This invention pertains to a printing device fluid reservoir with gripping features. In particular, this invention pertains to gripping features for a fluid reservoir that facilitate holding, insertion of, and removal of the fluid reservoir from a chassis.
Fluid-ejection printing devices, such as ink jet printers, commonly have at least one fluid reservoir and a chassis that supports the fluid reservoir. The combination of the fluid reservoir and the chassis is referred to herein as a “fluid-providing system.” The fluid reservoir may contain one or more fluid chambers that provide fluid to a printhead. If the fluid reservoir has more than one ink chamber, each such chamber often retains fluid of a different color for multi-color printing. On the other hand, if the fluid reservoir has only a single ink chamber, typically such chamber is used to retain black ink for black-and-white printing.
The printhead commonly is connected directly or indirectly to the chassis. In order to form an image, the printhead, along with the chassis and the fluid reservoir, typically are moved in a lateral direction across a width of a substrate, such as paper, as fluid is ejected from the printhead. After the printhead forms a row-portion of the image along the width of the substrate, the substrate is advanced in a direction perpendicular to the lateral direction along a length of the substrate, so that the printhead can form a subsequent row-portion of the image. This process of advancing the substrate for each row-portion is repeated until a next substrate is needed or the image is completed.
When an ink chamber in the fluid reservoir runs out of fluid, a user is charged with the responsibility of removing the empty fluid reservoir from the chassis and replacing it with a full fluid reservoir. Consequently, the task of replacing a fluid reservoir into the chassis must be simple and must consistently achieve a proper engagement of the fluid reservoir into the chassis. Otherwise, improper insertion of the fluid reservoir into the chassis may lead to damage to the printing device due to fluid leaks, may cause poorly formed images due to an improper communication of fluid from the fluid reservoir to the printhead, and may result in user frustration. Furthermore, if it is not easy for a user to insert a fluid reservoir into a chassis, or if proper installation is not apparent to the user, the user may resort to using excessive force when inserting the fluid reservoir into the chassis. In this case, excessive contact between fragile components on the fluid reservoir and/or the chassis may occur, thereby resulting in damage. Accordingly, a need in the art exists for an insertion-solution that allows a user to simply and reliably insert a fluid reservoir into a chassis of a fluid-ejecting printing device.
The above-described problems are addressed and a technical solution is achieved in the art by a printing device fluid reservoir with gripping features according to embodiments of the present invention. In an embodiment of the present invention, the fluid reservoir includes a first surface and a fluid-containing body located beneath the first surface when the fluid reservoir is in an orientation in which it is configured to operate. According to an embodiment of the present invention, the first surface includes a protruding grip, and the fluid-containing body has a lever extending therefrom. According to an embodiment of the present invention, both the protruding grip and the lever are configured to receive a pinching force that compresses the lever towards the fluid-containing body, facilitates carrying of the fluid reservoir, and facilitates installing and/or releasing the fluid reservoir into/from a chassis of the printing device. An advantage of the protruding grip and lever arrangement, according to embodiments of the present invention, is that it serves multiple purposes of carrying the fluid reservoir, installing it into the chassis, and removing it from the chassis.
According to an embodiment of the present invention, the protruding grip extends horizontally or substantially horizontally beyond an edge of the fluid containing body. According to another embodiment of the invention, the protruding grip may be flat or substantially flat, which may make the fluid reservoir easier to fit into a printing device. Further in this regard, the protruding grip and the first surface of the fluid reservoir form a single flat or substantially flat surface, which also may make the fluid reservoir easier to fit into a printing device. On the other hand, the protruding grip may be curved (along with or separate from the first surface of the fluid reservoir) to facilitate better interaction with a finger applying a pinching force. Further, the protruding grip may include a textured region to facilitate gripping and interaction with a finger applying the pinching force.
According to an embodiment of the invention, the lever extending from the fluid-containing body, may be located at least in part beneath the protruding grip when the fluid reservoir is in an orientation in which it is configured to operate. The lever may extend further from the fluid-containing body than the protruding grip does. Alternatively, the lever may extend the same or substantially the same distance from the fluid-containing body or less than the distance from the fluid-containing body than the protruding grip does. According to an embodiment of the present invention, the lever is configured to retain a finger by its shape. For example, the lever may have a pinching-force-reception region that is concave to assist it in facilitating reception of a finger applying the pinching force.
According to an embodiment of the present invention, the lever and, optionally, the chassis are formed of a material and/or are arranged in a configuration that generates an audible sound when the fluid reservoir is properly inserted into the chassis of the printing device. According to this embodiment, a user receives instant and audible feedback regarding when the fluid reservoir is properly inserted into the chassis. According to embodiments of the present invention, sensing devices may be included with the printing device to monitor and determine whether such an audible click has been produced, in order to determine whether the fluid reservoir has been properly inserted into the supporting chassis.
In addition to the embodiments described above, further embodiments will become apparent by reference to the drawings and by study of the following detailed description.
The present invention will be more readily understood from the detailed description of exemplary embodiments presented below considered in conjunction with the attached drawings, of which:
It is to be understood that the attached drawings are for purposes of illustrating the concepts of the invention and may not be to scale.
Embodiments of the present invention provide a protruding grip and lever combination configured to receive a pinching force, by which the fluid reservoir may easily be carried, inserted into a supporting chassis, or removed from the supporting chassis. As described herein, additional features, such as a flat or substantially flat protruding grip, a curved protruding grip, texture on the protruding grip, a proper curvature of the pinching-force-application surface of the lever, and an audible click when the lever snaps into an engaged position in the chassis provide additional benefits in their own right and need not be used in combination with the other features described herein.
Turning now to
Also according to the embodiment of
According to the embodiment of
According to the embodiment of
Upon application of the pinching force 12, the lever moves in a direction 11 towards surface 18 of the fluid-containing body 8. Such movement, when the fluid reservoir 2 is installed into the chassis 24, releases a latch 13, thereby disengaging the fluid reservoir 2 from the chassis. Upon insertion of the fluid reservoir 2 into the chassis 24, a downward pressure 15 applied to the protruding grip 6 causes the lever 10, and its latch 13 to snap into an engaged position in the chassis 24, (illustrated in detail below). Typically downward pressure 15 is applied after pinching force 12 is released. Such engagement causes an audible sound, such as a click sound, described in more detail below. When carrying the fluid reservoir 2 in an orientation with surface 4 at the top, according to an embodiment of the present invention, an upward force is applied to portion 21 of lever 10. In order to facilitate carrying fluid reservoir 2 without it slipping out of the hand, the region of portion 21 of lever 10 that is substantially parallel or substantially parallel to protruding grip 6 preferably is designed to extend a minimum of 4 mm in a direction that is perpendicular or substantially perpendicular to surface 18. In addition, when lever 10 is not pinched, portion 21 is designed to extend a minimum distance of 10 mm from surface 18, including the gap between lever 10 and surface 18.
Turning now to
According to both embodiments of
In order to remove the fluid reservoir 3 from the chassis 24, according to an embodiment of the present invention, the pinching force 12 is applied to the protruding grip 6 and the pinching-force-application surface 20 of the lever 10 to compress the lever 10 towards the fluid containing body 14, thereby releasing the latch 13 from the chassis 24. Such release allows the fluid reservoir 3 to be removed from the chassis 24.
It is to be understood that the exemplary embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by one skilled in the art without departing from the scope of the invention. It is therefore intended that all such variations be included within the scope of the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5646654 | Widder | Jul 1997 | A |
6155678 | Komplin et al. | Dec 2000 | A |
6350025 | Morita et al. | Feb 2002 | B1 |
6390601 | Morita et al. | May 2002 | B1 |
6623104 | Kotaki et al. | Sep 2003 | B1 |
6796646 | Komplin et al. | Sep 2004 | B2 |
6997548 | Matsuo et al. | Feb 2006 | B2 |
7008053 | Hashii et al. | Mar 2006 | B2 |
20020175979 | Morita et al. | Nov 2002 | A1 |
20030035035 | Komplin et al. | Feb 2003 | A1 |
20040135857 | Hashii et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
1 512 536 | Mar 2005 | EP |
0154911 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080151016 A1 | Jun 2008 | US |