This application claims the benefit of priority to Japanese Patent Application No. 2020-121086 filed on Jul. 15, 2020. The entire contents of this application are incorporated herein by reference.
The present invention relates to printing jigs and printing apparatuses.
Flatbed printing apparatuses that effect printing on substrates placed on flat beds are known in the related art. For such a flatbed printing apparatus, a jig for positioning of substrates on a flat bed may be used. JP 2017-177551 A, for example, discloses a printing apparatus that includes a pallet (jig) provided with placement holes conforming in shape to substrates; and a mechanism for positioning of the pallet on a flat bed.
Substrates may be of various sizes. Substrate positioning jigs have conventionally been made on the assumption that each jig effects positioning of one type of substrate determined in advance similarly to, for example, the pallet described in JP 2017-177551 A. Such conventional positioning jigs for printing are unfortunately unable to simultaneously and efficiently hold two or more types of substrates different in size.
Preferred embodiments of the present invention provide printing jigs that are each able to simultaneously and efficiently hold two or more types of substrates different in size. Other preferred embodiments of the present invention provide printing apparatuses each including such a printing jig.
A printing jig disclosed herein includes bases to be fitted to a printing apparatus, a first holder fittable to each of the bases, and a second holder fittable to each of the bases. The first holder is able to hold one or more first substrates. The second holder is able to hold one or more second substrates different in size from the first substrate or substrates. The first holder includes a first fitting portion to be fitted to each of the bases. The second holder includes a second fitting portion to be fitted to each of the bases. Each of the bases is structured such that the first fitting portion and the second fitting portion are both fittable thereto.
The printing jig includes the first holder that is able to hold the first substrate or substrates, and the second holder that is able to hold the second substrate or substrates different in size from the first substrate or substrates. Both of the first holder and the second holder are fittable to each of the bases. Thus, selecting the holder to be fitted to each of the bases enables the printing jig to simultaneously hold the first and second substrates different in size.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
Printers according to preferred embodiments of the present invention, including a printer 10, will be described below with reference to the drawings. The preferred embodiments described below are naturally not intended to limit the present invention in any way. Components or elements having the same functions are identified by the same reference signs, and overlapping description thereof will be omitted or simplified as appropriate. The following description is based on the assumption that when a printer 10 is viewed from the front, a direction away from the printer 10 is a forward direction, and a direction toward the printer 10 is a rearward direction. The reference signs F, Rr, L, R, U, and D in the drawings respectively represent front, rear, left, right, up, and down. These directions, however, are defined merely for the sake of convenience of description and do not limit, for example, how the printer 10 may be installed.
The substrates 5 are objects on which images are to be printed. The substrates 5 are not limited to any particular materials or products. In this preferred embodiment, the substrates 5 are T-shirts. Alternatively, the substrates 5 may be fabrics other than T-shirts or may be materials or products other than fabrics. Examples of the substrates 5 may include various types of paper, and sheets, such as a resin sheet, a metal sheet, and a rubber sheet. The substrates 5 may be made of any of flexible materials such as those just mentioned or may be objects having regular shapes, such as smartphone cases. The substrates 5 are not limited to any particular type or types or any particular property or properties. As used herein, the term “substrate 5” is a general term for large size (L size) T-shirts, medium size (M size) T-shirts, and small size (S size) T-shirts. The L size T-shirts may hereinafter each be referred to as a “first substrate 5A” (see
As illustrated in
The printing jig 100 holds the substrates 5 so as to effect positioning of the substrates 5.
The platen 20 is a support table for the substrates 5. As illustrated in
As illustrated in
The base plates 110 of the printing jig 100 are fitted to the sliding mechanism 30. The sliding mechanism 30 supports the base plates 110 such that the base plates 110 are movable in the front-rear direction above the platen 20. As illustrated in
In this preferred embodiment, the first sliding mechanism 30L includes a pair of linear-motion guides. As illustrated in
As illustrated in
The second sliding mechanism 30R is similar in configuration to the first sliding mechanism 30L. The second sliding mechanism 30R supports the other two base plates 110 disposed in alignment with each other in the front-rear direction. As a result, the four base plates 110 are supported by the sliding mechanism 30. Two of the four base plates 110 are fitted to the first sliding mechanism 30L so as to be in alignment with each other in the front-rear direction. The other two of the four base plates 110 are fitted to the second sliding mechanism 30R so as to be in alignment with each other in the front-rear direction. In other words, a first group of the base plates 110 fitted to the sliding mechanism 30 so as to be side by side in the right-left direction and a second group of the base plates 110 fitted to the sliding mechanism 30 so as to be side by side in the right-left direction are disposed in alignment with each other in the front-rear direction. The sliding mechanism 30 supports the base plates 110 such that each of the base plates 110 is independently movable in the front-rear direction. As will be discussed below in the description of variations, the number of base plates 110 is not limited to the number mentioned above, and the locations of the base plates 110 are not limited to the locations described above.
The printer 10 further includes stoppers each provided in an associated one of movement paths for the base plates 110. As illustrated in
The rear stoppers 35LR and 35RR are respectively disposed rearward of the front stoppers 35LF and 35RF. The positions of the two rear stoppers 35LR and 35RR in the right-left direction are respectively out of alignment with the positions of the two front stoppers 35LF and 35RF in the right-left direction. The left rear base plate 110 and the right rear base plate 110 are respectively brought into abutment with the rear stoppers 35LR and 35RR and thus positioned at the printing positions P1. The left rear base plate 110 includes a protrusion that comes into abutment with the rear stopper 35LR but does not come into abutment with the front stopper 35LF. The right rear base plate 110 includes a protrusion that comes into abutment with the rear stopper 35RR but does not come into abutment with the front stopper 35RF. The left front base plate 110 and the right front base plate 110 are respectively brought into abutment with the front stoppers 35LF and 35RF and thus positioned at the printing positions P1. The left front base plate 110 includes a protrusion that comes into abutment with the front stopper 35LF. The right front base plate 110 includes a protrusion that comes into abutment with the front stopper 35RF.
The sliding mechanism 30 supports the base plates 110 such that each base plate 110 is movable between the printing position P1 of each base plate 110 and a setting position P2 located forward of the printing position P1. In this preferred embodiment, the setting position P2 of each base plate 110 is the foremost position within the movable range of each base plate 110 as illustrated in
As illustrated in
In the present preferred embodiment, the sub-scanning direction mover 60 is configured or programmed to move the recording head 55 in the front-rear direction. Alternatively, the sub-scanning direction mover 60 may be configured to move the platen 20 or both of the recording head 55 and the platen 20 in the front-rear direction. The sub-scanning direction mover 60 is simply required to be configured to move the recording head 55 in the front-rear direction with respect to the platen 20 by moving at least one of the platen 20 and the recording head 55. When the recording head 55 has a sufficiently long length in the front-rear direction, the recording head 55 does not have to move in the front-rear direction with respect to the platen 20 during printing.
As illustrated in
The printer 10 according to the present preferred embodiment preferably uses a shuttle head method that involves reciprocating the carriage 50 in the right-left direction so as to perform printing. Alternatively, the printer 10 may use a line head method that does not involve moving the carriage 50 in the right-left direction.
During printing standby, the carriage 50 of the printing unit 40 is positioned at the rear end of its movable range in the front-rear direction along the guide rails 61 as illustrated in
The carriage 50 is provided with the recording head 55. The recording head 55 is provided above the platen 20. As illustrated in
A distance between the lower surface of the recording head 55 and the upper surface 20a of the platen 20 is enough to allow the printing jig 100 holding the substrates 5 to pass therebetween. In the present preferred embodiment, a height at which the printing jig 100 holds the substrates 5 is set at a suitable height. Thus, a gap between the surface of each substrate 5 and the recording head 55 is set at a distance suitable for printing.
The controller 80 is housed in a space below the platen 20. The controller 80 is electrically connected to the recording head 55, the feed motor 62, and the scanning motor 72. The controller 80 is configured or programmed to be able to control the recording head 55, the feed motor 62, and the scanning motor 72. The controller 80 is not limited to any particular configuration. The controller 80 is, for example, a microcomputer. The microcomputer is not limited to any particular hardware configuration. In one example, the microcomputer includes: an interface (I/F) to receive print data and/or other data from an external device, such as a host computer; a central processing unit (CPU) to execute commands included in a control program; a read-only memory (ROM) storing the program to be executed by the CPU; a random-access memory (RAM) for use as a working area where the program is to be expanded; and a storage device, such as a memory, to store the program and/or various data. The controller 80 does not necessarily have to be provided inside the printer 10. Alternatively, the controller 80 may be, for example, a computer external to the printer 10 and connected to the printer 10 so as to enable wire or wireless communication between the controller 80 and the printer 10.
The space which is located below the platen 20 and in which the controller 80 is housed is surrounded by plate-like panels. A control panel 90 is fitted into a front one of the panels. The control panel 90 faces forward of the printer 10. The control panel 90 is electrically connected to the controller 80. The control panel 90 includes, for example, a display to present a device status and/or other information and input key(s) to be operated to set printing condition(s) and/or other condition(s).
The printing jig 100 will be described below. As previously described, the printing jig 100 includes: the base plates 110 fitted to the printer 10; the first holding units 120A; the second holding units 120B; and the third holding units 120C. The first, second, and third holding units 120A, 120B, and 120C are each configured to be fittable to a fitted portion of an associated one of the base plates 110. In other words, the holding units are fittable to the base plates 110 on a one-to-one basis, and the holding unit fittable to each of the base plates 110 is thus one of the first, second, and third holding units 120A, 120B, and 120C.
In the present preferred embodiment, the number of types of holding units is three because the number of types of substrates 5 is three. Alternatively, the number of types of holding units may be increased or reduced in accordance with the number of types of substrates 5. In one example, when the substrates 5 include the first and second substrates 5A and 5B, the holding units may include the first and second holding units 120A and 120B. When the substrates 5 include four or more types of substrates, the holding units may include four or more types of holding units. The number of holding units attachable to and detachable from each base plate 110 may be two or more. The number of types of holding units is not limited to any particular number. The number of holding units fittable to each base plate 110 is not limited to any particular number.
In the present preferred embodiment, the base plates 110 are identical or substantially identical. The positions of portions of the base plates 110 that come into abutment with the stoppers 35LF, 35LR, 35RF, and 35RR, for example, may be different from each other. The base plates 110 are similar in outer dimensions. The base plates 110 are similar in configuration of the fitted portions to which the holding units are to be fitted. The four base plates 110 may be identical.
As illustrated in
The number of first substrates 5A the first holding unit 120A is able to hold may hereinafter be referred to as a “first quantity”. In this preferred embodiment, the first quantity is one. The first quantity, however, is not limited to one.
The second holding unit 120B is similar in configuration to the first holding unit 120A. As illustrated in
The third holding unit 120C is similar in configuration to the first holding unit 120A and the second holding unit 120B. As illustrated in
The first, second, and third quantities are respectively determined in accordance with the sizes of the first, second, and third substrates 5A, 5B, and 5C with respect to the base plates 110. In the present preferred embodiment, the first substrates 5A are larger than the second substrates 5B, and the second substrates 5B are larger than the third substrates 5C. Accordingly, the first quantity is smaller than the second quantity, and the second quantity is smaller than the third quantity. In the present preferred embodiment, the first, second, and third quantities differ from each other. Alternatively, any two or all of the first, second, and third quantities may be identical. In one example, the second quantity may be larger than the first quantity and equal to the third quantity.
In the present preferred embodiment, the number of first holding units 120A to be prepared, the number of second holding units 120B to be prepared, and the number of third holding units 120C to be prepared are each equal to or larger than the number of base plates 110. As illustrated in
The first set 100A, the second set 100B, and the third set 100C will be described in detail below. Because the second set 100B and the third set 100C are similar in configuration to the first set 100A, the description of the second set 100B focuses on differences between the second set 100B and the first set 100A, and the description of the third set 100C focuses on differences between the third set 100C and the first set 100A. Unless otherwise specified, directions mentioned in the following description refer to directions in a state where settings are made for components so as to enable the substrates 5 to be held.
First, the first set 100A will be described. As previously described, the first set 100A includes one base plate 110 and one first holding unit 120A. The length of the base plate 110 in the right-left direction is longer than the length of the base plate 110 in the front-rear direction in accordance with the longitudinal direction of the platen 20. The base plate 110 has a substantially rectangular shape in which its length in the right-left direction is longer than its length in the front-rear direction in the plan view.
As illustrated in
The base plate 110 includes positioning pins 112 defining and functioning as the fitted portion to which the first holding unit 120A, the second holding unit 120B, or the third holding unit 120C is to be fitted. In this preferred embodiment, the positioning pins 112 are each provided in an associated one of the four corners of the upper surface 110a of the base plate 110. The positioning pins 112 each extend upward from the upper surface 110a. The number of positioning pins 112 may be two or may be three or more. The fitted portion is not limited to a configuration including the positioning pins 112. In one example, the fitted portion may be recess(es) into which the first holding unit 120A, the second holding unit 120B, or the third holding unit 120C is to be inserted, or may be hole(s) into which pin(s) and/or other component(s) of the first holding unit 120A, the second holding unit 120B, or the third holding unit 120C is/are to be inserted. The fitted portion is not limited to any particular configuration.
As illustrated in
The position of each of the pin holes 131A defining and functioning as the first fitting portion corresponds to the position of an associated one of the positioning pins 112 defining and functioning as the fitted portion. The pin holes 131A each extend upward from a lower surface 130d of the first docking member 130A to a depth at which at least the associated positioning pin 112 is completely insertable. The pin holes 131A may pass through the first docking member 130A in the up-down direction. Bringing the first docking member 130A close to the base plate 110 from above such that the first docking member 130A is overlaid on the base plate 110 inserts each of the positioning pins 112 into an associated one of the pin holes 131A. The first docking member 130A is thus fitted to the base plate 110, so that the positional relationship therebetween is determined.
As illustrated in
The first holding member 140A includes: a first support 141A to support the first substrate 5A; and a pair of first legs 142A supporting the first support 141A from below. As illustrated in
As illustrated in
As illustrated in
As previously described, the substrates 5 are not limited to any particular type or types or any particular property or properties. In one example, the substrates 5 may be flexible sheet materials, examples of which include non-overlaid fabrics, resin sheets, and paper. Also in this case, a portion of the substrate 5 outward of the first support 141A hangs down from the outer edge of the first support 141A. Alternatively, the substrate 5 may be a non-flexible material. In this case, the substrate 5 does not hang down from the first support 141A.
The pair of first legs 142A is disposed such that the first legs 142A are in alignment with each other in the right-left direction. The pair of first legs 142A extends downward from the first support 141A and then bends forward. Portions of the first legs 142A extending in the front-rear direction define a pair of contact portions 142A1 to be fitted into the first through hole 132A. The pair of contact portions 142A1 forms prismatic shapes. The length of the pair of contact portions 142A1 in the front-rear direction is equal to the length of the first through hole 132A in the front-rear direction. A distance between the left end of the left contact portion 142A1 and the right end of the right contact portion 142A1 in the right-left direction (i.e., the outside length of the pair of contact portions 142A1 in the right-left direction) is equal to the length of the first through hole 132A in the right-left direction. Thus, the pair of contact portions 142A1 is inserted into the first through hole 132A such that the front, rear, left, and right outer side surfaces of the pair of contact portions 142A1 respectively come into contact with the front, rear, left, and right inner side surfaces of the first through hole 132A. The pair of contact portions 142A1 is supported by the base plate 110 such that the lower surface of the pair of contact portions 142A1 is in contact with the upper surface 110a of the base plate 110. This effects positioning of the first holding member 140A and the base plate 110 through the first docking member 130A. The contact portions 142A1 are simply required to be configured so as to allow positioning of the contact portions 142A1 with respect to the first through hole 132A. No limitations are imposed on, for example, the shapes of the contact portions 142A1. In one example, the contact portions 142A1 may have a substantially rectangular shape approximately identical to the shape of the first through hole 132A.
As illustrated in
In the plan view, the first holding frame 150A has a quadrangular shape with a space defined therein. In the plan view, the space defined inside the first holding frame 150A is slightly larger than the first support 141A and slightly smaller than a space defined inside the visible outline of the first elastic body 143A. The first holding frame 150A is configured to be fittable to the outer side of the first support 141A and the first elastic body 143A while the first elastic body 143A is elastically deformed.
As illustrated in
As previously described, the second set 100B is similar in configuration to the first set 100A. As mentioned above, the base plate 110 of the second set 100B may be identical to the base plate 110 of the first set 100A. In the present preferred embodiment, the second docking member 130B is similar to the first docking member 130A except for the number of second through holes 132B and the size of each second through hole 132B. As illustrated in
As illustrated in
In the present preferred embodiment, the second docking member 130B has a substantially rectangular shape in which its length in the right-left direction is longer than its length in the front-rear direction in the plan view similarly to the base plate 110 and the first docking member 130A. The right-left direction corresponds to the longitudinal direction of the platen 20. The second through holes 132B, the number of which corresponds to the second quantity, are disposed in alignment with each other in the right-left direction in the second docking member 130B. The number of second through holes 132B disposed in the front-rear direction is one. The second through holes 132B, however, may be disposed in alignment with each other in the front-rear direction in the second docking member 130B.
In the present preferred embodiment, the second through holes 132B of the second docking member 130B are provided such that the width direction of each second through hole 132B corresponds to the right-left direction unlike the first through hole 132A of the first docking member 130A. Accordingly, the length of each second through hole 132B in the right-left direction is shorter than when the longitudinal direction of each second through hole 132B corresponds to the right-left direction. The second docking member 130B is thus configured so as to facilitate disposing a larger number of the second through holes 132B in alignment with each other in the right-left direction. As illustrated in
The orientation in which the first and second substrates 5A and 5B according to the present preferred embodiment are to be held is set for the purpose of holding a larger number of the substrates 5 with the printing jig 100 and is thus merely illustrative. The longitudinal direction of the print regions on the first and second substrates 5A and 5B may be set to correspond to the right-left direction or may be set to correspond to the front-rear direction.
As illustrated in
The second holding frames 150B are similar to the first holding frame 150A except for the lengths of the second holding frames 150B in the right-left direction and the front-rear direction. The second holding frames 150B have sizes adaptable to the second supports 141B.
The third set 100C is similar in configuration to the first set 100A and the second set 100B. As illustrated in
The third docking member 130C has a substantially rectangular shape in which its length in the right-left direction is longer than its length in the front-rear direction in the plan view similarly to the first docking member 130A and the second docking member 130B. The third through holes 132C, the number of which corresponds to the third quantity, are disposed in alignment with each other in the right-left direction in the third docking member 130C. The number of third through holes 132C disposed in the front-rear direction is one. The third through holes 132C are provided such that the longitudinal direction of each third through hole 132C corresponds to the front-rear direction.
As illustrated in
The third holding frames 150C are similar to the first holding frame 150A and the second holding frames 150B except for the lengths of the third holding frames 150C in the right-left direction and the front-rear direction. The third holding frames 150C have sizes adaptable to the third supports 141C.
In the present preferred embodiment, the first, second, and third holding units 120A, 120B, and 120C (i.e., the units provided by fitting the holding members and the holding frames to the docking members in this preferred embodiment) are configured such that the first, second, and third holding units 120A, 120B, and 120C are each longer in the right-left direction than in the front-rear direction, and the number of substrates 5 each of the first, second, and third holding units 120A, 120B, and 120C is able to hold in the right-left direction is equal to or larger than the number of substrates 5 each of the first, second, and third holding units 120A, 120B, and 120C is able to hold in the front-rear direction. The number of substrates 5 each of the second and third holding units 120B and 120C is able to hold in the right-left direction is larger than the number of substrates 5 each of the second and third holding units 120B and 120C is able to hold in the front-rear direction. The number of substrates 5 the first holding unit 120A is able to hold in the right-left direction is equal to the number of substrates 5 the first holding unit 120A is able to hold in the front-rear direction. In the present preferred embodiment, the number of substrates 5 the first holding unit 120A is able to hold in the right-left direction and the number of substrates 5 the first holding unit 120A is able to hold in the front-rear direction are both one. Alternatively, the number of substrates 5 the first holding unit 120A is able to hold in the right-left direction may be larger than the number of substrates 5 the first holding unit 120A is able to hold in the front-rear direction.
The following description discusses a process for holding the substrates 5 with the printing jig 100, a printing process, and effects of the present preferred embodiment.
In other words, the first holding unit 120A is fitted to the base plate 110LF. The first holding units 120A are fitted to the base plates 110LF and 110LR. The second holding unit 120B is fitted to the base plate 110RR. The third holding unit 120C is fitted to the base plate 110RF. The combination of the holding units with the base plates 110LF, 110RF, 110LR, and 110RR may be freely changed.
The printing jig 100 according to the present preferred embodiment includes the first, second, and third holding units 120A, 120B, and 120C that are able to respectively hold the first, second, and third substrates 5A, 5B, and 5C. Any of the first, second, and third holding units 120A, 120B, and 120C is fittable to each of the base plates 110. Thus, selecting the holding unit to be fitted to each of the base plates 110 enables the printing jig 100 to simultaneously hold the first, second, and third substrates 5A, 5B, and 5C different in size. In this preferred embodiment, the fitted portions of the base plates 110 include all the same positioning pins 112. The fitting portions of the first, second, and third holding units 120A, 120B, and 120C include all the same pin holes 131A, 131B, and 131C. The fitting portions of the holding units 120A, 120B, and 120C are able to be fitted to any one of the fitted portions of the base plates 110. Because the first, second, and third holding units 120A, 120B, and 120C are all fittable to similar fitted portions of the base plates 110, the printing jig 100 is able to hold two or more types of the substrates 5 different in size more efficiently than when the first, second, and third holding units 120A, 120B, and 120C are fitted to, for example, different locations on the base plates 110, or for example, when the first, second, and third holding members 140A, 140B, and 140C are fitted to the base plates 110 directly. This enables efficient utilization of a printing area of the printer 10.
The printing jig 100 configured such that the holding units are fitted to the base plates 110 including the similar fitted portions would make it unnecessary to change the base plate(s) 110 if, for example, the shape(s) of the substrate(s) 5 is/are changed or other type(s) of the substrate(s) 5 is/are added. Thus, the printing jig 100 configured as described above is flexibly adaptable to variations of the substrates 5. With this configuration, the substrates 5 may be held by the holding units in advance, and then the holding units may be fitted to the base plates 110. Consequently, a user is able to efficiently perform an operation for holding the substrates 5 in the printing jig 100.
The present preferred embodiment includes preparing two or more first holding units 120A, two or more second holding units 120B, and two or more third holding units 120C. This further increases the degree of flexibility in selecting which of the holding units is to be fitted to each of the base plates 110. The printing jig 100 configured as described above is flexibly adaptable to various ratios between the number of first holding units 120A, the number of second holding units 120B, and the number of third holding units 120C. In the present preferred embodiment, the number of first holding units 120A, the number of second holding units 120B, and the number of third holding units 120C, in particular, are each equal to or larger than the number of base plates 110. This makes it possible to freely select which of the holding units is to be fitted to each of the base plates 110 without limitation.
More specifically, an operation for making settings for the printing jig 100 or changing settings for the printing jig 100 will be performed, for example, in a manner described below. First, a user fits a desired one of the first, second, and third docking members 130A, 130B, and 130C to each of the four base plates 110 (i.e., the base plates 110LF, 110RF, 110LR, and 110RR). The user then fits each of the holding members to a predetermined number of recesses (or through holes) of an associated one of the docking members. To be more specific, when the printing jig 100 includes the first set 100A, the user fits the first holding member 140A to the single first through hole 132A of the first docking member 130A (see
In the present preferred embodiment, the holding units are each divided into a docking member and holding member(s), and the docking members are fitted to the base plates 110. This makes it possible to simplify the configuration of each base plate 110 and facilitate an operation for fitting the holding units to the base plates 110. The holding members holding the substrates 5, for example, may be directly attachable to the base plates 110. In this case, however, performing functions similar to those of the printing jig 100 according to the present preferred embodiment requires that each base plate 110 be provided with, for example, first fitted portions which conform to the first holding member 140A and the number of which corresponds to the first quantity, second fitted portions which conform to the second holding members 140B and the number of which corresponds to the second quantity, and third fitted portions which conform to the third holding members 140C and the number of which corresponds to the third quantity. This complicates the configuration of each base plate 110. In addition, the user needs to check the complicated fitted portions in selecting the fitted portions to be used, resulting in a complicated operation for fitting the holding members to the base plates 110. In contrast, the present preferred embodiment involves attaching the holding members to the base plates 110 through the docking members, and preparing the docking members having similar fitting portions. This simply requires that each base plate 110 be provided with a single fitted portion to which the similar fitting portions of the docking members are fittable. When two or more docking members are fittable to each base plate 110, each base plate 110 is simply required to be provided with two or more similar fitted portions. This makes it possible to simplify the configuration of each base plate 110. Operations for fitting the docking members to the base plates 110 are similar, and each docking member has only associated holding member(s) fitted thereto. The first docking member 130A, for example, has only the first holding member 140A fitted thereto. Accordingly, the present preferred embodiment facilitates an operation for fitting the holding units to the base plates 110, which is to be performed by the user.
In the present preferred embodiment, the first to third docking members 130A to 130C are fitted to the base plates 110LF to 110RR by performing a simple operation that involves overlaying the first to third docking members 130A to 130C on the base plates 110LF to 110RR from above. The first to third holding members 140A to 140C are fitted to the first to third docking members 130A to 130C by performing a simple operation that involves inserting the first to third holding members 140A to 140C into the recesses (which are the first to third through holes 132A to 132C in this preferred embodiment) of the first to third docking members 130A to 130C. The user is thus able to easily perform the operation for holding the substrates 5 in the printing jig 100.
In the present preferred embodiment, the first, second, and third recesses are respectively defined by the first, second, and third through holes 132A, 132B, and 132C, thus reducing the weight of each of the first, second, and third docking members 130A, 130B, and 130C. This further facilitates an operation for fitting the first to third docking members 130A to 130C to the base plates 110 and a sliding operation that involves moving each base plate 110 between the setting position P2 and the printing position P1.
The user subsequently places the substrates 5 on the supports 141A to 141C of the holding members 140A to 140C. The user also fits the holding frames 150A to 150C to the supports 141A to 141C. This effects positioning of the substrates 5 with respect to the printing jig 100 and fixes the substrates 5 to the printing jig 100. At this point, portions of the substrates 5 protruding from the supports 141A to 141C hang down from the outer edges of the supports 141A to 141C. Thus, the protruding portion of each substrate 5 is prevented from overlapping with the other support(s) and interfering with printing to be effected on the other substrate(s) 5. Lifting the supports 141A to 141C by the legs 142A to 142C as described above makes it possible to hold a larger number of the substrates 5 when the substrates 5 are flexible.
In the present preferred embodiment, the number of small-sized substrates 5 to be held by an associated one of the holding units is larger than the number of large-sized substrates 5 to be held by an associated one of the holding units. In one example, the number of second substrates 5B smaller in size and to be held by an associated one of the holding units is larger than the number of first substrates 5A larger in size and to be held by an associated one of the holding units. Thus, the printing jig 100 enables the printer 10 to simultaneously effect printing on a larger number of the substrates 5. In the present preferred embodiment, the number of substrates 5 each holding unit is able to hold is set in accordance with the sizes of the substrates 5 in order to efficiently utilize the printing area of the printer 10. Preparing two or more types of holding units (which are the first to third holding units 120A to 120C in this preferred embodiment) adaptable to two or more types of substrates 5 different in size makes it possible to simultaneously hold the two or more types of substrates 5 and efficiently lay out the substrates 5 on the printing area of the printer 10.
The number of substrates 5 each holding unit is able to hold may be determined in accordance with the sizes of print regions set on the substrates 5 instead of the sizes of the substrates 5. For example, suppose that first ones of the substrates 5 are larger in size than second ones of the substrates 5, and print regions on the first ones of the substrates 5 are smaller in size than print regions on the second ones of the substrates 5. In this case, the number of first ones of the substrates 5 each associated holding unit is able to hold may be larger than the number of second ones of the substrates 5 each associated holding unit is able to hold.
In the present preferred embodiment, the length of each of the first to third holding units 120A to 120C in the right-left direction is longer than the length of each of the first to third holding units 120A to 120C in the front-rear direction, and the number of substrates 5 each of the first to third holding units 120A to 120C is able to hold in the right-left direction is larger than or at least equal to the number of substrates 5 each of the first to third holding units 120A to 120C is able to hold in the front-rear direction. In one example, each second holding unit 120B is able to hold one second substrate 5B in the front-rear direction and two second substrates 5B in the right-left direction. The right-left direction corresponds to the longitudinal direction of the platen 20. The present preferred embodiment thus enables efficient utilization of space inside the printer 10, making it possible to effectively increase the number of substrates 5 on which the printer 10 is able to effect printing simultaneously.
The operation for making settings for the printing jig 100 or changing settings for the printing jig 100 is preferably performed when each base plate 110 is located at the setting position P2 (see
Upon ending the operation for holding the substrates 5 in the printing jig 100, the user presses and slides each of the base plates 110 rearward such that each of the base plates 110 is positioned at the printing position P1. Presence of the sliding mechanism 30 and this sliding operation make it possible to easily perform the operation for holding the substrates 5 in the printing jig 100, with each base plate 110 located at the setting position P2, and then slide each base plate 110 so as to position each base plate 110 at the printing position P1.
At this point, the user brings the base plates 110 into abutment with the stoppers 35LF, 35LR, 35RF, and 35RR each provided in an associated one of the movement paths for the base plates 110. This abutment makes it possible to easily position each base plate 110 at the printing position P1. Such stoppers are simple in configuration and thus easily manufacturable and attachable.
In the present preferred embodiment, the sliding mechanism 30 supports the base plates 110 such that each of the base plates 110 is independently movable in the front-rear direction. To be more specific, as illustrated in
Upon start of printing after the substrates 5 have been positioned at the printing positions P1, the recording head 55 discharges ink onto the substrates 5 while moving in the right-left direction. Each time the recording head 55 reciprocates in the right-left direction a predetermined number of times, the gantry 41 moves in the front-rear direction in an intermittent manner. Consequently, images are formed on the substrates 5.
After end of printing, the user slides each of the base plates 110 forward so as to return each of the base plates 110 to the setting position P2. The user then removes the substrates 5 from the holding members by a procedure reverse to that for holding the substrates 5 on the holding members. Alternatively, the substrates 5 may not be removed from the holding members immediately after end of printing, and the procedure may go to an ink drying step while the substrates 5 are still held on the holding members. After the holding units have been removed from the base plates 110, next holding units holding next substrates 5 may be fitted to the base plates 110. This reduces setup time, resulting in an increase in printing productivity. To that end, the number of each type of holding unit is preferably larger than the number of base plates 110.
As described above, the number of each type of holding unit is preferably equal to or larger than the number of base plates 110. In one example, when ratios between the types of substrates 5 are stable and substantially unchanged, the number of each type of holding unit may be smaller than the number of base plates 110. This enables a reduction in the cost of the printing jig 100.
Preferred embodiments and modifications thereof of the present invention have been described thus far. The preferred embodiments and modifications described above, however, are merely illustrative. The techniques disclosed herein may be carried out in various other forms. Some of variations will be described below. In the following description of the variations, components having functions similar to those of the components in the above-described preferred embodiments and modifications are identified by the same reference signs as those used in the above-preferred embodiments, and overlapping description thereof will be omitted or simplified.
In a first variation of a preferred embodiment of the present invention, the number of base plates 110 arranged in the front-rear direction is two or more, and the number of base plates 110 present in the right-left direction is one.
In the present variation, two or more holding units are attachable to and detachable from each of the base plates 110.
The number of base plates 110, the locations of the base plates 110, the number of holding units fittable to each base plate 110, and the locations of the holding units presented in
In the second variation, the number of base plates 110 arranged in the right-left direction is two or more, and the number of base plates 110 present in the front-rear direction is one.
In the present variation, one holding unit selected from three types of holding units (i.e., the holding units 120A, 120B, and 120C) is attachable to and detachable from each of the base plates 110. Alternatively, two or more holding units may be attachable to and detachable from each of the base plates 110. In this case, the locations of the holding units on each of the base plates 110 are not limited to any particular locations. The holding units may be disposed in alignment with each other in the right-left direction or the front-rear direction on each of the base plates 110, or may be disposed in a matrix arrangement in the right-left direction and the front-rear direction on each of the base plates 110.
In the third variation, the printing jig 100 includes holding units each including holding member(s) and a docking member integral with each other.
The base plate 110 according to the present variation may be similar to the base plate 110 according to the foregoing preferred embodiments. As illustrated in
As described above, the holding units do not necessarily have to be configured such that each holding unit is separable into holding member(s) and a docking member. The holding units are not limited to any particular shapes. In one example, each holding unit may be reduced in weight by removing portion(s) of material(s) from the shape illustrated in
Techniques disclosed herein other than those mentioned in the above-described preferred embodiments, modifications and variations may be carried out in various forms. In the above-described preferred embodiments and modifications, for example, the base plates 110 are supported by the sliding mechanism 30 such that the base plates 110 are slidable in the front-rear direction. The base plates, however, do not necessarily have to be slidably supported. In one example, the base plates may be directly placed at print positions on the platen or flat bed.
In the above-described preferred embodiments and modifications, the supports for the substrates 5 are lifted above the base plates 110 by the legs. Alternatively, the supports for the substrates 5 may be located at substantially the same height as the base plates. The printer may be configured such that a printing jig supporting component, such as a flat bed, moves in the up-down direction.
The components of the printing jig do not necessarily have to be configured such that the components are combined in the up-down direction. In one example, the components of the printing jig may be configured such that a first one of the components may be combined with a second one of the components by sliding the first one of the components in the front-rear direction, the right-left direction, or any other direction with respect to the second one of the components. A method for effecting positioning of the components is not limited to any particular method. A method for holding the substrates is not limited to the method according to the above-described preferred embodiments and modifications.
The number of substrates on which the printer is able to effect printing simultaneously for each set (which is provided by fitting a holding unit to a base plate) is preferably determined such that the number of substrates each having a small size or a small print region is larger than the number of substrates each having a large size or a large print region. The number of substrates on which the printer is able to effect printing simultaneously for each set, however, may be determined such that the number of substrates each having a small size or a small print region is equal to the number of substrates each having a large size or a large print region. Depending on the circumstances, the number of substrates each of which has a small size or a small print region and on which the printer is able to effect printing simultaneously may be smaller than the number of substrates each of which has a large size or a large print region and on which the printer is able to effect printing simultaneously.
In the above-described preferred embodiments and modifications, each holding unit is configured such that the number of substrates 5 each holding unit is able to hold in the longitudinal direction of the platen 20 is equal to or larger than the number of substrates 5 each holding unit is able to hold in the width direction of the platen 20. When the substrates have, for example, long and narrow print regions, however, the number of substrates each holding unit is able to hold in the longitudinal direction of the platen may be smaller than the number of substrates each holding unit is able to hold in the width direction of the platen.
In the above-preferred embodiments and modifications, each holding member is fitted to an associated one of the base plates 110 through an associated one of the docking members. Alternatively, one or more holding members may be directly fitted to each base plate. In this case, the holding member(s) is/are equivalent to the holding unit(s). The fitted portion of each base plate to which one or more holding members are positioned and fitted may be, for example, one or more recesses or one or more groups of positioning pins. The fitted portion of each base plate and the fitting portion of each holding member are not limited to any particular configuration. The base plates may be configured to directly support the substrates. This eliminates the need for the docking members and the holding members, resulting in a reduction in the number of components of the printing jig.
Unless otherwise stated, the printer is not limited to any particular structure, configuration, or arrangement. The techniques disclosed herein are applicable to, for example, small size printers of a flatbed type. Preferred embodiments of the present invention are not limited to any particular printing method. For inkjet printers, examples of ink to be used may include water-based ink, solvent ink, and photo-curable ink.
The terms and expressions used herein are for description only and are not to be interpreted in a limited sense. These terms and expressions should be recognized as not excluding any equivalents to the elements shown and described herein and as allowing any modification encompassed in the scope of the claims. The present invention may be embodied in many various forms. This disclosure should be regarded as providing preferred embodiments of the principles of the present invention. These preferred embodiments are provided with the understanding that they are not intended to limit the present invention to the preferred embodiments described in the specification and/or shown in the drawings. The present invention is not limited to the preferred embodiments described herein. The present invention encompasses any of preferred embodiments including equivalent elements, modifications, deletions, combinations, improvements and/or alterations which can be recognized by a person of ordinary skill in the art based on the disclosure. The elements of each claim should be interpreted broadly based on the terms used in the claim, and should not be limited to any of the preferred embodiments described in this specification or referred to during the prosecution of the present application.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-121086 | Jul 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5205026 | Sticht | Apr 1993 | A |
5271490 | Sticht | Dec 1993 | A |
20070068403 | Fresener | Mar 2007 | A1 |
20080238978 | Niimi | Oct 2008 | A1 |
20130050328 | Yanagishita | Feb 2013 | A1 |
20130278694 | Takeuchi et al. | Oct 2013 | A1 |
20130334010 | Gerber | Dec 2013 | A1 |
20170129262 | Mashima | May 2017 | A1 |
20180215171 | Schiestl | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
03-066534 | Mar 1991 | JP |
2008-238781 | Oct 2008 | JP |
2013-047398 | Mar 2013 | JP |
2013-221228 | Oct 2013 | JP |
2017-087585 | May 2017 | JP |
2017-177551 | Oct 2017 | JP |
2017-202679 | Nov 2017 | JP |
2018-529546 | Oct 2018 | JP |
Entry |
---|
Official Communication issued in corresponding European Patent Application No. 21185820.4, dated Dec. 14, 2021. |
Number | Date | Country | |
---|---|---|---|
20220016908 A1 | Jan 2022 | US |