The present invention is directed to printing presses, as well as a printing press system. The printing press system includes printing presses with operating sides and with sides facing away form the operating sides. Press drives are located on the operating sides.
A drive mechanism for a printing group is known from EP 0 699 524 B1. A drive motor axially directly drives a forme cylinder, which forme cylinder drives the remaining cylinders of the printing group. In preferred embodiments with printing group cylinders which are mechanically coupled by a drive train, the drive motor which coaxially drives one of the cylinders is arranged on a lateral wall side I on the operating side, and the drive train is located on the side II of the printing group which side II is identified as drive side. In case of individual driving of all printing group cylinders by their own drive motors, these are arranged coaxially in respect to the respective cylinder, for example, on the side II, which is different from the lateral wall on the operating side which is side I.
DE 196 03 663 A1 discloses a drive mechanism of a forme cylinder by the use of a drive motor via a pinion gear.
DE 40 12 396 A1 discloses a printing press system with two printing presses which can be individually driven independently of each other and which are laterally spaced apart from each other. The printing units of one press can be driven together from a drive motor via respective shafts.
The object of the present invention is directed to producing printing presses, as well as a printing press system.
In accordance with the present invention, the object is attained by the provision of a printing press that has an operating side and a side facing away from, and spaced from, the operating side. At least one pair of cylinders, and including a forme cylinder and a transfer cylinder, which are mechanically coupled to each other by a drive connection, are located on the operating side of the printing unit. If there are multiple printing presses in the printing press systems, drive motors and drive connections for alternate presses are arranged on alternate sides.
A substantial advantage which can be obtained by the present invention lies in that the outlay for planning, construction, manufacture and installation of a printing press, or of a printing press system, can be lowered, can be specifically designed for the most varied demands of the customer, or can be configured for his available space. No special productions are required, which would be apt to increase the outlay and the tendency for breakdowns. The various printing presses, or printing press systems can be modularly produced from identical, intermediate products. This is made possible by the orientation of the roll changer and/or of the printing group in any desired way and/or by the symmetrical preparation of required connecting points.
Preferred embodiments of the present invention are represented in the drawings and will be described in greater detail in what follows.
Shown are in:
A printing press, and in particular a web-fed rotary printing press, for imprinting one or several webs B shown in
In an advantageous embodiment it is possible to provide a varnishing unit 400 in the web path.
Following imprinting, and possibly varnishing, the web B passes through a dryer 500 and, if required, is cooled again in a cooling unit 600, in case drying had been performed thermally. Downstream of the dryer 500, or downstream of the cooling unit 600, it is possible to provide at least one further conditioning unit, which is not specifically represented in
In an advantageous embodiment, the printing press additionally has a separate transverse cutter 900, such as, for example, a so-called open-sheet delivery unit, in which a web which, for example, had not been conducted through the folding apparatus 800, is cut into formatted sheets and, if desired, is stacked or delivered.
The units 100, 200, 300, 400, 500, 600, 700, 800, 900 of the printing press have an effective width transversely with respect to the transport direction T of the web B, which effective width permits processing of webs B of a maximum width “b”, as seen in
The units 100, 200, 300, 400, 500, 600, 700, 800, 900, which define, or which process, a section length “a”, as seen in
The roll-unwinding device 100 can be embodied as a stationary roll changer with web storage or advantageously, as represented in
For example, the axial positioning of the respective support arm 101, 102 is performed by a control and/or by a regulating device 114, which is only schematically indicated, by the use of a reference value y-soll for the position of the roll 104, 106, or y-soll,i for the support arms 101, 102 which, for example, has been manually preselected, for example from the operating console, or by a press control device. The reference values y-soll,i for the support arms 101, 102 can also be formed in the control device 114 or in any other manner, for example from the reference value y-soll. To detect the actual position y-ist of the respective support arm 101, 102, it is possible to assign a sensor device, which is not represented, to the drive mechanism and/or to the support 103, which reports the position back to the control and/or to the regulating device 114. A sensor can be omitted if the actual axial position is correlated, such as, for example, via a rotor position etc., and is present as information. If the actual position y-ist, obtained via the sensor device or the correlation, does not agree with the actual reference value y-soll, the control and/or regulating device 114 acts on the respective drive motors 107 by the use of an actuating command Delta 107. A control process can be provided in an advantageous manner, in which the roll, which is freshly placed on the shaft, for example the roll 106, is automatically aligned in the axial direction with respect to the roll 104, or with respect to web B, B′, which is just running out, before the fresh web B, B′ is glued to the running-out web B, B′ by the operation of a gluing and cutting device 108, and the old web B, B′ is cut off its roll 104, 106. By the use of the driven support arms 101, 102, it is also possible, and provided that, following the receipt of a fresh roll 104, 106, or prior to the start of production, the roll 104, 106 is automatically positioned in its axial position with regard to the desired path of the web edges, and the web edge is preset in this way. The control device of the roll changer 100 receives information regarding the planned production and/or preset values, respectively from the machine control device of the printing press.
In an advantageous embodiment of the present invention, the roll changer 100 is prepared so that it can be serviced from both sides, i.e. from the area of both frame walls 109. To this end, at least connecting locations, such as, for example, recesses, which can also be covered, in the frame wall and/or openings, which can be covered, for signal lines, for receiving an operating element 116, such as, for example, a display 116 with appropriate input or switch elements, are provided at least in both frame walls 109 in the course of their manufacture. Depending on the definition of a side I, typically the operating side I, which is provided in the course of setting up the press for its operation, in a first embodiment, the recess in the opposite side II can be closed off by a cover, which is not specifically represented, while the operating element 116 is installed on the side I that is intended for the operation of the press. In another embodiment, the roll changer can have an operating element 116, in principle, in both frame walls 109, i.e. in side I and in side II.
Equipping the roll changer 100 with operating element 116 on both sides or selectively on one side is of particular advantage within the scope of arranging the roll changer 100 in so-called left-right, as well as in right-left presses, without it being required to provide individual solutions with regard to construction and to manufacture. Left-right or right-left presses are intended to be understood in such a way that this indicates the transport direction T of the web B, B′ when the press is observed from that side, on which operation of the press by the operators is intended, i.e. from the operating side I. Thus, in
For accomplishing multi-color imprinting of the web B, B′, the printing press has several, such as, for example, at least four, and here in particular five substantially identically equipped printing units 300. Preferably, the five substantially identical printing units 300 are arranged side-by-side, and the web B, B′ passes through them horizontally. Preferably, each printing unit 300 is embodied for offset printing, and in particular is embodied as a double printing group 300, or as an I-printing group 300 with two printing groups 301, such as, for example, two offset printing groups 301 for imprinting both sides in a so-called rubber-against-rubber operation, as depicted in
In a further development, and in particular if the printing press is intended to be suitable for imprint operations, at least one, or possibly several of the printing units 300 have additional guide elements 308 positioned closely in front of, and after the nip point of the printing unit 300. If a passage through a printing unit 300 is to take place, without imprinting of the web, and without contact between the web B, B′ and the transfer cylinders 303, the web guidance, which is indicated by dashed lines in
In a further development of the printing group 301 depicted in
Each of the cylinders 303, 304 has a circumference between 540 and 700 mm. The forme and transfer cylinders preferably have the same circumference. The circumferences advantageously lie between 540 and 630 mm. In a special embodiment, the section length “a”, as seen in
The transfer cylinder 303 has at least one dressing, which is not specifically represented, on its circumference, which at least one dressing is maintained in at least one groove which is extending axially on the shell face. Preferably, the transfer cylinder 303 has only one dressing extending over the cylinder effective length, or substantially over the entire width of the web B, B′ to be imprinted, and substantially, except for a joint, or a groove opening, over the entire circumference of the transfer cylinder 303. The dressing is preferably configured as a so-called metal printing blanket, which has an elastic layer, such as, for example, rubber on a substantially dimensionally-stable support layer, for example a thin metal plate. The ends of this dressing are then introduced into the groove, through an opening in the shell face, and are held there positively or frictionally engaged. In the case of a metal printing blanket, the dressing ends are bent or are beveled, for example, in the area of a leading edge by approximately 45°, and in the area of a trailing end by approximately 135°. These bent or beveled ends extend through an opening of a groove, which groove extends axially over the entire useful width of the transfer cylinder 303 and which groove also has, for example, an arresting, clamping or tensioning device. In the area of the shell face, the opening to the groove preferably has a width, in the circumferential direction of the cylinder 304, of 1 to 5 mm, and in particular of less than or equal to 3 mm. The clamping device is preferably made to be pneumatically actuable, such as, for example, in the form of one or of several pneumatically movable levers which, in the closed state, are prestressed, by application of a spring force, against the trailing end of the dressing placed in the groove. A hose, which can be charged with a pressure medium, can preferably be used as the actuating device.
Besides an ink supply device, such as, for example, an ink fountain 311 with an actuating device 312 for regulating the ink flow, the inking system 305 has a plurality of rollers 313 to 325. The ink supply device 311 can also be embodied as a doctor blade crosspiece. With the rollers 313 to 325 of the inking system 305 placed against each other, the ink moves from the ink fountain 311, via the ductor roller 313, the film roller 314 and a first inking roller 315 onto a first distribution cylinder 316. Depending on the mode of operation of the inking system 306, as described below, the ink reaches at least one further distribution cylinder 321, 324 via at least one inking roller 317 to 320, and from there via at least one application roller 322, 323, the ink reaches the surface of the forme cylinder 304. In an advantageous embodiment, the ink moves from the first distribution cylinder 316 via different possible paths selectively or simultaneously, either in series or in parallel, via two further distribution cylinders 312, 324, to the application rollers 322, 323, 325. In an advantageous embodiment of the inking and dampening system 305, 306, the second distribution cylinder 324 can simultaneously work together with a roller 328, which roller 328 may be, for example, the application roller 328 of the dampening system 306.
In a further development, the inking system 305 has, in addition to the rollers 313 to 325, at least one further roller 326, by the use of which further roller 326, ink can be taken from the inking system 305 in the ink path, in particular upstream of the first distribution cylinder 316. This occurs in that an appropriate removal device 333 can be placed against the roller 326 itself or, as represented in
The roller 328 works together with a further roller 329 of the dampening system 306, such as, for example, a distribution roller 329, and in particular, a traversing chromium roller 329. The chromium roller 329 receives the dampening agent from a dampening installation, such as, for example, a roller 330, and in particular a fountain roller 330, which dips into a dampening agent supply 332, such as, for example, a water fountain. A drip plate 335, for use in catching condensation water forming on the water fountain, is preferably arranged underneath the water fountain and, in an advantageous embodiment, is embodied so that it can be heated, such as, for example, by the use of heating coils. A rotatory individual drive mechanism, which is not visible in
In an advantageous embodiment, the rollers 317, 318, 328 are arranged to be movable in the way which is indicated by solid lines and the dashed lines of
In an advantageous embodiment, the chromium roller 329, as well as the roller 330, are each seated, for example in levers, which rollers are movable in a direction perpendicular, with respect to their axes, so that the position of the application roller 328 can be changed in the above-mentioned way.
The distribution cylinders 316, 321, 324 of the inking system 305, as well as the roller 329 of the dampening system 306 are seated in lateral frames 352, 352, or in frame walls 352, 353, as seen in
The arrangement, which is shown in solid lines in
By the movability, or the displaceability, of the roller 328, a choice is possible between direct dampening in the “three roller dampening system” and, as a function of the position of the roller 317, indirect dampening, or direct dampening in the “five roller dampening system”.
Each of the rollers 303, 304, and the rollers 313 to 330 of the inking and dampening systems 305, 306 is seated with their ends located in, or on, the frame walls 352, 353. However, only the rollers 329 and 330, as well as the main drive 354 of the printing unit, which is also explained below, are represented, by way of example, in
One of the frame walls 352, 353, and in particular the wail on the side of the main drive 354, is embodied in one or in several pieces in such a way that it is possible to form a hollow space 356, which can be closed, such as, for example, a lubricant space 356, which extends at least over an area which covers the ends of all of the cylinders 303, 304, and rollers or distribution cylinders which are in mechanical driving connection, and in particular of all of the distribution cylinders 316, 321, 324 of the inking system 306. As schematically represented in
The same optionally applies to the preparation of a draw-in arrangement 399 which may be, for example, embodied as a draw-in guide device 399 for a draw-in mechanism, that is not represented, through the printing unit 100. In this case, respective connecting points 398, such as, for example, a finished surface with a bore or bores, for receiving the draw-in guide device 399, can be prepared in both lateral frames 352, 353. Also, suitable, but not represented supply channels for energy, signal lines, or operating mechanisms between the printing units 300, or appropriate connecting points for them, can already be prepared in both lateral frames 352, 353. In this case, these supply channels extend, for example, on the finally selected side II, and preferably in the area of the linear traversing device 362.
As mentioned above in connection with the roll changer 100, it is possible, in an advantageous manner, to prepare, at least in each one of the frame walls 352, 353, a recess and/or a connection point, such as, or example, a recess in the frame wall, which can be covered, or openings for signal lines, which can also be covered, for an operating element 390, such as, for example, a display 390, including appropriate input or switching elements, such as, for example, a touch-sensitive display.
It can be seen in
On the side or end which is opposite the rotatory drive, the roller 329 has a traversing drive mechanism, which is not specifically represented, and in particular has a gear for creating an axial traversing movement from the roller rotatory movement. Preferably, this trasversing gear is arranged outside of the roller body in order to avoid the creation of spot heating in the roller 329. In an advantageous embodiment, this gear is located on the drive side of the printing group 300, i.e. in the area of the same frame wall 353 as the main drive 354 and/or in the area of a drive train of the printing group cylinders 303, 304, but the rotatory drive mechanism of the rollers 329 and 330 on the opposite side, i.e. in the area of the frame wall 352. If the hollow space 356 is embodied as a lubricant space 356, the gear for accomplishing the axial traversing movement can be arranged therein as an open, not specially lubricated gear. On the side of the frame which is remote from the gear used for accomplishing the axial traversing movement, the roller 329 is connected with the motor shaft of the drive motor 364, by, for example, a corner or bevel gear and an angle-compensating coupling and by a coupling in such a way that a rotatory movement is transmitted, while an axial movement of the roller 329, with respect to the shaft, is possible.
On the side of the frames facing the cylinders 303, 304, the frame walls 352, 353 each have a shoulder 363 protruding out of the straight line or plane of each of the respective housing wall 352, 353. Advantageously, the shoulder 363 is formed in one piece with the frame wall 352, 353 and is advantageously produced as a so-called boss 363 in the course of production the frame in a casting mold. The boss 363 has bores extending through it and also through the straight line of the frame wall 352, 353 for use in receiving non-represented bearings. The boss 363 extends, in particular continuously, over the end area of the forme cylinders 303 and the transfer cylinders 305, but does not extend over the end areas of the traversing and/or traversable inking or dampening system rollers.
As can be seen in
In
In a variation, the four printing group cylinders 303, 304 are driven in pairs, each via drive wheels 386, 387 of coupled forme and transfer cylinders 303, 304, by their own drive motors 354, by, for example, a pivotable intermediate wheel 384. In principle, a single, mechanically independent drive mechanism, with or without intermediate wheels 384, of each printing group cylinder 303, 304 is possible.
Basically, driving can be performed from the intermediate wheel 384, if provided, to any desired one of the drive wheels 386, 387. However, driving is preferably initially performed on the drive wheel 387 of one of the two forme cylinders 304. From there, driving takes place to the drive wheel 386 of the associated transfer cylinder 303, from there to the other transfer cylinder 303, and finally to the second forme cylinder 304. The drive wheels 386, 387 are connected, fixed against relative rotation, with their respective cylinders 303, 304, by, for example, journals. Rotatory driving of one, or of several rollers 313 to 327 of the associated inking system 305 takes place via further drive wheels 391, which are connected, fixed against relative rotation, with the two forme cylinders 304. In an advantageous manner, the distribution cylinders 316, 321, 324 are rotatorily driven from the direction of the forme cylinder 304 via a positive drive connection. The ductor roller 313 has its own rotatory drive mechanism, such as, for example, its own, mechanically independent drive motor, which is not specifically represented. The remaining rollers 314, 315, 317 to 320, 322, 323 and 325 to 327 of the inking system 305 are rotatorily driven only by friction, and, if required, are also shiftable axially, as discussed above.
In an advantageous manner, driving is performed from the drive wheel 391 via an intermediate wheel 392, which is located parallel to drive wheels 393, 394 of the two distribution cylinders 321, 324, as seen in
As discussed above, the configuration of a press, with regard to the equipping of the units 100, 300 on both sides, or selectively on only one side, in relation to the roll changer 100, with operating field 116, and/or the printing unit 300, with linear traversing device 362, connecting point 397, draw-in guide device 398, or connecting point 397 and/or operating element 390, or its connecting point, is of particular value in accordance with a first requirement, or configuration type, as a left-right press, and in accordance with a second requirement, or configuration type, as a right-left press. It is possible, in the course of this, to employ the same elements in each case, in particular with the substantially identical equipment characteristics. In this way, a series construction and manufacture is possible.
Thus it is possible, for example, in a first embodiment, or a first type, as depicted in the top part of
If, because of spatial or of logistic circumstances of the print shop, a previously mentioned printing press should be configured in a second embodiment, or as second type which, in
Thus, in connection with the two above-mentioned printing presses X, Y depicted in
The advantages of the two described types X, Y, shown in
One of the presses now has at least one printing unit 300, in particular has all of the associated printing units 300, with its drive motor 354, or their drive motors 354, on the operating side I facing the space 1000, while the other press has at least one printing unit 300 and in particular has all of the associated printing units 300 with its drive motor 354, or their drive motors 354, on the operating side II facing away from the space 1000, or from the operating side I. Regarding the arrangement of operating elements 116, 390, the draw-in device 398 and/or the traversing device 362, reference is made to what was said above.
At least one of the presses has at least one printing unit 300, and in particular has all of the associated printing units 300, with its drive motor 354, or their drive motors 354, on the operating side I facing the space 1000, while the other press has at least one printing unit 300, and in particular has all of the associated printing units 300 with its drive motor 354, or their drive motors 354, on the operating side II facing away from the space 1000, or the operating side I. Regarding the arrangement of operating elements 116, 390, the draw-in device 398 and/or the traversing device 362, reference is made to what was described above in connection with the left-right and right-left press, together with
In the arrangements in accordance with
In a further development, the printing unit 300 has, in its entry area, or in the area of its inlet nip between the two transfer cylinders 303, a device for affecting the fan-out effect 336. Such a device is used for influencing a change caused, for example, by the printing process, and in particular by the moisture added by the dampening fluid, and resulting in the transverse extension or width of the web B, B′, from one printing location to another printing location. Preferably, the device 336 for counteracting the fan-out effect 336 is arranged in the entry area of a second printing unit 300 which follows the first printing unit, or after the web has already been imprinted at least once. Device 336 has at least an actuating member, such as, for example, a support member, by the use of which the web B, B′ can be deflected in a direction perpendicularly with respect to the web plane, while being touched or, advantageously without contact. The actuating member is configured, for example, as a nozzle through which air can flow.
As indicated in
While preferred embodiments of a printing machine and a printing machine system in accordance with the present invention, have been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in, for example, the web being printed, the type of printing ink being used, and the like could be made without departing from the true spirit and scope of the subject invention which is to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 31 595.0 | Jul 2003 | DE | national |
10 2004 012 560.0 | Mar 2004 | DE | national |
This application is the U.S. national phase, under 35 U.S.C. 371, of PCT/EP 2004/051178, filed Jun. 21, 2004; published as WO 2005/007408 A2 and A3 on Jan. 27, 2005, and claiming priority to DE 103 31 595.0, filed Jul. 11, 2003, and to DE 10 2004 012 560.0 filed Mar. 15, 2004, the disclosures of which are expressly incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/51178 | 6/21/2004 | WO | 12/27/2005 |