This application claims priority from Japanese Patent Application No. 2016-185034 filed Sep. 23, 2016. The entire content of the priority application is incorporated herein by reference.
The present disclosure relates to a printing device.
Portable printing devices are well known in the art. Japanese Patent application Publication No. 2015-160427 describes an example of one such printing device provided with a belt clip. By attaching the printing device to a waist belt with this belt clip, the user can use the printing device portably. To this printing device, a structure disclosed in Japanese Patent application Publication No. 2015-208920 may be applicable. The printing device described in Japanese Patent application Publication No. 2015-208920 includes a rear cover rotatably supported to be opened and closed. The rear cover is provided with support cylinders (corresponding to bearings) that rotatably support both ends of a rotational shaft of a platen roller. The support cylinders may be presumably fitted with a holder, and the holder may be fixed to the rear cover with screws.
A user may accidentally drop the portable printing device when attaching the device to or detaching the device from a belt. In such an event, the impact from the fall may exert a force on the platen roller in the axial direction of the rotational shaft, causing the support cylinders to collide with the holder. Depending on the height from which the printing device is dropped, the holder could be damaged as a result of the collision between the support cylinders and the holder.
In view of the foregoing, it is an object of the present disclosure to provide a printing device capable of preventing damage to a holder supporting bearings caused by an impact incurred when the printing device is dropped.
In order to attain the above and other objects, the disclosure provides a printing device including a platen roller, a pair of bearings and a holder supporting the platen roller. The platen roller has a rotational shaft defining an axis extending in an axial direction. The rotational shaft has end portions in the axial direction. The pair of bearings rotatably supports the respective end portions of the rotational shaft. Each of the bearings includes: a small-diameter portion having a generally cylindrical shape; a large-diameter portion having a generally cylindrical shape; and a protrusion provided at an outer circumferential surface of the small-diameter portion. The large-diameter portion has a diameter larger than a diameter of the small-diameter portion and is coaxially connected to the small-diameter portion. The larger-diameter portion has a peripheral surface and an end face connecting the peripheral surface to the outer circumferential surface of the small-diameter portion. The holder includes a pair of fitting portions. The pair of bearings is respectively fitted to the pair of fitting portions. Each of the fitting portions includes a receiving portion, an opening, and a receiving surface. The receiving portion is configured to receive the small-diameter portion of the corresponding bearing. The receiving portion has a generally C-shape when viewed in the axial direction and has a pair of distal end portions opposing each other to define a gap therebetween. The receiving portion is configured to contact the outer circumferential surface of the small-diameter portion. The opening is the gap defined between the pair of distal end portions of the receiving portion. The protrusion of the corresponding bearing is fitted to the opening to prevent the bearing from rotating relative to the receiving portion. The receiving surface is configured to make contact with the end face of the large-diameter portion of the corresponding bearing from outward in the axial direction. At least one of the end face and the receiving surface includes a recessed portion.
The particular features and advantages of the disclosure as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
[Printing Device 1]
Next, a printing device 1 according to an embodiment of the present disclosure will be described while referring to the accompanying drawings.
The printing device 1 is a thermal printing device that can print on a heat-sensitive printing medium (thermal paper). The printing device 1 may be battery-powered. The printing device 1 may be attached to the user's belt with a belt clip (not shown), for example, enabling the user to carry the printing device 1 while working. The printing device 1 can be connected to an external device (not shown) using a USB (registered trademark) cable. The printing device 1 can print text, illustrations, and the like on a printing medium based on print data received from the external device. The external device may be a common personal computer (PC), for example.
In the following description, the lower-right side, upper-left side, upper-right side, lower-left side, top, and bottom of the printing device 1 in
As shown in
<First Cover 2>
The first cover 2 is configured in a box-like shape. The first cover 2 includes a front wall portion 22, a right wall portion 23, a left wall portion 24, a rear wall portion 25 (see
As shown in
A main chassis (not shown) is provided beneath a rear edge portion 21A of the top wall portion 21. The main chassis supports a motor and the like (not shown). The main chassis also supports the lever 23L so as to allow the lever 23L to move up and down. As shown in
The main chassis also includes a pair of support portions 7. Specifically, the support portions 7 include a support portion 7A and a support portion 7B. The support portion 7A extends rearward from a right edge of the inner wall portion 27. The support portion 7B extends rearward from a left edge of the inner wall portion 27. The support portion 7 supports a restricting mechanism 9 described later. The support portion 7 will be described later in greater detail. As shown in
As shown in
Further, as also shown in
As shown in
<Restricting Mechanism 9>
The restricting mechanism 9 includes a pair of plate-shaped restricting members 91 and 92, and a connecting member (not shown). The restricting member 91 is disposed near the right edge of the inner wall portion 27, while the restricting member 92 is disposed near the left edge of the inner wall portion 27. The restricting members 91 and 92 are spaced apart from each other in the left-right direction. That is, side surfaces of the restricting members 91 and 92 face rightward or leftward. A protruding portion 91A is disposed on a top end of the restricting member 91 and protrudes forward therefrom. A protruding portion 92A is disposed on a top end of the restricting member 92 and protrudes forward therefrom. Respective upper end portions of the protruding portions 91A and 92A slope downward toward the front side. The restricting members 91 and 92 are connected to each other with a coupling portion (not shown) provided at respective bottom ends of the restricting members 91 and 92.
As shown in
In the following description, unless otherwise specified, a pivoting direction (clockwise or counterclockwise) is denoted as a pivoting direction of a member as viewed from a right side thereof. Also, hereinafter, a state in which the restricting members 91 and 92 are pivoted counterclockwise by the urging force of the spring (shown in
When the lever 23L moves upward, the restricting members 91 and 92 pivot counterclockwise, and the protruding portions 91A and 92A move forward. When the lever 23L has moved to its uppermost position, the restricting members 91 and 92 are in the restricting state. In the restricting state, the protruding portion 91A is disposed above a recessed portion 71A formed in an upper edge of the support portion 7A and the protruding portion 92A is disposed above a recessed portion 72A formed in an upper edge of the support portion 7B, as shown in
<Second Cover 3>
As illustrated in
As shown in
The side plate portion 33 is connected to a right edge of the cover plate portion 31. The side plate portion 33 has a first portion 33A and a second portion 33B. The first portion 33A curves while extending downward from the right edge of the cover plate portion 31. The second portion 33B extends from a bottom edge of the first portion 33A downward, i.e., in a direction orthogonal to the cover plate portion 31. The side plate portion 34 is connected to a left edge of the cover plate portion 31. The side plate portion 34 has a first portion 34A and a second portion 34B. The first portion 34A curves while extending downward from the left edge of the cover plate portion 31. The second portion 34B extends from a bottom edge of the first portion 34A downward, i.e., in a direction orthogonal to the cover plate portion 31.
<Holder 80>
A holder 80 is disposed at an inner wall of the second portion 31B near a front edge thereof. The holder 80 is configured to rotatably support a platen roller 60.
As shown in
The second portion 82 constitutes a front portion of the holder 80. The second portion 82 curves downward and rearward in conformance with a shape of a platen 61 described later. With this shape of the second portion 82, a platen accommodating portion 82A is provided at a front side of the second portion 82. The platen accommodating portion 82A is a space for accommodating the platen 61 therein. The platen accommodating portion 82A extends to span between a right end and a left end of the second portion 82. The front edge of the first portion 81 is connected to a bottom edge of the second portion 82 on the rear side thereof.
The third portion 83 constitutes a bottom portion of the holder 80. The third portion 83 has a general rectangular shape in a front view and is elongated in the left-right direction. An upper edge of the third portion 83 is connected to the bottom of the second portion 82. The third portion 83 has a front surface that occupies a plane sloping to extend rearward toward the bottom.
The right wall portion 84 is connected to the right ends of the first portion 81 and second portion 82. The right wall portion 84 has a general rectangular shape in a right side view and is elongated in the front-rear direction. The right wall portion 84 extends to the front side of the second portion 82. That is, a portion of the right wall portion 84 is positioned to cover the platen accommodating portion 82A from rightward thereof. In the following description, the portion of the right wall portion 84 that covers the right end of the platen accommodating portion 82A (i.e., a front end portion of the right wall portion 84) will be called a “fitting portion 86.”
Likewise, the left wall portion 85 has a general rectangular shape in a left side view and is elongated in the front-rear direction. The left wall portion 85 extends to the front side of the second portion 82. That is, a portion of the left wall portion 85 is positioned to cover the platen accommodating portion 82A from leftward thereof. In the following description, the portion of the left wall portion 85 that covers the left end of the platen accommodating portion 82A (i.e., a front end portion of the left wall portion 85) will be called a “fitting portion 87.”
<Fitting Portions 86 and 87>
The fitting portions 86 and 87 oppose each other in the left-right direction. Since the fitting portions 86 and 87 have symmetrical shapes as each other with respect to the left-right direction, only the fitting portion 86 will be described here, while a description for the fitting portion 87 will be omitted. As shown in
A recessed portion 865 is formed in a right surface of the fitting portion 86 to be recessed leftward therefrom along a peripheral edge of the receiving portion 861. In the following description, a bottom surface of the recessed portion 865 will be called a “receiving surface 866.” That is, the receiving surface 866 is a flat surface occupying a plane orthogonal to the left-right direction. The receiving surface 866 has a C-shape in a right side view. An inner edge portion of the recessed portion 865 defining an inner edge of the receiving surface 866 (i.e., an inner peripheral edge of the receiving portion 861) will be called an “inner edge portion 861A.” An outer edge portion of the recessed portion 865 defining an outer edge of the receiving surface 866 will be called an “outer edge portion 861B.” The receiving surface 866 has a dimension T2 in a radial direction thereof between the inner edge portion 861A and the outer edge portion 861B.
<Platen Roller 60>
As illustrated in
<Bearings 6A and 6B>
Bearings 6A and 6B are provided respectively on left and right ends of the rotational shaft 62 constituting the platen roller 60. The bearing 6A is disposed on the right end portion of the rotational shaft 62 that protrudes rightward from the platen 61, while the bearing 6B is disposed on the left end portion of the rotational shaft 62 that protrudes leftward from the platen 61. Since the bearings 6A and 6B have left-right symmetrical shapes as each other, a description will be given on the bearing 6A only, while a description for the bearing 6B will be omitted.
The bearing 6A is a generally cylindrical shaped member having a through-hole 64 in which the rotational shaft 62 is inserted. The through-hole 64 extends in the left-right direction along a center axis P of the bearing 6A. The bearing 6A has a left-right dimension that is smaller than a left-right length of the right end portion of the rotational shaft 62 protruding rightward from the right end of the platen 61.
More specifically, referring to
Hereinafter, the stepped structure between the small-diameter portion 66 and large-diameter portion 67 includes an end face 68. More specifically, the end face 68 constitutes a left end of the large-diameter portion 67 and connects an outer circumferential surface 661 of the small-diameter portion 66 and a peripheral surface 671 of the large-diameter portion 67. The end face 68 is orthogonal to the direction in which the through-hole 64 extends (i.e., the left-right direction). The end face 68 has a ring-like shape in a left side view. The end face 68 extends in a circumferential direction of the large-diameter portion 67, in a left side view, as shown in
On the outer circumferential surface 661 of the small-diameter portion 66, a protrusion 69 is provided. Referring to
Hereinafter, a portion of the end face 68 other than the portion occupied by the protrusion 69 will be referred to as a specific surface 681. That is, referring to
The specific surface 681 includes a recessed portion 682 and a contact surface 683. The recessed portion 682 is a portion of the specific surface 681 that is recessed rightward relative to the contact surface 683. The recessed portion 682 has a bottom surface extending parallel to the contact surface 683. The recessed portion 682 extends from a right edge on the top surface 691 of the protrusion 69. The recessed portion 682 extends a prescribed length in a counterclockwise direction, in a left side view, from the top surface 691 of the protrusion 69 (more specifically, from a right edge on the top surface 691). A portion of the specific surface 681 other than the recessed portion 682 is the contact surface 683. The contact surface 683 extends from a downstream end of the recessed portion 682 in the counterclockwise direction to the bottom surface 692 (more specifically, a right edge on the bottom surface 692) of the protrusion 69 in a left side view. In the embodiment, the recessed portion 682 has an area that is equivalent to approximately one-half of an area of the contact surface 683. In other words, the recessed portion 682 constitutes approximately one-third of an entire area of the specific surface 681 (the area of the recessed portion 682+the area of the contact surface 683). In
<Assembly and Operations of the Platen Roller 60, Bearings 6A and 6B, and Holder 80>
As illustrated in
With the platen roller 60 disposed in the holder 80, the bearing 6A is assembled on the right end of the rotational shaft 62 from the right side thereof. That is, the right end of the rotational shaft 62 is inserted into the through-hole 64 of the bearing 6A from leftward thereof. The rotational shaft 62 is rotatable relative to the bearing 6A. The outer circumferential surface 661 of the small-diameter portion 66 excluding the protrusion 69 is fitted into the receiving portion 861, while the protrusion 69 is fitted into the opening 864 of the fitting portion 86. Since the vertical dimension T3 of the protrusion 69 is approximately equal to the distance T1 between the distal end portions 862 and 863 of the receiving portion 861, the distal end portion 862 contacts the top surface 691 of the protrusion 69, while the distal end portion 863 contacts the bottom surface 692 of the protrusion 69. With this structure, the protrusion 69 is restricted from rotating about the rotational shaft 62, thereby providing positioning of the recessed portion 682 relative to the receiving surface 866. In the embodiment, the recessed portion 682 is arranged to oppose a region on the receiving surface 866 in the left-right direction, the region being from the distal end portion 862 to an area upward of the rotational shaft 62. As shown in
The bearing 6B is similarly assembled on the left end of the rotational shaft 62 from the left side thereof. Since assembly of the bearing 6B differs from assembly of the bearing 6A only in that the left and right directions are reversed, this description has been omitted. A gear 65 is fixed on the left end of the rotational shaft 62 at a position leftward of the bearing 6B, as shown in
Since the inner diameter of the receiving portion 861 is substantially equal to the outer diameter of the small-diameter portion 66, and since the radial dimension T4 of the specific surface 681 is smaller than the dimension T2 of the receiving surface 866, the contact surface 683 constituting the specific surface 681 of the bearing 6A contacts the receiving surface 866 of the fitting portion 86 from its right side in case that the bearing 6A moves leftward relative to the holder 80. In this way, the bearing 6A is restricted from moving farther leftward relative to the holder 80. However, the recessed portion 682 of the specific surface 681 does not make contact with the receiving surface 866, since a gap can be formed therebetween at this time. In this state, assume that the rotational shaft 62 is moved further leftward relative to the holder 80 and the bearing 6A. In this case, the snap ring 62A is brought into contact with the bearing 6A, which is restricted from moving leftward by the fitting portion 86. The rotational shaft 62 is thus restricted from moving further leftward relative to the holder 80 and bearing 6A. In this state, the left end of the platen 61 is not in contact with the right surface of the fitting portion 87.
In case that the bearing 6B moves rightward relative to the holder 80, the contact surface constituting the end region on the end face of the bearing 6B contacts the receiving surface of the fitting portion 87 from its left side. The bearing 6B is therefore restricted from moving further rightward relative to the holder 80. At this time, the recessed portion constituting the end region on the end face of the bearing 6B does not contact the receiving surface of the fitting portion 87, since a gap is formed therebetween. In this state, even assuming that the rotational shaft 62 is moved further rightward relative to the holder 80 and the bearing 6B, the gear 65 may contact the bearing 6B from the left side, thereby restricting the rotational shaft 62 from moving further rightward relative to the holder 80 and the bearing 6B. In this state, the right end of the platen 61 does not contact the left surface of the fitting portion 86. In this way, the left-right movement of the platen 61 relative to the holder 80 is restricted to within a prescribed range by the contact between the bearings 6A and 6B and the corresponding fitting portions 86 and 87.
In a state where the platen roller 60 and the bearings 6A and 6B assembled to the holder 80, a pair of screws 681A (see
<Opening and Closing Operations of the Second Cover 3>
As shown in
As illustrated in
As shown in
When the operator moves the lever 23L (see
In the holder 80 according to the embodiment, the second portion 82 is connected to the bottom and rear end portions of the fitting portion 86. That is, the bottom and rear end portions of the fitting portion 86 are structurally reinforced by the second portion 82. However, an upper portion of the fitting portion 86, particularly a portion near the distal end portion 862, is structurally weaker than the reinforced bottom and rear end portions of the fitting portion 86 (or, lower and rear end portions of the receiving surface 866), since the distal end portion 862 extends further forward relative to the second portion 82. That is, in the receiving portion 861, the distal end portion 862 is structurally weaker than a base portion of the receiving portion 861 (i.e., a portion other than the distal end portion 862).
In the embodiment, the recessed portion 682 of the specific surface 681 can provide a gap between the specific surface 681 and the receiving surface 866 of the holder 80 when the specific surface 681 and the receiving surface 866 oppose each other in the left-right direction. Thus, the specific surface 681 does not make contact with the receiving surface 866 at a region in which the recessed portion 682 is provided. Further, the protrusion 69 of the bearing 6A is fitted into the opening 864 of the fitting portion 86 so that the bearing 6A is restricted from rotating relative to the fitting portion 86. The position of the recessed portion 682 is thus fixed relative to the receiving surface 866.
With this structure, the contact surface 683 of the bearing 6A is allowed to face and contact a portion of the holder 80 that is relatively strong in structure (i.e., lower and rear end portions of the receiving surface 866) in the left-right direction, while the recessed portion 682 of the bearing 6A is arranged to oppose the distal end portion 862 (a portion of the holder 80 that is not structurally strong) in the left-right direction. Thus, even if the printing device 1 is dropped and the impact from the fall exerts a force in the axial direction of the rotational shaft 62 of the platen roller 60 (i.e., the left-right direction), for example, the holder 80 can receive the load from the bearing 6A at the portion that is structurally strong. The same also applies to the bearing 6B. Hence, damages caused by impacts from falls are less likely to be applied to the holder 80 retained by the pair of bearings 6A and 6B.
In other words, the recessed portion 682 is formed in the specific surface 681 in a region that is configured to oppose the distal end portion 862 (structurally weaker portion) of the holder 80 in the left-right direction. With this structure, load from the bearing 6A is prevented from being applied to the distal end portion 862 of the receiving portion 861 in the left-right direction. Accordingly, the holder 80 is less likely to be damaged by impacts from falling of the printing device 1.
The recessed portion 682 accounts for approximately one-third of the entire area of the specific surface 681. Here, referring to
While the disclosure has been made in detail with reference to specific embodiment thereof, it would be apparent to those skilled in the art that many modifications and variations may be made therein without departing from the scope of the disclosure.
For example, the recessed portion 682 of the embodiment may be divided into two or more parts.
In the bearing 6C of the modification, four recessed portions 6821-6824 are formed in the specific surface 681 constituting the end face 68. In a left side view, referring to
Note that the recessed portions 6821-6824 may have different shapes and configurations from those of the disclosure. For example, the recessed portions may be arranged at different intervals and extend different lengths circumferentially. In other words, the bearing 6C need not have vertical symmetry.
Surfaces provided between neighboring two of the recessed portions 6821-6824 will be called partial contact surfaces; more specifically, a first partial contact surface 6831, a second partial contact surface 6832, and a third partial contact surface 6833. The partial contact surfaces 6831-6833 are arranged to occupy the same plane. Referring to
More specifically, the second partial contact surface 6832 and a portion of the third partial contact surface 6833 are disposed on opposite sides of a virtual plane Q1. Here, the virtual plane Q1 is an imaginary plane passing through a center axis P1 of the bearing 6C and intersecting with the first partial contact surface 6831. More precisely, in this modification, the virtual plane Q1 includes the center axis P1 of the bearing 6C and passing through a center of gravity G1 of the first partial contact surface 6831. Here, the portion of the third partial contact surface 6833 that is positioned opposite to the second partial contact surface 6832 with respect to the virtual plane Q1 is a frontward portion of the third partial contact surface 6833.
Similarly, the first partial contact surface 6831 and the third partial contact surface 6833 are disposed on opposite sides of a virtual plane Q2. The virtual plane Q2 is an imaginary plane including the center axis P1 of the bearing 6C and intersecting with the second partial contact surface 6832. More precisely, the virtual plane Q2 includes the center axis P1 of the bearing 6C and passing through a center of gravity G2 of the second partial contact surface 6832.
A portion of the first partial contact surface 6831 and the second partial contact surface 6832 are disposed on opposite sides of a virtual plane Q3. The virtual plane Q3 includes the center axis P1 of the bearing 6C and intersects with the third partial contact surface 6833. More precisely, the virtual plane Q3 includes the center axis P1 of the bearing 6C and passing through a center of gravity G3 of the third partial contact surface 6833. Here, the portion of the first partial contact surface 6831 that is positioned opposite to the second partial contact surface 6832 with respect to the virtual plane Q3 is a frontward portion of the first partial contact surface 6831.
Since methods for calculating positions of the center of gravities for the respective partial contact surfaces 6831-6833 are well known in the art, a description thereof has been omitted here. Further, the virtual planes Q1-Q3 may not pass through the centers of gravity G1, G2, G3 of the respective partial contact surfaces 6831-6833, but may pass through specific positions on respective inner surfaces of the partial contact surfaces 6831-6833. The specific positions may be determined arbitrary.
According to the structure of the bearing 6C of this modification, the three partial contact surfaces 6831-6833 can reliably and stably make surface contact with the receiving surface 866. The holder 80 can reliably disperse load received from the bearing 6C into the three surfaces, i.e., the partial contact surfaces 6831-6833. Hence, the printing device 1 according to this modification can suppress damage to the holder 80 caused by impacts from falling of the printing device 1.
In the depicted embodiment, the bearings 6A and 6B are distinctly shaped parts that are vertically asymmetrical. Hence, the bearing 6A must be assembled to the fitting portion 86 (on the right side), while the bearing 6B must be assembled to the fitting portion 87 (on the left side). Accordingly, there is a possibility that the bearings 6A and 6B may be incorrectly assembled. On the other hand, the bearing 6C of this modification is vertically symmetrical and therefore has the same shape regardless of whether the bearing 6C faces leftward or rightward. That is, the bearings 6C can be assembled to the fitting portion 86 as well as to the fitting portion 87. Accordingly, there is no chance that the bearings 6C are incorrectly assembled to the holder 80.
While the recessed portion 682 is formed in the specific surface 681 on the end face 68 of the bearing 6A in the depicted embodiment, the recessed portion 682 may be formed in the receiving surface 866, rather than in the specific surface 681. In case that the receiving surface 866 includes a recessed portion, referring to
The shape and layout position of the recessed portion 682 is not limited to those of the depicted embodiment. For example, the recessed portion 682 may extend a prescribed length circumferentially from a position spaced a prescribed distance away from the right edge of the top surface 691 constituting the protrusion 69. That is, preferably, the recessed portion 682 is arranged to at a position corresponding to a structurally weaker portion of the holder 80.
In the embodiment described above, the area of the recessed portion 682 is approximately one-third of the entire area of the specific surface 681. However, the area of the recessed portion 682 may be less than one-third, or more than one-third of the entire area of the specific surface 681. In case that the area of the recessed portion 682 is less than one-third of the entire area of the specific surface 681, the contact surface 683 is allowed to make contact with the receiving surface 866 with a larger area than in the depicted embodiment, ensuring stable contact between the contact surface 683 and the receiving surface 866. In case that the area of the recessed portion 682 extends to cover more than one-third of the entire area of the specific surface 681, the contact surface 683 can be prevented from making contact with a structurally weaker portion of the holder 80, even if the structurally weaker portion occupies a wider range on the receiving surface 866.
In the embodiment, the protrusion 69 of the small-diameter portion 66 covers approximately one-fourth of the circumference of the outer circumferential surface 661. However, the protrusion 69 may cover a different range of the circumference, but is preferably less than one-half of the circumference. Since the distance T1 between the distal end portions 862 and 863 of the receiving portion 861 is smaller than the outer diameter of the small-diameter portion 66, the protrusion 69 occupying less than one-half of the circumference of the outer circumferential surface 661 can still suppress the small-diameter portion 66 from coming forward through the opening 864.
While the holder 80 is formed as a separate member from the second cover 3 in the depicted embodiment, the holder 80 may be formed integrally with the second cover 3 instead. Further, while the fitting portions 86 and 87 are formed integrally with the holder 80, the fitting portions 86 and 87 may be formed as separate members from the holder 80. In this case, the fitting portions 86 and 87 may be fixed to the holder 80 with screws, for example.
While the printing device 1 of the embodiment employs thermal printing method, other printing method, such as thermal transfer printing or inkjet printing, may be employed. Further, the printing medium need not be wound up as a roll, as the roll 4A in the embodiment. Further, the open area 2A may not have a general rectangular shape in a top view, but may have any arbitrary shape. For example, one or more of the edge portions 21A, 23A, 24A, and 25A defining the open area 2A may be curved.
While the disclosure has been made in detail with reference to specific embodiment thereof, it would be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit and scope of the above described embodiment.
Number | Date | Country | Kind |
---|---|---|---|
2016-185034 | Sep 2016 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
20020018666 | Noda | Feb 2002 | A1 |
20030123904 | Maeshima | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
2015-160427 | Sep 2015 | JP |
2015-208920 | Nov 2015 | JP |
Number | Date | Country | |
---|---|---|---|
20180086119 A1 | Mar 2018 | US |