FIG.


3


and may contact one or more engagement structures


410


of the capping component


258


.




The contact between the print cartridge


242


(shown in

FIG. 2

) and the cleaning unit


252


may move the capping component


258


in the x direction with the print cartridge. Such movement may also cause the capping component to move in a z direction (orthogonal to the x axis) by the action of cam rods


412


which ride within associated cam slots


414


defined by top and bottom covers


400


and


401


, respectively. The combination of cam slots


414


and cam rods


412


allow single axis movement of the print cartridge and/or cleaning unit


252


in the x direction to be converted into a two axis movement of the capping component


258


along the plane xz so that the capping component engages the print cartridge and seals the firing nozzles. When the print cartridge separates from the capping component


258


by reversing its path in cam slots


414


, generally along the x axis, the capping component


258


may be returned to its initial position by a return spring (not shown) contained in the cleaning unit


252


. Moving the capping component


258


in the xz plane facilitates an improved seal between the cap


403


and the print head


244


(shown in

FIG. 2



a


).




Though not specifically shown here, the top cover


400


and/or bottom cover


401


may be configured to allow individual modular cleaning units


252


to be coupled with one another and/or with a common structure so that a plurality of cleaning units may comprise a service station


250


.




The described components of the cleaning unit


252


may be molded from polymers and/or other suitable materials as will be recognized by the skilled artisan. By way of example, the springs, such as spring


406


also may be made of steel.





FIG. 5

shows an exemplary printing system which, in this embodiment, comprises a portion of an exemplary printing device


100




b.


The printing device includes a plurality of print cartridges


242




b.


In this example, four print cartridges are provided, although other embodiments may comprise fewer or more print cartridges. By way of example, each print cartridge


242




b


has a single generally linear nozzle array


302




b.






Individual print cartridges


242




b


are positioned by individual print stalls


240




b.


In this embodiment, a print cartridge


242




b


and a print stall


240




b


may comprise a print cartridge assembly


502


. Multiple print cartridge assemblies


502


may be positioned relative to one another to form an offset array


504


in a staggered, or stair-step configuration. The print cartridges


242




b


and/or print cartridge assemblies


502


may be positioned relative to one another on a base plate


506


. In this embodiment, the print cartridges


242




b


are disposed generally parallel to one another and perpendicular to a paper feed axis y. The nozzle array


302




b


of the individual print cartridges


242




b


may be staggered with no overlap, as shown in

FIG. 5

, or have slight overlap, as shown in

FIG. 5



a,


between the nozzle arrays


302




b


of adjacent print cartridges


242




b


in the direction of the paper feed axis y.




When paper or other print media is fed along the paper feed axis y, the offset array


504


of print cartridge assemblies


502


may be controlled to create a desired print image. The desired print image may have a width as wide as the combined dimension d of the various individual nozzle arrays


302




b


without moving the print cartridge assemblies


502


during formation of the desired image. The combined dimension d may be about “n” times the length l of an individual nozzle array


302


(as shown in

FIG. 2



a.


), where “n” is a positive integer that represents the number of print cartridge assemblies


502


in an offset array


504


, and the number of cleaning units


252




b.


The multiple nozzle arrays


302




b


shown in

FIG. 5

may be controlled by a processor, such as processor


202


.




As described above, it may be advantageous to service the print cartridges


242




b


that comprise array


504


using cleaning units


252




b.


As shown in this embodiment, all of the print cartridges


242




b


comprising the array of print cartridges


504


may be serviced simultaneously by a corresponding number of cleaning units


252




b


comprising service station


250




b.


By way of example, four cleaning units


252




b


and four print cartridge assemblies


502


are shown in

FIG. 5

(n=4). However, it is to be understood that any suitable number of cleaning units and corresponding number of print cartridge assemblies may be implemented.




Individual cleaning units


252




b


have a width w


1


that is equal to or less than a width w


2


of an individual print cartridge assembly


502


where the width w


1


of the cleaning unit


252




b


and the width w


2


of the print cartridge assembly


502


are taken transverse with respect to a long axis of the print cartridge. An example of such a long axis is shown and described in relation to

FIG. 2

as the p-axis of the print cartridge


242


. In the embodiment of

FIG. 5

, the long axis of the print cartridges


242




b


can be parallel to the x axis, which is contained in the page upon which the Figure appears and is orthogonal to the paper feed axis y. This configuration can allow cleaning units


252




b


to be positioned close enough together to allow simultaneous servicing of multiple print cartridges


242




b.


By way of example, the width w


1


of the cleaning unit


252




b


may be in the range of 26 millimeters (mm) to 30 mm. However, it is to be understood that the width w


1


also may be outside the above-referenced range.




The modular cleaning units


252




b


shown in

FIG. 5

may be directly coupled to one another to form an array pattern, such as array


504


. As will be recognized by the skilled artisan, the number of cleaning units


252




b


may be selected to correspond to a number of print cartridges


242




b


comprising a given printing device.





FIG. 6

shows a flow diagram that describes a method in accordance with one embodiment. The method positions at least one print cartridge in a printing device at


600


. In some embodiments, a plurality of print cartridges is positioned in the printing device. Individual print cartridges may be combined with a stall to form a print cartridge assembly that may be positioned in the printing device. In some embodiments, the print cartridges may remain stationary during the formation of the desired print image. The print cartridges may be configured in an offset array that may allow the individual print cartridges to be controlled to cooperatively produce a desired print image that is wider than may be obtained with any individual print cartridge without making multiple passes with the print cartridge relative to the print media.




This exemplary method positions at least one modular cleaning unit in the printing device at


602


to service one or more print cartridges. In some embodiments, multiple modular cleaning units are positioned in the printing device. The cleaning units may be coupled directly to one another in any suitable fashion, i.e. fastening and bonding, among others. Alternatively or additionally, the cleaning units may be coupled to an intermediary structure such a service station. The number of cleaning units may correspond to a number of print cartridges in the printing device.




The method services the print cartridge(s) with the modular cleaning unit(s) at


604


. Such servicing may include wiping, spitting and/or capping. In applications with a plurality of print cartridges, a plurality of cleaning units may be coupled to simultaneously service the plurality of print cartridges. Such cleaning unit configurations may be arranged in an offset array. For example, the cleaning units and the print cartridges may be arranged in matching offset arrays, an example of which is shown in FIG.


5


.




Simultaneous servicing of multiple print cartridges may be achieved, among other ways, where the cleaning units have a width less than or equal to (i.e.—no greater than) a width of a print cartridge assembly. This configuration may allow multiple cleaning units to be configured in an offset array corresponding to or matching the array of print cartridges.




Such servicing of the print cartridges may be achieved in any suitable manner. For example, a plurality of print cartridges may be simultaneously serviced by moving either the plurality of print cartridges or the plurality of cleaning units relative to the other of the plurality of print cartridges or the plurality of cleaning units to allow servicing of the plurality of print cartridges.




In the embodiment shown in

FIG. 5

, servicing one or more print cartridges may be achieved by moving either or both of the print cartridge(s) and cleaning unit(s) along the x axis. In some embodiments, multiple print cartridges may be serviced simultaneously.




In one embodiment, the cleaning units may remain stationary while the print cartridges are moved along a single axis to engage the cleaning units. As described above, this movement in a single direction may be utilized to move a capping component of the cleaning units in a second different direction orthogonal to the first direction to efficiently cap the print head. Servicing the print cartridges through movement of the print cartridges and cleaning units in only one direction may advantageously simplify the complexity and cost associated with implementing movement in multiple directions. Any suitable means for moving the print cartridges and/or cleaning units may be utilized. One suitable example utilizes a step motor and pulley assembly. Other suitable means will be recognized by the skilled artisan.




Other embodiments may utilize configurations that move the cleaning units and print cartridges in two or more directions relative to one another. For example, in some embodiments where print media transport means, such as belts, move print media under the plurality of print cartridges it may be advantageous to move the print cartridges in the z direction (as indicated in

FIG. 5

) to allow sufficient clearance for the cleaning units to be moved in the x (shown

FIG. 5

) direction to service the print cartridges without contacting the transport means. Other suitable embodiments may move the one or both of the print cartridges and the cleaning units either linearly and/or radially to, among others, to achieve servicing.




Although the embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that the appended claims are not limited to the specific features or acts described.



Claims
  • 1. A printing device comprising:a plurality of print cartridges arranged in an array; and, a plurality of modular cleaning units for servicing the plurality of print cartridges, the modular cleaning units being arranged to allow the plurality of print cartridges to be serviced simultaneously.
  • 2. The printing device of claim 1, wherein the plurality of print cartridges are configured to remain stationary during printing.
  • 3. The printing device of claim 1, wherein the array comprises an offset array.
  • 4. The printing device of claim 1, wherein the plurality of modular cleaning units are configured to be moved to the print cartridges to service the print cartridges.
  • 5. The printing device of claim 1, wherein the print cartridges are configured to be moved to the cleaning units for servicing.
  • 6. The printing device of claim 1, wherein individual cleaning units comprise a wiping component, a spitting component, and a capping component.
  • 7. The printing device of claim 6, wherein the wiping component, spitting component, and capping component are arranged along an axis of the cleaning unit.
  • 8. The printing device of claim 1, wherein the cleaning units are arranged in an array configured to receive the plurality of print cartridges for servicing.
  • 9. The printing device of claim 1, wherein individual print cartridges are positioned in a stall to form a print cartridge assembly, and wherein individual modular cleaning units have a width taken transverse a long axis that is less than a width of the print cartridge assembly taken transverse a long axis of one of the individual print cartridges.
  • 10. The printing device of claim 9, wherein the width of an individual cleaning unit is in the range of about 26 millimeters to about 30 millimeters.
  • 11. The printing device of claim 1, wherein individual modular cleaning units comprise a capping component.
  • 12. The printing device of claim 11, wherein the capping component has a mylar cover.
  • 13. The printing device of claim 11, wherein the capping component is pivotable.
  • 14. The printing device of claim 11, wherein an individual modular cleaning unit is configured to ramp the capping component to engage a print cartridge.
  • 15. The printing device of claim 11, wherein the capping component comprises one or more engagement structures for engaging a print cartridge during movement of at least one of the print cartridge and the modular cleaning unit.
  • 16. The printing device of claim 1, wherein individual cleaning units comprise one or more alignment structures for aligning the cleaning unit with a print cartridge for servicing the print cartridge.
  • 17. A printing device comprising:an offset array of print cartridge assemblies, the offset array of print cartridge assemblies being configured to remain stationary during printing of a desired image individual print cartridge assemblies comprising a print cartridge positioned in a stall, and wherein individual print cartridge assemblies have a first width taken orthogonally to a long axis of a respective print cartridge; and, a service station comprising multiple cleaning units, individual cleaning units having a wiping component for wiping a print cartridge and having a second width as measured orthogonally to a long axis of the cleaning unit which is no greater than the first width.
  • 18. The printing device of claim 17, wherein the multiple cleaning units are arranged in the service station in an offset array corresponding to the offset array of print cartridges assemblies.
  • 19. A method comprising:positioning a plurality of print cartridges in a printing device in an offset array configuration; positioning a plurality of modular cleaning units in the printing device; and, simultaneously servicing the plurality of print cartridges by moving at least one of the plurality of print cartridges and the plurality of cleaning units relative to the other of the plurality of print cartridges and the plurality of cleaning units to allow servicing of the plurality of print cartridges.
  • 20. The method of claim 19, wherein the act of servicing comprises moving the cleaning units.
  • 21. The method of claim 19, wherein the act of servicing comprises moving only along a single axis.
  • 22. The method of claim 19, wherein the act of servicing comprises moving the cartridges and the cleaning units closer together.
  • 23. A method comprising:positioning a plurality of print cartridges in a printing device, wherein the print cartridges are positioned to collectively create an imaging swath greater than that which may be achieved by any individual print cartridge; and, simultaneously servicing the plurality of print cartridges with a plurality of modular cleaning units.
  • 24. The method of claim 23, wherein the act of servicing comprises one or more of: wiping, spitting, and capping.
  • 25. The method of claim 23, wherein the act of positioning comprises positioning a plurality of print cartridges in an offset array configuration.
  • 26. A printing device comprising:means for creating a desired image by ejecting ink from multiple distinct image forming means positioned in an offset array; and, means for simultaneously servicing the multiple distinct image forming means by moving at least one of the image forming means and the servicing means relative to the other of the image forming means and the servicing means.
  • 27. One or more computer-readable media having computer-readable instructions thereon which, when executed by a printing device, cause the printing device to:eject ink from an offset array of print cartridges; and, simultaneously service the print cartridges with multiple cleaning units by moving at least one of the print cartridges and the multiple cleaning units relative to the other of the print cartridges and the multiple cleaning units.
  • 28. A printing device comprising:multiple print cartridge assemblies arranged in an array, individual print cartridge assemblies comprising a print cartridge positioned in a stall, individual print cartridge assemblies having a first width measured orthogonally to a long axis of a respective print cartridge; and, multiple modular cleaning units configured to service the multiple print cartridge assemblies, individual modular cleaning units comprising a housing and wherein the housing has a second width as measured orthogonally to a long axis of the cleaning unit that is no greater than the first width.
  • 29. The printing device of claim 28, wherein the housing supports two or more of a wiper, a spittoon, and a capping unit configured to service an individual print cartridge.
  • 30. The printing device of claim 28, wherein the second width is less than the first width.
US Referenced Citations (49)
Number Name Date Kind
5057854 Pond et al. Oct 1991 A
5094554 Hurd et al. Mar 1992 A
5160945 Drake Nov 1992 A
5192959 Drake et al. Mar 1993 A
5206666 Watanabe et al. Apr 1993 A
5257043 Kneezel Oct 1993 A
5257044 Carlotta et al. Oct 1993 A
5270738 Takahashi et al. Dec 1993 A
5280308 Takahashi et al. Jan 1994 A
5334897 Ineson et al. Aug 1994 A
5367326 Pond et al. Nov 1994 A
5428375 Simon et al. Jun 1995 A
5572244 Drake et al. Nov 1996 A
5587730 Karz Dec 1996 A
5610640 Anderson et al. Mar 1997 A
5710582 Hawkins et al. Jan 1998 A
5757387 Manduley May 1998 A
5784077 Silverbrook Jul 1998 A
5838343 Chapin et al. Nov 1998 A
5889535 Jackson et al. Mar 1999 A
5933163 Koizumi et al. Aug 1999 A
6089693 Drake et al. Jul 2000 A
6155669 Donahue et al. Dec 2000 A
6172691 Belon et al. Jan 2001 B1
6183059 Muhl et al. Feb 2001 B1
6224187 Inten et al. May 2001 B1
6296648 Boche et al. Oct 2001 B1
6310640 Askeland Oct 2001 B1
6325488 Beerling et al. Dec 2001 B1
6350011 Karlinski Feb 2002 B1
6371672 Pirie et al. Apr 2002 B1
6375296 McGarry et al. Apr 2002 B1
6382766 Park May 2002 B1
6382767 Greive May 2002 B1
6402288 Rhodes et al. Jun 2002 B2
6402290 Johnson et al. Jun 2002 B1
6409306 Shiida Jun 2002 B1
6422679 Aldrich Jul 2002 B1
6435640 Yamaguchi Aug 2002 B1
6457800 Bohm et al. Oct 2002 B1
6471331 Silverbrook et al. Oct 2002 B1
6585347 Johnson et al. Jul 2003 B1
20010038401 Kawase et al. Nov 2001 A1
20020018097 Kitahara et al. Feb 2002 A1
20020024557 Matsumoto et al. Feb 2002 A1
20020044168 Hashi et al. Apr 2002 A1
20020126176 Nishi et al. Sep 2002 A1
20020167563 Sawyer et al. Nov 2002 A1
20020171708 Watanabe et al. Nov 2002 A1
Foreign Referenced Citations (3)
Number Date Country
0676288 Oct 1995 EP
0845360 Jun 1998 EP
1302322 Apr 2003 EP