In many inkjet type dispensers, ink or other printing fluid is supplied to a printhead through a container that is maintained at a slight internal vacuum to help keep printing fluid from leaking out of the container. This internal vacuum in an inkjet printing fluid container is commonly referred to as “back pressure.” The container may be integral to the printhead or separate from the printhead.
The same part numbers designate the same or similar parts throughout the figures.
Inkjet printing fluid containers can be subjected to a wide range of environmental conditions during manufacturing, storage, and shipping as well as during printing operations. Some environmental conditions cause high pressures inside the container. For example, printing fluid freezing at low temperatures may expand to pressurize the container, causing fluid leaks and even damaged parts. When frozen printing fluid thaws, the pressure from trapped air can further stress the container. High altitude and high temperature environments can induce similarly high, potentially damaging internal pressures.
The present disclosure provides examples of containers that may reduce the risk of excessive internal pressures. In one example, a container utilizes an unrestrained, inelastic, expandable and contractible bag inside the fluid chamber to help absorb large pressure excursions. The interior of the bag is vented to the atmosphere so that the bag is inflated to full expansion under normal conditions in which a small back pressure is maintained inside the fluid chamber. The contractible bag may relieve excess pressure inside the chamber by providing space for expanding air and ice. An inelastic bag with little or no shape memory may begin to deflate and contract as soon as the chamber reaches a positive pressure, keeping the inside the chamber at or near atmospheric pressure until the bag is fully deflated.
Unlike spring bags and elastic balloons used to regulate back pressure, in some examples the bags of the present disclosure may be constructed to have no appreciable effect on the pressure inside the chamber under normal conditions. Uncontained empty space (without a bag) has a lower compressibility than a vented bag. Pressure inside the chamber may rise even as empty space is consumed. With a vented bag, by contrast, pressure inside the chamber may not increase until the bag is fully contracted. Thus, more uncontained empty space may be needed to achieve the same protection as a vented bag. Accordingly, a vented bag may, for example, allow higher fluid fill levels.
A “printing fluid” as used in this document means fluids that are suitable for use in an inkjet type dispenser. “Printing fluid” is not limited to ink but also includes other fluids that may be used in an inkjet type dispenser and/or for uses other than printing images, including, for example, 3D printing agents and pharmaceutical agents dispensed from an inkjet type dispenser used in some digital titration machines.
The examples shown in the figures and described herein illustrate but do not limit the scope of the patent, which is defined in the Claims following this Description.
The volume of bag 18 may be unrestrained except by the environmental conditions inside chamber 14. Bag 18 may itself constructed to offer negligible resistance to expanding/inflating and contracting/deflating. The exterior of bag 18 may be able to withstand prolonged exposure to printing fluid 16. Suitable materials for constructing bag 18 may include, for example, a polyethylene protective covering on an EVOH (ethylene vinyl alcohol), metal foil or other vapor barrier.
Referring now to the multi-chamber printing fluid container shown in
Supply chamber 14B receives printing fluid 16 from reserve chamber 14A and supplies printing fluid 16 to a printhead or other downstream component. A regulator 28 controls the flow of printing fluid 16 from reserve chamber 14A to supply chamber 14B, and helps regulate the pressure in both chambers 14A and 14B. Regulator 28 includes an air valve 30 through which air moves between chambers 14A and 14B, a printing fluid valve 32 through which printing fluid 16 flows from chamber 14A to chamber 14B, and an actuator 34 to control valve 30. Air valve 30 is seen in detail in the sections of
Referring now also to
The operation of excursion bags 18 in chambers 14A, 14B is illustrated in
As noted above, each excursion bag 18 is itself constructed to offer negligible resistance to expanding/inflating and contracting/deflating. Inkjet printing fluid containers normally operate with a slight back pressure, for example in the range of 0inH2O to −15inH2O. Thus, within this range of normal operating pressures a pressure excursion bag 18 vented to the atmosphere will inflate to full expansion and will remain fully inflated until the pressure inside the container exceeds 0 gage (atmospheric pressure). If the pressure inside the container rises above 0 gage, bag 18 will begin to deflate and contract to create more space inside the container for expanding air and/or liquid, relieving any further increase in pressure until the bag is completely deflated.
While a single pressure excursion bag 18 is shown in each chamber 14A and 14B, other configurations are possible. For example, it may be desirable in some implementations to have a pressure excursion bag 18 in just one chamber 14A, 14B or to have multiple bags 18 in one or both chambers 14A and 14B. Also, the use of a pressure excursion bag is not limited to a single chamber container, such as container 10 shown in
As noted at the beginning of this Description, the examples shown in the figures and described above illustrate but do not limit the scope of the patent. Other examples are possible. Therefore, the foregoing description should not be construed to limit the scope of the patent, which is defined in the following Claims.
“A” and “an” as used in the Claims means one or more.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/019204 | 3/6/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/144295 | 9/15/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5409134 | Cowger | Apr 1995 | A |
6739710 | Lin et al. | May 2004 | B2 |
6966639 | Martinez-Pacheco | Nov 2005 | B2 |
7984980 | Kachi | Jul 2011 | B2 |
20060164473 | Davis et al. | Jul 2006 | A1 |
20060290753 | Tatsumi et al. | Dec 2006 | A1 |
20090058956 | Davis et al. | Mar 2009 | A1 |
20130141497 | Boyd et al. | Jun 2013 | A1 |
20130201263 | Stathem et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
1347804 | May 2002 | CN |
1607094 | Apr 2005 | CN |
103282209 | Sep 2013 | CN |
204109563 | Jan 2015 | CN |
1093922 | Apr 2001 | EP |
1524119 | Apr 2005 | EP |
Entry |
---|
Burt, Bob, “Refilling inkjet cartridges”, PC Update Online, Jun. 1996, pp. 1-2. |
International Search Report and Written Opinion for International Application No. PCT/US2015/019204 dated Oct. 29, 2015, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20170253043 A1 | Sep 2017 | US |