The present invention is directed to a printing group of a printing press with a linearly movable transfer cylinder.
A printing group is known from DE 198 03 809 A1. A forme cylinder has one printing plate in the circumferential direction on its circumference, and several printing plates in the longitudinal direction. A transfer cylinder working together with the forme cylinder has double the circumference and is embodied for having one printing blanket in the circumferential direction and two in the longitudinal direction which two printing blankets, however, are arranged offset from each other in the circumferential direction.
JP 10-071 694 discloses printing group cylinders with four grooves arranged next to each other and offset in the circumferential direction in respect to each other. The printing group cylinders have a so-called double circumference.
An arrangement for a joint-free printing press is known from CH 345 906. The joints of four dressings which are arranged next to each other on transfer cylinders of double circumference, and the joints of four dressings which are arranged next to each other on a forme cylinder, are arranged offset from each other.
A double printing group is known from DE 198 15 294 A1, wherein the rotating shafts of the printing group cylinders are arranged on one level. The cylinders have four times the width of a newspaper page, double width and a circumference of one height of a newspaper page. The transfer cylinders have endless sleeves, which can be laterally exchanged through openings in the lateral wall.
Printing group cylinders of single circumference are known from U.S. Pat. No. 4,125,073, which have an oscillation damper. In the case of wider printing presses, the forme cylinder has a double circumference and two printing plates arranged one behind the other. The grooves, which are arranged in the longitudinal direction next to each other and which receive the printing plates, are additionally offset in respect to each other in the circumferential direction.
A double printing group is known from DE 44 15 711 A1. For the purpose of improving the print quality, a plane which extends perpendicularly to the paper web is inclined by approximately 0° to 10° in relation to a plane connecting the two rotating shafts of the transfer cylinders.
JP 57-131 561 discloses a double printing group wherein the shafts of the printing group cylinders are arranged in one plane. The phases of the printing group cylinders are arranged with each other in such a way that grooves for fastening the dressings roll off on each other, and simultaneously on the two printing groups which are working together.
A double printing group is also disclosed in DE 34 12 812 C1 and in DE 38 19 159 A1. In each of these disclosures, a pair of cylinder shafts are arranged in essentially a common plane in a printing position during web printing, which plane extends inclined in relation to the web to be imprinted. Within a short distance of that printing position, the placement of the transfer cylinders against, or away from other cylinders takes place along an almost straight movement direction by the use of double eccentric cams.
EP 0 862 999 A2 discloses a double printing group with two transfer cylinders which are working together and which are seated in eccentric, or double eccentric bushings, for the purpose of being placed against or away from other cylinders. In another embodiment, the two transfer cylinders are seated on levers, which are seated eccentrically in respect to the forme cylinder shaft and are pivotable.
A double printing group, in which the shafts of the printing group cylinders are arranged in one plane, is known from EP 1 075 945 A1. Several printing group cylinders are seated in carriages and are embodied so that their distance from each other can be changed by the use of guide elements arranged in a support wall for the purpose of being placed against or away from other cylinders.
Printing group cylinders are known from DE 199 37 796 A1, which can be moved along a linear actuation path in order to place them against or away from each other. A drive motor, which is moved simultaneously with the cylinder, is assigned to each cylinder. Movement takes place in a direction extending parallel in respect to a common plane of the printing group cylinders.
For the purpose of the transfer cylinders in U.S. Pat. No. 5,868,071 being placed against or away from other cylinders, these transfer cylinders are seated in carriages. These carriages are linearly displaceable in the lateral frame along parallel movement directions in linear guide elements having linear bearings.
The object of the present invention is directed to providing a printing group of a printing press with a linearly movable transfer cylinder.
In accordance with the present invention, this object is attained by providing the printing group of the printing press having at least a forme cylinder and a transfer cylinder. The transfer cylinder can be placed in either a print-on or a print-off position along a linear actuating path, with respect to a counter-pressure cylinder. The shafts of the several cylinders are located in a common plane when the transfer cylinder is in its print-on position.
The advantages which can be gained by the present invention lie, in particular, in that a printing press is provided which is constructed in a compact, low-oscillating and rugged manner, provides a large production variety and requires a comparatively low production and maintenance outlay.
Minimizing the number of parts which must be designed to be movable for normal operations and during setup, for example omitting the movement of all cylinders, frame walls, bearings etc., assures a rugged and cost-effective construction.
The cylinders support each other by the linear arrangement of the printing group cylinders, i.e. by the arrangement of the rotating shafts of the printing group cylinders in the print-on position in substantially one plane. This prevents relative sagging of the cylinders. Even a compensation of the bending static line of the forme and of the transfer cylinders, in respect to each other, can be achieved.
Since the dressings on the cylinders are not secured in grooves extending continuously over the length of the cylinders, but instead in grooves which are offset in respect to each other in the circumferential direction, a groove beating, in the course of the passage of the groove during the roll-off of two cylinders on each other, is considerably reduced. In an advantageous embodiment, in the case of two grooves arranged next to each other in the longitudinal direction, the grooves are arranged offset by 180° from each other.
The arrangement of the printing group cylinders and their grooves in such a way that the grooves of each cylinder, which are offset in respect to each other, roll off in the area of the opposite, offset groove of the cylinder working together with it, is particularly advantageous. A compensation of the dynamic forces can occur in this way. At a fixed offset angle of 180°, and with a linear arrangement of the cylinders, destructive interference occurs at all production rates, i.e. angular speeds, without an offset angle of the grooves needing to be changed as a function of the number of revolutions or the frequency.
The arrangement of printing group cylinders of single circumference is particularly advantageous for printed products of a small and/or of a variable number of pages and/or for print shops with restricted space availability. In comparison with the production of the same product on a printing press of double circumference (without assembling), no “double” plate change is required. In contrast to a printing press of double circumference, during assembling operations it becomes possible to create a page jump of two pages and in this way to provide increased flexibility in the printed product.
The type of construction, with all of the printing groups cylinders being of a single circumference, permits a much more compact and easier construction, in comparison with printing groups having one or several cylinders of double circumference. Also, rubber blankets, which would have to be replaced in case of damage are smaller and therefore more cost-effective.
The use of printing blankets and printing plates makes it possible to seat the cylinders stably at both ends, which makes possible a simple, rugged and cost-effective construction of the frame receiving the printing group cylinders.
Also, in view of a rugged and simple construction, it is advantageous if only the transfer cylinders need to be moved for bringing the printing group into or out of contact with others. Although the forme cylinders can be movably seated for adjusting the distance to the associated transfer cylinder as well as to a possible inking system and, if provided, a dampening system, the placement against or away from each other of the transfer cylinders and the associated forme cylinders takes place in an advantageous manner only by a movement of the transfer cylinders.
The linear arrangement of the cylinders is made possible by a specially selected movement in the area of the printing position. At the same time, devices for movement into and out of contact, or movements into and out of contact of the forme cylinders are avoided. This, too, contributes to a rugged and simple construction.
In one embodiment, the transfer cylinders are seated in carriages, for example, in linear guide devices, or on the lateral frame, which makes possible a movement which is substantially perpendicular in respect to the plane of the axes of the cylinders. If the guide devices are arranged in specially designed inserts on the lateral frame, the journals are shortened and make possible a simple construction of an encapsulated lubricant chamber. A special arrangement of the movement direction makes possible the rapid and assured separation between the forme and counter-pressure cylinders, as well as from the web.
By the dressings being embodied in the form of so-called metallic printing blankets on the transfer cylinders, the effective groove width is reduced, because of which, an excitation of oscillations is further reduced in an advantageous manner. The non-printing area on the cylinders, i.e. the “white edge” on the product, as well as paper waste, are also reduced.
An embodiment of the printing group with cylinders of single circumference, and the arrangement in one plane, with offset grooves which, however, alternatingly roll off on each other, and with dressings which are embodied as metallic printing blankets on the transfer cylinders, is particularly advantageous.
Cylinders, or rollers, of printing groups must be moved away from each other, out of an operating state designated as “print on”, i.e. a print-on position, and then back into contact with each other, particularly for washing, changing of dressings, and the like. The radial movement of the rollers required for this also contains a movement component in a tangential direction, whose size is a function of the structural design; i.e. the design of the eccentric cam, lever, linear guide device, as well as their angle in respect to the nip point of the actuating device. If a speed difference is created on the active jacket surfaces at the nip point because of the actuation in relation to the operational state, this implies, because of the surface friction of the roller materials used, a tangential frictional force component which is directed opposite to the actuating movement. Therefore, the actuating movement is slowed by this, or its speed is limited. This is important in particular with printing group cylinders in case of so-called “windings”, since there large frictional forces also result from the high pressures which are also occurring.
It is therefore advantageous, in a method for bringing cylinders into and out of contact with each other, that a relative tangential speed in the area near the contact, i.e. in the area of the nip point, of two cylinders or rollers working together, is reduced, correlated with the movement, by the intentional rotation, or turning, of at least one of the affected cylinders or rollers. Besides a reduction of the slowing of the actuation, an unnecessarily high load, such as caused by friction or deformation on the dressings and/or the jacket surfaces of the involved cylinders or rollers, is prevented.
Preferred embodiments of the present invention are represented in the drawings and will be described in greater detail in what follows.
Shown are in:
Referring initially to
On their circumferences, the forme cylinder 02 and the transfer cylinder 03 each have at least one interference in the circumferential direction on the jacket surface, for example a disruption 04, 06 in the jacket surface which is active during roll-off. This disruption 04, 06, which is also shown in
Each of the forme cylinders 02 and transfer cylinders 03 has at least two grooves 04, 06, or interruptions 04, 06. These two grooves 04, 06 are respectively arranged one behind the other in the longitudinal direction of the cylinders 02, 03, and are offset in respect to each other in the circumferential direction.
If the cylinders 02, 03 only have a length L02, L03, which substantially corresponds to two widths of a newspaper page, only two grooves 04 and 06 are provided, which are offset in respect to each other in the circumferential direction and are arranged one behind the other in the longitudinal direction.
The grooves 04, 06 are arranged on the two cylinders 02, 03 in such a way that, in the course of a rotation of the two cylinders 02, 03, they roll off on respectively one of the grooves 06, 04 of the other cylinder 03, 04. The offset of the grooves 04, 06 of each cylinder 02, 03 in the circumferential direction is preferably approximately 180°. Therefore, after respectively one 180° rotation of the cylinders 02, 03, at least one pair of grooves 04, 06 rolls off on each other, while on a longitudinal section “a” of the cylinders 02, 03, as seen in
The transfer cylinder 03 of the first printing group 01 forms a printing position 09, together with a third cylinder 07, on a web 08, for example a web 08 of material to be imprinted. This third cylinder 07 can be embodied as a second transfer cylinder 07, as shown in
In the embodiment of
As represented in the preferred embodiment in
As seen in
In the case of the double printing group 13, shown in
In an advantageous embodiment, the forme cylinder 02 and the transfer cylinder 03 each have a length L02, L03, which corresponds to four or more widths of a printed page, for example a newspaper page, for example 1,100 to 1,800 mm, and in particular to 1,500 to 1,700 mm, and a diameter D02, D03, for example 130 to 200 mm, and in particular of 145 to 185 mm, whose circumference U substantially corresponds to the length of a newspaper page, “single circumference” in what follows. The device is also advantageous for other circumferences, wherein the ratio between the circumferences D02, D03 and the length L02, L03 of the cylinders 02, 03 is less than or equal to 0, 16, in particular less than 0, 12, or even less than or equal to 0, 08.
In an advantageous embodiment, each of the two cylinders 02, 03 has two grooves 04, 06, each of which extends continuously at least over a length corresponding to two widths of a newspaper page.
More than two grooves 04, 06 can be arranged per cylinder 02, 03. In this case, respectively two grooves 04, 06 arranged next to each other can be arranged aligned, or respectively alternatingly. However, for example with four grooves 04, 06, the two grooves 04, 06 adjoining the front ends of the cylinders 02, 03 can be arranged in a common alignment, and the two grooves 04, 06 located on the “inside” can be arranged in a common alignment, but offset in the circumferential direction in respect to the first mentioned ones, as depicted in
If the interruptions 04, 06 are actually embodied as grooves 04, 06, or as slits 04, 06, the grooves 04, 06 schematically represented in
In view of the excitation, or the damping of oscillations caused by groove beating, it is particularly advantageous if the grooves 04, 06 on the respective cylinders 02, 03, 07, 11 are offset by 180° from each other. In this case, the grooves 04, 06 between the forme cylinders 02, 11 and the transfer cylinders 03, 07 of the two printing groups 01, 12 roll off simultaneously and in the area of the same section in the longitudinal direction of the cylinders 02, 03, 07, 11, in one stage of the cycle for example on the same side, for example a side 1, as seen in
The excitation of oscillations is considerably reduced by the offset arrangement of the grooves 04, 06 and the roll-off of all grooves 04, 06 in the described manner, and possibly also by the linear arrangement of the cylinders 02, 03, 07, 11 in one plane E. Because of the synchronous, and possibly symmetrical roll-off on the two printing groups 01, 12, a destructive interference with the excitation occurs which, with the selection of the offset by 180° of the grooves 04, 06 on the cylinders 02, 03, 07, 11, takes place independently of the number of revolutions of the cylinders 02, 03, 07, 11, or of the frequency.
If the interruptions 04, 06 are actually embodied as grooves 04, 06, in an advantageous embodiment they are embodied with a gap of only little width, for example less than or equal to 3 mm, in the area of a jacket surface of the forme cylinders 02, 11, or of the transfer cylinders 03, 07, which gap receives ends of one or several dressings, for example one or several rubber blankets on the transfer cylinder 03, 07, or ends of one or several dressings, for example one or several printing plates, on the forme cylinders 02, 11. The dressing on the transfer cylinder 03, 07 is preferably embodied as a so-called metallic printing blanket, which has an ink-conducting layer on a metallic base plate. In the case of the transfer cylinders 03, 07, the beveled edges of the dressings are secured by clamping and/or bracing devices, and in the case of forme cylinders 02, 11 by clamping devices, in the grooves 04, 06.
A single, continuous clamping and/or bracing device can be arranged in each one of the grooves 06 of the transfer cylinder 03 or, in case of grooves extending over several widths of newspaper pages, several clamping and/or bracing devices can be arranged one behind the other in the longitudinal direction. The grooves 04 of the forme cylinder 02, for example, also have a single, or several clamping devices.
A “minigap technology” is preferably employed in the grooves 04 of the forme cylinders 02, 11, as well as in the grooves 06 of the transfer cylinders 03, 07, wherein a leading dressing end is inserted into a groove with an inclined extending suspension edge, the dressing is wound on the cylinders 02, 03, 07, 11, the trailing end is also pushed into the groove 04, 06, and the ends are clamped, for example by use of a rotatable spindle or a pneumatic device, to prevent them from sliding out.
However, it is also possible to arrange a groove 04, 06 embodied as a narrow slit 04, 06 for the dressing on the forme cylinders 02, 11, as well as for the dressing, embodied as a metallic printing blanket, of the transfer cylinders 03, 07, which receives the ends of the dressings. In this case, the plate or blanket ends are secured in the slit 04, 06 by their shaping and/or by the geometry of the slit 04, 06.
For example, in an advantageous embodiment as depicted in
In an advantageous embodiment, the forme cylinders 02, 11 are covered with four flexible dressings, which adjoin each other in the longitudinal direction of the forme cylinders 02, 11 and which have a length of slightly greater than the length of a printed image of a newspaper page in the circumferential direction, and in the longitudinal direction have a width of approximately one newspaper page. With the arrangement of continuous grooves 04 and with only one clamping device per groove 04, 06, which has a length of two widths of a newspaper page, it is also possible to apply dressings of a width of two newspaper pages, which dressings are so-called panoramic printing plates.
In connection with printing groups for which the need for a setup with panoramic printing plates can be excluded, an arrangement can also be of advantage in which the “outer” dressings, which respectively adjoin the side I and the side II, are aligned with each other, and the “inner” dressings are aligned with each other and are arranged offset by 180° from the first mentioned ones, as seen in
In a further development, the above-mentioned arrangement of the interruptions 04, 06 on the respective cylinders 02, 03, 07, 11, as well as between the cylinders 02, 03, 07, 11, and the possibly linear arrangement of the cylinders 02, 03, 07, 11, can be applied in particular to cylinders of a length L02, L03 substantially corresponding to six times the width of a newspaper page. However, in this case, it can be advantageous to embody the transfer cylinders 03, 07 and/or the forme cylinders 02, 11 with a diameter D02, D03 which results in a circumference which substantially corresponds to double the length of a newspaper page.
In an advantageous embodiment, for a mechanically simple and rugged embodiment of the double printing group 13, the forme cylinders 02, 11 are arranged fixed with respect to their axes of rotation R02, R11. For bringing the printing groups 01, 12 in and out of contact, the transfer cylinders 03, 07 are embodied to be movable by shifting their rotating shafts R03, R07, and can each be simultaneously moved away from their associated forme cylinders 02, 11 and transfer cylinders 03, 07 working together with them, or can be placed against them. In this embodiment, only the transfer cylinders 03, 07 are moved in the course of normal operation of the printing press, while the forme cylinders 02, 11 remain in their fixed and possibly previously adjusted position. However, the forme cylinders 02, 11 can also be seated in appropriate devices, for example in eccentric or double eccentric bushings, in linear guide devices or on levers, for adjustment, if necessary.
As represented schematically in
The linear actuating path 16 is accomplished with the aid of linear guide devices, which are not represented in
In a variation, the actuating path 16, which is linear at least in the area of the nip position, can be formed by seating the transfer cylinders 03, 07 in eccentric bushings, and in particular in double eccentric bushing, which are not specifically represented. It is possible, by the use of such double eccentric bushings, to provide a substantially linear actuating path 16 in the area of the print-on position AN, and, in an area remote from the printing position 09, to provide a curved actuating path 17, if required, which permits a faster or greater movement out of contact of the transfer cylinders 03, 07 than from the cooperating transfer cylinder 07, 03 that from the assigned forme cylinders 02, 11, or vice versa. Seating on side I and on side II of the double printing group 13 is also advantageous for the employment of eccentric cams.
The course of the web 08 through the printing position 09, which is in the print-on position AN, is also represented in
When arranging the rotating shafts R02, R03, R07 of the forme, transfer and counter-pressure cylinders 02, 03, 07 in the plane E, as seen in
In the case where only one of the forme cylinders and the associated transfer cylinders 02, 03, 11, 07 define the plane E in the contact position, as seen in
The relationships mentioned are to be correspondingly applied to a “non-linear” course of the web 08, taking into consideration the respective obtuse angle between the web 08 and the plane E.
The direction of the actuating path 16, in the direction toward contact release is selected, regardless of the relative course of the web 08, in such a way, that an angle φ between the plane E and the actuating path 16 in the direction toward contact release lies by at least 90° and at most 120°, in particular between 90° and 115°. However, the angle φ is again upwardly limited in such a way that the angle Δ is at least 90°.
At least one of the transfer cylinders 03, 07 can be advantageously brought out of contact sufficiently far so that, during printing operations, the drawn-in web 08 can be moved through the printing position 09 without touching it.
The double printing group 13 can be multiply employed, for example twice, as represented in
The print-on, or print-off positions AN, AB have been drawn bold in all drawing figures for the purpose of clarity. In
In an advantageous embodiment, each one of the printing groups 01, 12 has at least one drive motor 14 of its own, which is only indicated in dashed lines in
In a schematically represented embodiment, shown at the top in
In an alternate embodiment, each printing group 01, 12 has one separate drive motor 14 for each cylinder 02, 03, 07, 11, as shown in
For special requirements, for example for only one-sided imprinter operations, or merely for the requirement for changing the relative angle of rotation position of the forme cylinders 02, 11 in relation to each other, driving is also possible wherein one of the forme cylinders 02, 11 of a printing group 01, 12 has its own drive motor 14, and the remaining cylinders 02, 03, 07, 11 of the printing group 01, 12 have a common drive motor 14.
The type of drive mechanism in
In an advantageous embodiment, driving by use of the drive motor 14 takes place coaxially between the rotating shafts R02, R03, R07, R11 and the motor shaft, if required with a coupling for compensating for angles and/or offset, which will be explained in greater detail below. However, it can also take place via a pinion, in case the “moving along” of the motor 14, or a flexible coupling between the drive motor 14 and the cylinders 02, 03, 07, 11, which are to be moved when required, is to be avoided.
If a drive motor 14 driving the transfer cylinder 03, 07 is to be taken along in the course of the actuating movement, in a further development it can also be taken along on an appropriate guide device on the outside of the lateral frame 20, for example.
In a further development of the preferred embodiments, it is advantageous if an inking system 21 assigned to the respective forme cylinders 02, 11 and, if provided, an associated dampening unit 22, is rotationally driven by a drive motor which is independent of the drive mechanism of the printing group cylinders. In particular, the inking system 21 and the possibly provided dampening system 22 can each have their own drive motors. In the case of an anilox inking system 21, the screen roller, and in connection with a roller inking system 21, for example, the friction cylinder or cylinders, can be rotationally driven individually or in groups. Also, the friction cylinder or cylinders of a dampening system 22 can also be rotationally driven individually or in groups.
A first preferred embodiment for providing the linear actuating path 16 by the use of a linear guide device is represented in
The journals 23 of at least one of the transfer cylinders 03, 07 are rotatably seated in radial bearings 27 which are, for example, bearing housings 24 that are embodied as carriages 24. In in
For the linear arrangement of the double printing group 13, the linear guide devices are oriented in an advantageous embodiment almost perpendicularly in respect to the plane E, or D, i.e. Δ=90°, see
In an embodiment which is not specifically represented, the linear guide devices 26 can be arranged directly on the walls of the lateral frame 27, and in particular on walls of openings in the lateral frame 27 which extend almost perpendicularly to the front faces of the cylinders 02, 03, 07, 11.
In the preferred embodiment in accordance with
In an advantageous embodiment, the bell 28 has an area which projects in the direction toward the cylinders 02, 03, 07, 11 out of the aligned lateral frame 27. The linear guide devices 26 are arranged in, or on this area of the bell 28.
The distance between the two oppositely-located lateral frames 20, only one of which is represented is, as a rule, set in accordance with the widest unit, for example the wider inking system 21 and, as a rule, leads to a correspondingly longer journal of the cylinders 02, 03, 07, 11. With the above mentioned arrangement, it is advantageous that it is possible to keep the journals of the cylinders 02, 03, 07, 11 as short as possible.
In a further development, the bell 28 has a hollow chamber 29, which is, at least partially arranged at the height of the alignment of the lateral frame 20. As schematically represented in
With paired driving of the cylinders 02, 03, 07, 11, see below in connection with
In case of the coaxial driving of the forme cylinders 02, 11 in particular, the drive mechanism of the forme cylinders 02, 11 has a coupling 62 between the journal 51 and the drive motor 14, which takes up at least an axial relative movement between the cylinders 02, 11 and the drive motor 14 for setting the lateral register. In order to also take up production tolerances and possibly required movements of the forme cylinders 02, 11 for adjusting purposes, the coupling 62 is designed as a coupling 62 which evens out at least small angles and offsets. It is also designed, in an advantageous embodiment, as an all-metal coupling 62 with two multi-disk packets, which are rotationally rigid, but which are axially deformable. The linear movement is taken up by the multi-disk packets, which are positively connected in the axial direction with the journal 51, or with a shaft of the drive motor 14.
If lubrication, for example a lubricant or oil chamber, is required, the hollow chamber 29 can be bordered in a simple manner by the use of a cover 31, shown in dashed lines, without it increasing the width of the press, or protruding from the frame 20. In that case the hollow chamber 29 can be designed to be encapsulated.
Thus, the arrangement of the bell 28 shortens the lengths of the journals, which has a reduction of oscillations as a result, and makes possible a simple and variable construction, which is suitable for the most varied driving configurations and, along with a large degree of structural uniformity, allows the changing between configurations, with or without drive connections, with or without lubricants, with or without additional couplings.
In the embodiment schematically represented in
However, driving of the bearing housing 24 can also take place by use of a lever mechanism. The latter can also be driven by an electric motor, or by a cylinder which can be charged with a pressure medium. If the lever mechanism is driven by means of one or by several cylinders, which can be charged with a pressure medium, the arrangement of a synchronizing spindle which synchronizes the actuating movements on both sides I and II is advantageous.
The attachment of the transfer cylinders to be moved to the lateral frame 20, or to the bell 28, is provided as follows in the preferred embodiment in accordance with
The parts of the guide devices 26 arranged on the support walls 33, or without a bell 28 directly on the lateral frame 20 in this way enclose the carriage 24 arranged between them. The active surface of the parts of the linear guide device 26 connected with the lateral frame 20, or the bell 28, point into the half space facing the journal 23. For reducing the friction between the parts of the guide devices 26 which work together, bearings 34 are arranged in an advantageous embodiment, for example, linear bearings 34, and in particular rolling bearing cages 34, which make possible a linear movement, are provided.
In the ideal case, the respective two parts of the two guide devices 26 permit a movement of the carriage 24 only in one degree of freedom in the form of a linear movement. For this purpose, the entire arrangement is clamped together essentially free of play in a direction extending perpendicularly in respect to the rotating shafts R03, R07 and perpendicularly in respect to the movement direction of the carriage 24. For example, the respective part of the guide device close to the forme cylinder, shown in
The carriage 24 seated in the described manner has the radial bearing 27, which receives the journal 23, for example on a radially inward directed side of a recess facing the transfer cylinders 03, 07.
In a second preferred embodiment, as shown in
Thus, the parts of the guide device 26 arranged on the carriage 24 comprise the support 36, or the parts of the guide devices 26 arranged on the support 36, on the lateral frame 20, or on the bell 28.
In an advantageous embodiment, at least one of the supports 36 assigned to the transfer cylinders 03, 06 has an elongated hole, which is not visible in the drawing figures, and which is matched to the movement direction of the carriage 24, for passing the journal 36 through, which is to be linearly moved. This elongated hole is aligned, at least in part, with an elongated hole, also not visible, which is arranged in the bell 28, or in the associated lateral frame 20. The journal 23, or a shaft connected with the journal 23, passes through these elongated holes, and is in a driven connection with a drive wheel 30, as seen in
The embodiment in accordance with
Driving of the carriage 24 can take place in a manner already described in connection with the first preferred embodiment.
In particular in the case wherein the actuating drive 39 is embodied as a cylinder 39 which can be charged with a pressure medium, the arrangement of stops 41 is advantageous, against which stops 41 the respective carriage 24 is placed in the print-on position AN. These stops 41 have been configured to be adjustable in order to make possible the setting of the end position of the transfer cylinders 03, 07, in which the rotating shafts R03, R07 come to lie in the plane E. The system becomes very rigid if the carriage 24 is pushed with a large force against the stop 41, or respectively the two stops 41 shown in
If, as in the present case, the carriages 24 of the two adjoining transfer cylinders 03, 07 are actuated by a common actuating device, it is advantageous, in a further development of the preferred embodiments, if the actuating device between the respective carriages 24 and the first common part of the actuating device are embodied to be resilient, at least within narrow limits. To this end, each connector 37 has a multi-disk packet 42, for example a plate spring packet 42, in the manner of a shock-absorbing leg. While in the print-on position AN, the spring packet 42 of the one transfer cylinder 03, 07 is compressed, the spring packet 42 assigned to the other transfer cylinder 07, 03 is under tensile strain.
For synchronizing the linear movement of both sides of the transfer cylinders 03, 07, a shaft 43, for example a synchronized shaft 43, is connected with the actuating device arranged on both sides of the transfer cylinders 03, 07. For this purpose, the shaft 43 in the example is connected, fixed against relative rotation, with the two levers 38 which are respectively arranged on a lateral frame 20 on the sides I and II. In this case, this represents the pivot axis for the levers 38 at the same time.
An adjusting device can be provided in the preferred embodiments in
By utilization of the measures explained in the preferred embodiments, it is possible to construct, or to operate a printing group 01, 12 with long, slim cylinders 02, 03, 07, 11, which have the above mentioned ratio of diameter to length of approximately 0,008 to 0.16, in a rugged and low-oscillation manner, while at the same time requiring little outlay regarding space, operation and frame construction. This applies, in particular, to forme cylinders 02, 11 of “single circumference”, i.e. with one newspaper page at the circumference, but of double width, i.e. with four newspaper pages on the length of the cylinders 02, 03, 07, 11.
In the preferred embodiments in
In
Driving in pairs takes place from the forme cylinders 02, 11 to the transfer cylinder 03, 07. Depending on the requirements, driving can also take place from the two transfer cylinders 03, 07 to the two forme cylinders 02, 11. The two pairs of drive wheels 30 are preferably arranged in such a way, in relation to each other, that they are out of engagement, which for example takes place by an axially offset arrangement, i.e. on two driving levels.
In the case of cylinders 02, 03, 07, 11 being driven in pairs from the transfer cylinders 03, 07, a coupling 61, which compensates for angles and offset, can be arranged as is shown in
In the case of the paired driving of the cylinders 02, 03, 07, 11 respectively coaxially at the forme cylinders 02, 11, as represented in
If the forme cylinders 02, 11 from
In an advantageous further development, a gear 63 is arranged between each one of the drive motors 14 and the cylinders 02, 03, 07, 11 to be driven. This gear 63 can be an attached gear 63 connected with the drive motor 14, for example it can be a planetary gear 63. However, it can also be a reduction gear 63 embodied in another way, for example with a pinion or a belt and a drive wheel. The individual encapsulation of each gear 63 is advantageous, for example as an individually encapsulated attached gear 63. The lubricant chambers created in this way are spatially tightly limited and prevent the soiling of adjacent press elements and also contribute to an increase in the quality of the printed product.
In the case of the paired drive of the cylinders 02, 03, 07, 11 schematically indicated in the lower double printing group 13 in
The above mentioned embodiments for driving, as well as for moving, the transfer cylinders 03, 07, and the embodiment of the linear guide device 26 can be applied, in the same way, to printing groups in which the cylinders 02, 03, 07, 11 do not all have the same circumference, or diameter, as shown in
If the printing position is constituted by a transfer cylinder 03, 07 and a counter-pressure cylinder 07, 03, embodied as a satellite cylinder 07, 03, the forme and the transfer cylinders 02, 11, 03, 07 can also have a single circumference, and the assigned counter-pressure cylinder 07, 03 can be designed larger by a multiple.
By use of the above-mentioned embodiments, an increased stiffness of the printing groups is also achieved in an advantageous manner. This has a particular advantage in connection with cylinders 02, 03, 07, 11 which have a length which corresponds to at least four, or even six, vertical printed pages, in particular newspaper pages.
In contrast to printing presses with double circumference and single width, the embodiment of the cylinders 02, 03, 07, 11 with double width and—at least the forme cylinders 02, 11—with a “single circumference” makes a considerably greater product variability possible. Although the maximum number of possible printed pages remains the same, in the case of single-width printing groups 01, 12 with double circumference they are in two different “books”, or “booklets” in the assembly operation. In the present case, with double-width printing groups 01, 12 of single circumference, the double-width webs 08 are longitudinally cut after having been imprinted. In order to achieve a maximum booklet width, one or several partial webs are conducted one above the other in the so-called folding superstructure, or turning deck, and are folded to form a booklet on a former without assembly operations. If such booklet thicknesses are not required, some partial webs can be guided on top of each other, but others can be conducted together to a second hopper and/or folding apparatus. However, two products of identical thickness can also be conducted without being transferred to two folding apparatus. A variable thickness of two different products is thus provided. If, in case of a double folding apparatus or of two folding apparatus in which at least two product delivery devices are provided, it is possible, depending on the arrangement, to conduct the two booklets, or products, next to or above each other to one side of the printing press, or to two different sides.
The double-width printing press of single circumference has a great variability in particular when staggering the possible page numbers of the product, the co-called “page jump”. While the thickness per booklet, or layer in the printing press of double circumference and of single width can only be varied in steps of four printed pages during assembly operation, i.e. with maximum product thickness, the described double-width printing press of single circumference allows a “page jump” of two pages, for example when printing newspapers. The product thickness, and in particular the “distribution” of the printed pages to different books of the total product or the products, is considerably more flexible.
After the web 08 has been longitudinally cut, the partial web is conducted either to a former which is different in respect to the corresponding partial web, or is turned to be aligned with the last mentioned one. This means that, in the second case, the partial web is brought into the correct longitudinal, or cutting register prior to, during or after turning, but before being brought together with the “straight ahead webs”. In an advantageous embodiment, this is taken into account as a function of the circumferential direction of grooves 04, 06, which are offset in respect to each other, of a cylinder 02, 03, 07, 11 by the appropriate design of the turning deck, for example preset distances of the bars, or of the path sections. Fine adjustment, or correction, is performed by use of the actuating paths of the cutting register control device of the affected partial web and/or partial web strand, in order to place partial webs on two different running levels on top of each other with the correct registration, when required.
Now, the forme cylinders 02, 11 can be provided, in the circumferential direction, with one vertical printed page in broadsheet format and in the longitudinal direction with at least four, as seen in
Thus, depending on the placement on the forme cylinders 02, 11 with horizontal tabloid pages, or with vertical newspaper pages, and in particular with broadsheet pages, or with horizontal or vertical book pages, it is possible by use [means] of the double-width printing press and at least the forme cylinders 02, 11 of single circumference, to produce different products, depending on the width of the web 08 used.
With the double printing group 13, the production, in one stage, of two vertical printed pages arranged on the forme cylinder, a “two page jump” with variable products in broadsheet format, is possible.
With a width of the web 08 corresponding to four, or to three, or to two vertical printed pages, or of one printed page in broadsheet format, the production of a product in broadsheet format consisting of a layer in the above sequence with eight, or six, or four, or two printed pages is possible.
With a web width corresponding to four vertical printed pages in broadsheet format, the double printing group can be used for producing respectively two products in broadsheet format, consisting of one layer with four printed pages in the one product and four printed pages in the other product, or with two printed pages in the one product and with six printed pages in the other product. With a web width corresponding to three vertical printed pages, it is suitable for producing respectively two products in broadsheet format consisting of one layer with four printed pages in the one product and with two printed pages in the other product.
Furthermore, with a web width corresponding to four vertical printed pages in broadsheet format, the double printing groups 13 can be used for the production of a product in broadsheet format consisting of two layers with four printed pages in the one layer and with four printed pages in the other layer, or with two printed pages in the one layer and with six printed pages in the other layer. With a web width corresponding to three vertical printed pages, the double printing group 13 can be used for producing a product in broadsheet format consisting of two layers with four printed papers in the one layer and two printed pages in the other layer.
In the case of printed pages in tabloid format, the double printing group 13 can be used for producing in one stage printed pages arranged horizontally on the forme cylinder 02, 11 with variable products, a “four page jump” in tabloid format. Accordingly, with a web width corresponding to four, or to three, or to two horizontal printed pages, or to one horizontal page, the double printing group 13 can be used for producing a product in tabloid form consisting of one layer in the above sequence with sixteen, or twelve, or eight, or four printed pages.
With a web width corresponding to four horizontal printed pages in tabloid form, the double printing group 13 can be used for producing two products in tabloid format, each consisting of one layer with eight printed pages on the one product and with eight printed pages on the other product, or with four printed pages on the one product and with twelve printed pages on the other product. With a web width corresponding to three horizontal printed pages, the double printing group 13 can be used for producing two products, each consisting of one layer with four printed pages on the one product and with eight printed pages in the other product.
With products in book format, the double printing group 13 can be used for producing, in one stage, eight printing pages with variable, “eight page jump”products arranged vertically on the printing cylinders 02, 11.
With a web width corresponding to eight, or to six, or to four, or to two vertical printed pages, the production of a product in book format consisting of a layer in the above sequence with thirty-two, or twenty-four, or sixteen, or eight printed pages, is possible.
With a web width corresponding to eight vertical printed pages in book format, the double printing group 13 can be used for producing respectively two products in book format, each consisting of one layer, with sixteen printed pages on the one product and with sixteen printed pages on the other product, or with twenty-four printed pages on the one product and with eight printed pages on the other product. With a web width corresponding to six vertical printed pages in book format, the double printing group 13 can be used for producing respectively two products in book format, each consisting of one layer, with sixteen printed pages on the one product and with eight printed pages on the other product.
For products in book format, the double printing group 13 is furthermore usable for producing, in one stage, eight printed pages arranged vertically with variable products, “eight page jump” on the forme cylinder 03 (double transverse fold).
With a web width corresponding to four, or to three, or to two horizontal printed products, or to one horizontal printed page in book format, the double printing group 13 can be used for producing a product in book format consisting of a layer in the above sequence with thirty-two, or with twenty-four, or with sixteen, or with eight printed pages.
With a web width corresponding to four horizontal printed pages in book format, the double printing group 13 can be used for producing respectively two products in book format, each consisting of a layer, with sixteen printed pages on the one product and with sixteen printed pages on the other product, or with twenty-four printed pages on the one product and with eight printed pages on the other product. With a web width corresponding to three horizontal printed pages in book format, the double printing group 13 can be used for producing respectively two products in book format, each consisting of a layer, with sixteen printed pages on the one product and with eight printed pages on the other product.
If the two partial web strands are longitudinally folded on different hoppers and thereafter conducted to a common folding apparatus, what was said above should be applied to the distribution of the products to different folded booklets, or layers, of the described variable number of pages.
While preferred embodiments of a printing group pertaining to a printing machine having a linearly displaceable transfer cylinder in accordance with the present invention have been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in for example the type of web being printed, the specific structure of the blankets or dressings secured to the cylinders, the specific cylinder clamping devices and the like could be made without departing from the true spirit and scope of the present invention which is accordingly to be limited only by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
101 17 703 | Apr 2001 | DE | national |
101 38 221 | Aug 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE02/01266 | 4/6/2002 | WO | 00 | 1/2/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/081218 | 10/17/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4125073 | Bain | Nov 1978 | A |
4233898 | Dahlgren | Nov 1980 | A |
4598640 | Nawrath | Jul 1986 | A |
4815377 | Skiera | Mar 1989 | A |
5005475 | Knauer | Apr 1991 | A |
5651314 | Gentle | Jul 1997 | A |
5692439 | Wech | Dec 1997 | A |
5868071 | Niemiro et al. | Feb 1999 | A |
5950537 | Petersen et al. | Sep 1999 | A |
5979317 | Singler | Nov 1999 | A |
6019039 | Knauer et al. | Feb 2000 | A |
6213016 | Tsunashima | Apr 2001 | B1 |
6216592 | Knauer et al. | Apr 2001 | B1 |
6293194 | Vrotacoe | Sep 2001 | B1 |
6314882 | Petersen | Nov 2001 | B1 |
6334389 | Fischer | Jan 2002 | B1 |
6397743 | Dauer et al. | Jun 2002 | B1 |
6408747 | Koppelkamm et al. | Jun 2002 | B2 |
6408748 | Hajek | Jun 2002 | B1 |
6494135 | Gottling et al. | Dec 2002 | B1 |
6494138 | Gottling et al. | Dec 2002 | B1 |
6539857 | Weschenfelder | Apr 2003 | B1 |
6543352 | Dilling et al. | Apr 2003 | B1 |
6557467 | Dilling et al. | May 2003 | B1 |
6681694 | Schneider et al. | Jan 2004 | B2 |
6732650 | Rauh | May 2004 | B2 |
6834585 | Hahn | Dec 2004 | B2 |
7032510 | Christel et al. | Apr 2006 | B2 |
7140295 | Christel et al. | Nov 2006 | B2 |
20010035104 | Gottling et al. | Nov 2001 | A1 |
20020178946 | Hahn | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
345906 | Jun 1960 | CH |
34 12 812 | Jun 1985 | DE |
3441175 | May 1986 | DE |
38 19 159 | Jan 1989 | DE |
91 09 833.5 | Oct 1991 | DE |
44 15 711 | Nov 1995 | DE |
44 19 217 | Dec 1995 | DE |
198 15 294 | Oct 1998 | DE |
197 24 765 | Dec 1998 | DE |
198 03 809 | Aug 1999 | DE |
19803809 | Aug 1999 | DE |
199 37 796 | Feb 2001 | DE |
199 61 574 | Jul 2001 | DE |
0 862 999 | Sep 1998 | EP |
1 075 945 | Feb 2001 | EP |
1257397 | Mar 1961 | FR |
1096950 | Dec 1967 | GB |
1476707 | Jun 1977 | GB |
36-16405 | Jun 1936 | JP |
51-24309 | Feb 1976 | JP |
55-39865 | Sep 1978 | JP |
57-98361 | Jun 1982 | JP |
57-107842 | Jul 1982 | JP |
57131561 | Aug 1982 | JP |
60-225799 | Nov 1985 | JP |
62-144632 | Sep 1987 | JP |
2086445 | Mar 1990 | JP |
2-196658 | Aug 1990 | JP |
2-245333 | Oct 1990 | JP |
6-278264 | Oct 1994 | JP |
7195655 | Aug 1995 | JP |
10071694 | Mar 1998 | JP |
10076629 | Mar 1998 | JP |
2002254598 | Sep 2002 | JP |
WO 9930906 | Jun 1999 | WO |
WO 0006385 | Jul 1999 | WO |
WO 0145946 | Jun 2001 | WO |
WO 0183215 | Nov 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040107849 A1 | Jun 2004 | US |