This disclosure relates generally to a printing machine for fabricating high performance 3D integrated composite structures and, more particularly, to a fused filament fabrication (FFF) printing machine for fabricating high performance 3D integrated composite structures, where the machine includes an extruder module mounted to a rotary assembly that is rotatable so as to rotate the nozzle assembly relative to the structure.
Fused filament fabrication (FFF) is an additive manufacturing (AM) technology and is a technique used for 3D printing. More specifically, a FFF process provides a stock material to a heated nozzle, where it is extruded therefrom to be laid down layer by layer to build up a desired product, and where the molten polymer or fiber reinforced polymer material immediately begins to harden once it is extruded from the nozzle. The molten material may be generated from different feedstock, such as pre-shaped filaments or pellets.
Various materials may be used for FFF, such as high performance amorphous or semi-crystalline thermoplastics including polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyphenylsulfone (PPSF or PPSU), polyetherimide (PEI) and polyphenylene (PPS). Other materials that may be suitable for FFF include acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), polycarbonate (PC), polyamide (PA), polystyrene (PS), lignin, rubber, carbon fibers, glass fibers, quartz fibers, Kevlar fibers, ultra-high molecular weight polyethylene (UHMWPE), Dyneema, high impact polystyrene (HIPS), nylon, high density polyethylene (HDPE) eutectic materials, plasticine, room temperature vulcanization (RTV) silicone, etc.
Traditional complex composite fabrication methods, such as autoclave cured hand lay-up, automated fiber placement, tape placement, etc. are labor intensive, expensive, require a long-lead and expensive tooling and typically requires talented fabrication technicians. Known composite additive manufacturing approaches are only capable of providing relatively low fiber volume, high porosity and low structural performance. Known additive manufacturing or 3D printing technologies are actually 2.5D, where the machine builds a layer in the x-y plane, then the machine stops, moves the build platform in the z-direction, and builds another layer in the x-y plane, thus it is a planar process. A true 3D fabrication process would build in the x, y and z directions concurrently. However, since there is no integrated additive manufacturing fabrication system that can build composites in a true 3D manner, there are significant limitations on the value of the current printing capability and these systems will never achieve high performance structural requirements because the fibers will typically not be aligned with the direction of the highest stresses on the part.
Known additive manufacturing 3D printing machines often employ a gantry style approach having an end-effector that lays down the additive material in the x-y plane. However, gantry style machine approaches make scalability, affordability and flexibility a challenge for a fabrication cell because there is a direct correlation between the size of the part being fabricated and the size of the gantry machine required, where the gantry machine is capable of only a single operation at one time. Very large parts require very large machines, thus driving the required footprint and machine cost. Robotic approaches provide greater flexibility and easier scale-up. For example, multiple robots can work within the same cell. Additionally, each robot can be mounted to a movable base that allows for repositioning at different locations within or around the cell. Robotic approaches allow for additional robot poses that increase the number of degrees of freedom, the ability to fabricate in 3D, and fabrication flexibility through multiple robots performing multiple tasks.
The following discussion of the embodiments of the disclosure directed to a printing machine for fabricating high performance 3D integrated composite structures is merely exemplary in nature, and is in no way intended to limit the disclosure or its applications or uses.
The end-effector 26 includes an outer housing 34 and a rotatable connector 36 that is releasably and rotatably connected to the coupling mechanism 30, where the housing 34 is shown as being transparent to illustrate the various components therein. Those components include a number of spools 40, here three, on which a plurality of filaments 42 of various materials are wound, a motor 44 for selectively and independently drawing the filaments 42 off of the spools 40, a right angle gear box 32 coupled to a filament feed assembly 48 by a shaft 56, a rotary assembly 38 having a barrel 46 that is turned by an indexing motor 58 and through which the filaments 42 are drawn and melted, an end plate 54 mounted to an end of the barrel 46 and a nozzle assembly 50 that extends through the plate 54 and is part of the extruder module. The spools 40 can be mounted in the end-effector 26 as shown, or mounted remotely with the material being fed to the end-effector 26 through a tube (not shown). Alternately, the stock material can be provided by pellets instead of using the filament 42.
The filament 138 then passes through a filament guide 184 and into a nozzle assembly 162.
A cutter 182 is provided between a filament guide 184 and the nozzle assembly 162 that is moved by a cutter actuator 186 and is constrained by a cutter guide 188. When the cutter actuator 186 is actuated, it moves the cutter 182 towards the filament 138 at high speed and with a selected amount of force, in a direction perpendicular to the filament feed direction, shearing the filament 138 against the underside of the filament guide 184 and cutting through the entire filament 138. This allows the filament 138 to be automatically cut to the appropriate length as it is being printed. The filament 138 is only extruded from the nozzle 166 in one direction, so the nozzle 166 must be rotated to different orientations in order to be able to extrude the filament 138 in different directions. This is different from conventional 3D printing nozzle designs, which are not sensitive to the rotation of the nozzle 166 and can print in any direction as long as the print direction is normal to the axis of the nozzle 166.
The continuous fiber-reinforced 3D printing process is sensitive to the orientation of the nozzle assembly 50. The machine overcomes some of this sensitivity by making the nozzle assembly 50 rotatable. Additionally, by making the nozzle assembly 50 rotatable relative to the rest of the end-effector 26, the direction of the filament 42 as it is extruded from the end-effector 26 can be controlled without needing to rotate the entire end-effector 26. The end-effector 26 may be relatively large and unwieldy compared to the rotary assembly 38, so being able to control the orientation of the extruder module independently of the orientation of the end-effector 26 significantly improves dexterity of the machine 10.
As mentioned above, the part that is being built by the printing process is formed on a build platform. In the design of the machine 10 a rotary circular table 70 is employed on which a part 72 being printed or fabricated is shown. An optional riser 74 is provided at a center of the table 70 and the part 72 is positioned on the riser 74. However, it is noted that in some designs, the riser 74 may not be needed. The end-effector 26 is shown positioned adjacent to the part 72 and is in the horizontal orientation. By providing the riser 74 on which the part 72 sits, the part 72 is separated some suitable distance from a top surface 76 of the table 70 so as to provide clearance between the end effector 26 and the table 70 that is desirable for effectively printing small-diameter parts. In one embodiment, the riser 74 is fabricated from a highly thermally conductive material, such as copper, so as to improve thermal transfer to the part 72 and maintain part thermal stability and adhesion of the part 72 to the surface of the riser 74. The riser 74 can be provided in different shapes, sizes and heights to be more effective for fabrication of parts having a wide range of geometries. A side of the table 70 is shown as being transparent to illustrate suitable components 78 therein that allow the table 70 to be rotated and including a heat source 79 configured to allow the riser 74 to be heated.
The end-effector 26 is coupled to the coupling mechanism 30 at an angled orientation on an angled wall 52, where the end-effector 26 is shown in a predominantly horizontal orientation in
The continuous fiber-reinforced 3D printing process is sensitive to the orientation of the nozzle assembly 50. By making the extruder module rotatable relative to the rest of the end-effector 26, the direction of the filament 42 as it is extruded from the nozzle assembly 50 can be controlled without the need to rotate the entire end-effector 26. The end-effector 26 may be relatively large and unwieldy compared to the extruder module, so being able to control the orientation of the extruder module independently of the orientation of the end-effector 26 significantly improves the dexterity of the 3D printing machine 10.
In alternate embodiments, the machine 10 can be equipped with a machine vision system for automatically calibrating tool point definitions of various printer modules. Further, the machine 10 can include a customized cooling suit that allows the machine 10 to fabricate the part in a high temperature oven, which allows composite structure fabrication with high temperature and high performance thermoplastics and having a high toughness and chemical resistance.
The foregoing discussion discloses and describes merely exemplary embodiments of the present disclosure. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the spirit and scope of the disclosure as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4750960 | Bubeck | Jun 1988 | A |
5653925 | Batchelder | Aug 1997 | A |
6471800 | Jang et al. | Oct 2002 | B2 |
7648759 | Hirawaki et al. | Jan 2010 | B2 |
8603385 | Costabeber | Dec 2013 | B2 |
9126367 | Mark et al. | Sep 2015 | B1 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9308705 | Liou et al. | Apr 2016 | B2 |
9327453 | Mark et al. | May 2016 | B2 |
9370896 | Mark | Jun 2016 | B2 |
9440397 | Fly | Sep 2016 | B1 |
9579851 | Mark et al. | Feb 2017 | B2 |
9688028 | Mark et al. | Jun 2017 | B2 |
9694544 | Mark et al. | Jul 2017 | B2 |
9776376 | Swartz et al. | Oct 2017 | B2 |
9815268 | Mark et al. | Nov 2017 | B2 |
9908291 | Mech | Mar 2018 | B2 |
9908978 | Reese et al. | Mar 2018 | B2 |
9956725 | Mark et al. | May 2018 | B2 |
10022890 | La Forest et al. | Jul 2018 | B2 |
10035305 | La Forest et al. | Jul 2018 | B2 |
10052813 | Armijo et al. | Aug 2018 | B2 |
10059053 | Jaker et al. | Aug 2018 | B2 |
10076876 | Mark et al. | Sep 2018 | B2 |
10173410 | Nardiello et al. | Jan 2019 | B2 |
10207426 | Braley et al. | Feb 2019 | B2 |
20040159724 | Steur | Aug 2004 | A1 |
20100291310 | Hartmann | Nov 2010 | A1 |
20120073726 | Koeniger et al. | Mar 2012 | A1 |
20140061974 | Tyler | Mar 2014 | A1 |
20140063096 | Pitz | Mar 2014 | A1 |
20140232035 | Bheda | Aug 2014 | A1 |
20150367576 | Page | Dec 2015 | A1 |
20160031155 | Tyler | Feb 2016 | A1 |
20160151833 | Tsao | Jun 2016 | A1 |
20160176118 | Reese et al. | Jun 2016 | A1 |
20160332372 | Fryska et al. | Nov 2016 | A1 |
20170021565 | Deaville | Jan 2017 | A1 |
20170173868 | Mark | Jun 2017 | A1 |
20170198104 | Bheda et al. | Jul 2017 | A1 |
20170341300 | Rudolph et al. | Nov 2017 | A1 |
20170341301 | Van Tooren et al. | Nov 2017 | A1 |
20180126667 | Wilenski et al. | May 2018 | A1 |
20180178448 | Kakuta | Jun 2018 | A1 |
20180207856 | Seriani | Jul 2018 | A1 |
20180319098 | Armijo et al. | Nov 2018 | A1 |
20180333915 | Montgomery | Nov 2018 | A1 |
20190022936 | Mansson | Jan 2019 | A1 |
20190047227 | Li | Feb 2019 | A1 |
20190084228 | Chen | Mar 2019 | A1 |
20190262986 | Newell | Aug 2019 | A1 |
20200001522 | Manuel | Jan 2020 | A1 |
20200031057 | Yan | Jan 2020 | A1 |
20200269503 | Born | Aug 2020 | A1 |
20200324459 | Barnes | Oct 2020 | A1 |
20200324473 | Barnes | Oct 2020 | A1 |
20210031449 | Belcher | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
2329935 | Jun 2011 | EP |
Entry |
---|
ManufacTube, “6-axis KUKA 3D printing robot”, Aug. 5, 2016, https://www.youtube.com/watch?v=K-I2XAkZxVg. |
PCT International Search Report of the International Searching Authority dated Jun. 24, 2020 for International Application No. PCT/US2020/025294 filed Mar. 27, 2020. |
Peng, Yong, et al. “Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication.” Composite Structures (2018). |
Jiang, Delin, and Douglas E. Smith. “Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication.” Additive Manufacturing 18 (2017): 84-94. |
Automated Fiber Placement Systems Overview, Konrad Kozaczuk, Transactions of the Institute of Aviation, No. 4 (245), pp. 52-59, Warsaw 2016 https://ilotedu.pl/prace_ilot/public/PDF/spis_zeszytow/245_2016/6.pdf. |
Recent Developments in Automated Fiber Placement of Thermoplastic Composites, Zachary August, Graham Ostrander, John Michasiow, and David Hauber, Automated Dynamics, https://pdfs.semanticscholar.org/41 la/f6ac6cc3f7306fc1c75aef3e03eedec49 1c4.pdf. |
Number | Date | Country | |
---|---|---|---|
20200324472 A1 | Oct 2020 | US |