The present invention is directed a printing press system. The printing press system includes first and second printing presses, each with at least one printing unit. The printing unit cylinders in the two printing presses are arranged orthogonally to each other.
A printing press, that has both printing units for newspaper printing and a printing unit for printing semi-commercial products, is known from DE 102 38 010 A1. Production is performed on a shared folding unit, which shared folding unit has both a newspaper folder and an illustration folder.
WO 2004/024448 A1 describes a printing press having a plurality of printing units, at least one dryer and a folding unit. Printing units are arranged side by side, in respect to the axial direction of their cylinders. A web path from the printing units to a former assembly, which former assembly has three fold formers side by side, has a 90° bend that projects into the horizontal plane.
In WO 03/031182 A1, a printing press, with a plurality of printing towers, for use printing newspaper products is described. The printing towers are arranged in a machine alignment that is perpendicular to the axial direction of their printing group cylinders. The printing press is thus configured as a so-called linear machine. The lead-in direction of fold formers of a former assembly, which is assigned in the straight-line passage, also extend along or at least parallel to the machine alignment.
Two printing machine lines, each with a plurality of printing groups, which plurality of printing groups are arranged side by side, and through which a web passes in sequence, are known from DE 40 12 396 A1. Auxiliary devices of the one printing press can be used by transferring the web to the other printing press.
A printing press having a plurality of printing groups, which are arranged side by side, and also having an aligned former assembly is described in U.S. Pat. No. 1,972,506. From printing groups that are arranged offset by 90° from the first machine alignment, partial webs, that have been printed in a multicolor process, are fed to the former assembly of the first machine.
DE 20 2005 010 058 U1 and EP 16 83 634 A1 both show a printing press with two printing press subsystems. The printing press subsystems are configured differently such that webs of printing substrate can be printed in them, thereby producing a varying number of printed pages.
In the publication “Handbook of Print Media”; Helmut Kipphan; Springer, 2000; pp 357 and 358, examples of printing presses or of printing press systems, with combined heatset/coldset machine lines, are provided.
The publication “Atlas of Newspaper and Illustration Printing”; Alexander Braun; Polygraph, 1960, shows, on page 152, a printing press with a printing group that is four plates wide and with a double-width former assembly with a folding unit arranged downstream from it. From a cover or from a supplement machine, webs, that are one page wide and which have been printed with printing groups that are offset 90° from the first machine, can be fed in the folding unit of the first-mentioned machine.
The object of the present invention is to provide a printing press system.
The object is attained according to the invention by the provision of the printing press system with a first printing press that has at least one first printing unit and one first former assembly, which is arranged in a machine alignment of this first printing unit. A second printing press has at least one second printing unit and with one second former assembly that is arranged in the machine alignment of the second printing unit. The printing group cylinders of the first and second printing units are arranged orthogonally to each other, in their respective axial directions. The two former assemblies are also orthogonal to each other, with regard to their web transport directions, as projected onto a horizontal plane of a web entering each such former assembly. Printed webs from either printing press can be directed either to their own former assembly or can be turned by 90° and directed to the former assembly associated with the other printing press.
The benefits to be achieved, in accordance with the present invention, consist especially in that the arrangement of two different printing presses in a printing press system, in accordance with the present invention, allows both different products and hybrid products to be produced in a simple and variable manner. By combining, for example, types of printing presses, or by combining printing units that are different from one another, the widest range of requirements, in terms of product diversity and quality, can be accommodated.
For example, a printing press, such as, for example, a newspaper printing press, can be configured for pure newspaper production, which is performed over a relatively short period of time during the night. In addition, the same printing press can also be used during the day for other products, such as, for example, for hybrid products.
The angled and/or orthogonal arrangement of the printing press system, in accordance with the present invention, enables increased variability in combining webs from the one type of printing units, such as, for example, from semi-commercial printing units, into the flow of webs from the other printing units, such as, for example, newspaper printing units. With this increased variability, the webs are less in the way than they would be with a purely linear arrangement. This increases the variability of the positioning of these “commercial webs” in the overall product. Heatset and coldset webs and/or webs from printing units of different widths and/or of different circumferences and/or from different printing processes can be combined with considerably greater flexibility. The heatset webs or the partial webs, which are being fed in from the side, can be rolled in or added at nearly any point in the product.
With the orthogonal arrangement of printing presses, in accordance with the present invention, e.g., newspaper and (semi) commercial products can also be produced simultaneously, and independently of one another, without restrictions. This is because the webs from the two machines do not run within the same alignment, as is the case with a purely linear machine, and thus do not block one another. The machines, configured, such as, for example, as heatset and coldset machines, can be operated practically “without secondary actions”, and optionally can be operated as completely stand-alone machines.
Preferred embodiments of the present invention are represented in the accompanying set of drawings and will be specified in greater detail in what follows.
The drawings show:
a) and
a), b) and c) schematic representations of a further preferred embodiment of a printing press system in accordance with the present invention;
a), b), and c) schematic representations of a further preferred embodiment of a printing press system in accordance with the present invention;
a), b), c), d) and e) schematic representations of a further preferred embodiment of a printing press system in accordance with the present invention;
a), b), c) and d) schematic representations of a further preferred embodiment of a printing press system;
a), b), c), d) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c), d) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c), d) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c), d), and e schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c), d) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c), d) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b), c) and e) schematic representations of a preferred embodiment of a production and/or web lead for the printing press system of
a), b) and c) schematic representations of arrangements for guiding webs to fold formers to produce a “pop-up product”; and
a) and b) schematic representations of arrangements for guiding webs to fold formers to produce a “pop-up product”.
Referring initially to
In a first embodiment of the present invention, the two types of printing units 02; 03 can be the same. When this is the case, they can both operate using the same one of the printing processes listed below, with or without drying devices 15, as discussed subsequently, and with the same dimensions, length/circumference, for the imaging printing group cylinders 04; 14 as is also discussed subsequently.
Particular advantages, with respect to product design, are achieved when the two types of printing units 02; 03 are different from one another, based upon the specific requirements of the product.
The two types of printing units 02; 03 or the two types of printing presses 01; 31 can differ from one another, for example, in terms of the printing process. For example, the printing unit 02 of the first type can be configured as an offset printing unit, a direct printing unit, a flexo printing unit, or as a printing unit that employs a non-impact process, such as a printing process without a printing forme, or inking without the mechanical action of printing cylinders on the printing substrate, such as, for example, printing on photosensitive paper, ink-jet printing or laser printing, and the first printing press 01 can be operated under the corresponding process. The printing unit 03 of the second, other type can then be configured according to another of the listed processes. For example, the first printing press 01 can be configured especially as a newspaper printing press 01 with offset printing units, while the second printing press 31 has one or more direct printing or flexo printing units or non-impact printing units. One printing press 01 may also be configured as a newspaper printing press 01 with offset printing units, while the other printing press 31 has offset printing units for commercial printing and thus has printing groups having an essentially horizontal web path for high-quality commercial printing, with a dryer downstream or is configured as a commercial printing press.
The two types of printing units 02; 03 or of printing presses 01; 31 can differ from one another, in addition to, or in place of a difference in the aforementioned printing process. One of the printing presses 01; 31 may be operated with a drying of the freshly printed web, using, for example, the heatset process, which heatset process is discussed below, while the other may be operated without drying, such as, for example, using the “coldset process”. The printing press 31; 01 that operates using the heatset process then has a suitable drying device 15, such as a dryer 15, and the associated printing units 03; 02 are configured with correspondingly modified units and/or with supplementary equipment, as will also be discussed below. Especially advantageously, one printing press 01 can also be configured as a newspaper printing press 01 with printing units, such as offset printing units, that are configured solely for newspaper and/or coldset printing, referred to as coldset printing units 02, while the other printing press 31 has one or more offset printing unit(s) configured for semi-commercial and/or “heatset printing”, referred to as heatset printing unit(s), and drying devices 15. The prefix “heatset” refers not only to drying the web using a thermal process, but, in contrast to the “coldset” process, also includes drying the web using other drying devices, such as, for example, UV or IR dryers.
The two types of printing units 02; 03 or of printing presses 01; 31 can differ, in addition to, or in place of a difference in the aforementioned printing process and/or with respect to a drying process, in that the two types of printing units 02; 03 can differ in the maximum length that is actively used for printing and/or in the circumference of the imaging printing group cylinder 04; 14, such as, for example, the forme cylinder 04; 14, as will be discussed below. In other words, they can be configured to have a length and/or a circumference which corresponds to a different number of printed pages of the same format, such as, for example, newspaper pages in broadsheet format. For example, the printing unit 02 or 03 of the one type can be configured having printing group cylinders 04; 14 that are the width of four printed pages, and especially of four newspaper pages of “double width” and, at least for the forme cylinder 04, with a circumference that corresponds to the length of two printed pages “double circumference”, and especially of two newspaper pages, “double circumference”, in a so-called “4/2” configuration. The printing unit 03; 02 of the other type can be structured in a 4 length/1 circumference of at least the forme cylinder 14; 04 configuration, in a 2/2 configuration, “single width” and “double circumference”, or in a 6/2 configuration, “triple width” and “double circumference”. With the single-circumference configuration, a printing group cylinder 06; 16, such as, for example, a transfer cylinder 06; 16, as will be discussed below, that cooperates with the “single-circumference” forme cylinder 04; 14 can also be configured as “double circumference”. In principle, the one of the two printing presses 01; 31 can be structured as one of the configurations 2/1, “single width” and “single circumference”, 2/2, “single width” and “double circumference”, 4/1, “double width” and “single circumference”, 4/2, “double width” and “double circumference”, 6/1, “triple width” and “single circumference”, 6/2, “triple width” and “double circumference”, whereas the other of the two printing presses 31; 01 has one of the aforementioned configurations that is different from that of the first. A wider, for example, double width, printing unit 02 can also be single circumference, a 4/1 configuration, and the printing unit 03 of the second type can be configured as single width and double circumference, 2/2 configuration. In general terms, in an x/y configuration, the forme cylinder 04; 14 of the respective printing unit 02; 03 supports a number “x” of print images side by side lengthwise along its circumference, and a number “y” of print images, or the number of printing formes, such as, printing plates, each with one print image, in a circumferential direction, in the respective format, such as, for example, in tabloid format or in newspaper format, and especially in broadsheet format, in the case of newspaper format.
In the selection of the configuration of the respective printing press 01; 31 with respect to the differentiation in circumference, either single circumference or double circumference configuration, a single circumference configuration, such as, for example, 2/1, 4/1 or 6/1, can provide advantages in terms of the printing formes that must be changed with a shift in production, and/or in terms of the page jump in the product to be produced and/or in terms of a machine height. A double circumference configuration, such as, for example, 2/2, 4/2, 62, however, can offer advantages with respect to a maximum producible product thickness in collect-run production. With respect to differentiation in the printed pages that are arranged side by side lengthwise, the product thickness and/or the efficiency to be achieved is also a decisive criterion. For example, if only a small number of special sections are required in the hybrid product, and if, in stand-alone production using this, for example, second printing press 03, only products of small circumference are required, then, for example, a single-width configuration may be sufficient. Thus, with configurations of the two types of printing units 02; 03, that are different in terms of width and/or circumference, an adjustment to the requirements of a specific product spectrum can be specifically made.
With a triple-width configuration, 6/1 or 6/2, one of the printing units 02; 03 or printing presses 01; 31 can have, on its transfer cylinder 06; 16, which is six print pages wide, one printing blanket that is continuous over its entire length, two printing blankets, each three pages wide, or three printing blankets, each two pages wide, which configurations are not specifically shown, and especially can have metal printing blankets with a dimensionally stable support plate, such as, for example, a metal plate, and can also have a flexible and/or compressible coating. The configuration comprising two rubber blankets, each three pages wide, and arranged side by side lengthwise offers advantages in terms of increased variability, such as for pop-up production or variable web width. The rubber blankets can be offset over their entire circumference and, if there are a plurality of such blankets lengthwise, can also be offset circumferentially in relation to one another.
A plurality of printing units 02 of the first type, such as, for example, of “dedicated” coldset printing units 02, and/or at least one printing unit 02 of the first type, such as, for example, a coldset printing unit 02, and a former assembly 07 are arranged in the manner of a so-called linear machine 01, in a shared machine alignment M1, as seen in
The first printing press 01 preferably has a plurality of groups of printing units 02 arranged adjacent to one another, and between which, one or two former assemblies 07 is or are arranged. In this manner of optionally overlapping groups, the mass product, such as, for example, a newspaper can be produced on the first printing press 01, while on the other, second printing press 31 either individual product sections for a resultant hybrid product, or a separate product, such as, for example, one of higher quality and/or of smaller dimensions and/or a smaller number of copies can be produced.
The printing press system in accordance with the present invention can, in principle, involve any above-mentioned combination of two different printing units 02; 03 or of two different printing presses 01; 31. The printing units 02 of the first printing press 01, however, are preferably configured as printing towers 02, each such printing tower 2 preferably having two stacked H-printing units or two stacked satellite printing units. In principle, the printing towers 02 can also have four blanket-to-blanket printing groups for accomplishment of double-sided printing. The web 11 then runs essentially vertically between the printing points in the printing units 02 of the first printing press 01.
In one advantageous configuration of the one printing press 01 as a “dedicated” newspaper printing press 01, this one printing press 01 has coldset printing units 02 for newspaper printing as the printing units 02 of the first type. With such first printing units 02 configured as coldset printing units 02, and especially configured for newspaper printing, the printing group cylinders 04, which are configured as forme cylinders 04, have, on their circumference, as viewed longitudinally, a plurality of printing formes 28, as seen in
A printing unit 02, which is configured as a coldset printing unit 02, has an inking unit, which is not specifically shown in
The web 11 that is fed through the coldset printing unit 02 is preferably uncoated or lightly coated paper having a maximum coating weight of 20 g/m2, especially at most 10 g/m2.
In the embodiment of the first printing press 01 as a coldset printing press for newspaper printing, the folder 08, which is assigned, in straight-line travel, to the first printing press 01 with the former assembly 07 that is arranged in the machine alignment M1, is configured, for example, as a newspaper folder. The folder 08, which is configured as a newspaper folder, has one or two folding units, configured, for example, as a single folding unit or as a double folding unit. The folder 08 can also have a plurality of separate folding units. The folding unit of the folder 08, which is configured as a newspaper folder, has, for example, a cutting cylinder, a transport cylinder, a jaw cylinder and, if applicable, a delivery fan. Optionally, however, and especially for the configuration of the folding unit for semi-commercial products, it can also have a capability for forming a second cross fold. The folding unit of the folder 08 is advantageously rotationally driven by at least one drive motor, and is separate mechanically from the printing units 02.
Printing group cylinders 14 of a heatset printing unit 03, primarily for semi-commercial or commercial printing, and which are configured as forme cylinders 14, can, in one configuration, advantageously have preferably only one, but at most two, printing formes 29 on its circumference, as viewed longitudinally. Such printing formes 29, viewed axially, bear, for example, at least three, in the case of two printing formes longitudinally, or six, in the case of only one printing forme 29 longitudinally, print images of a tabloid page, such as, for example, a, magazine or a telephone book page, and, as viewed in the circumferential direction of the forme cylinder 14, bear a plurality, for example, at least four, of these print images. Thus, the forme cylinder 14, as represented schematically in the unrolled circumference shown in
In another configuration, the printing unit 03, that operates using the heatset process, can be configured with its forme cylinder 14 corresponding to a forme cylinder 04 of a coldset printing unit 03, which forme cylinder 14 can support a number of printing formes, such as, for example, individual printing plates, located axially on its circumference, the number of printing formes corresponding to the number of print pages. In the case of a double-width printing unit 03, for example, four printing formes can be placed side by side in an axial direction, and in the case of a triple-width printing unit 03, for example, six printing formes with print pages, for example, in newspaper format, can be so situated.
The forme cylinder 14 of the heatset printing unit 03 can have an effective cylinder width, such as a width that is usable for printing a material web 21, such as, for example, paper web 21, or another material web 21, which effective cylinder width corresponds at least to the corresponding number of newspaper pages of the format to be printed in the newspaper printing press 01.
The heatset printing unit 03 has an inking unit, which is not specifically represented in
The web 21, which, in the heatset process, is fed through the heatset printing unit 03, is preferably satin-finished and/or is more heavily coated paper, typically having a coating weight of more than 10 g/m2, and for example, of at least 15 g/m2. At average or higher quality, the paper can be structured in a base weight range of greater than 40 g/m2, such as, for example, in a base weight range of 55-90 g/m2, and especially greater than 50 g/m2. In contrast, the paper used in the coldset process can advantageously be provided having a base weight range of less than 50 g/m2, and especially less than 40 g/m2.
Preferably, however, the heatset printing unit 03 can be operated in either heatset mode or in coldset mode, as desired. It is operated, for example, in the heatset operating mode using heatset ink and/or using heavily coated paper, and is operated in the coldset operating mode using coldset ink and/or using uncoated or lightly coated paper. In the coldset operating mode, the dryer 15 can be traversed while it is in a deactivated status, or, as indicated by solid lines in
The printing unit 03 of machine line 25, and especially of heatset machine line 25 and/or of the second printing press 31, which is now configured as a heatset printing press and/or as a semi-commercial printing press, is configured, for example, as a printing tower 03, which preferably has four stacked blanket-to-blanket printing groups for double-sided printing, such as, for example, so-called bridge or n-printing units. In principle, however, the printing tower 03 can also have two stacked H-printing units or two stacked satellite printing units, or can be comprised of these.
If the second printing press 31 is configured as a commercial printing press, the second printing unit 03 has an offset blanket-to-blanket printing group with four printing groups cylinders 14; 16 arranged vertically, one above another, and more complicated inking groups, such as, for example, dual-train roller inking groups with at least three friction cylinders located in each roller inking group roller train. The forme cylinders 14 are configured, for example, similar to those that were described above in reference to the heatset printing group, with a continuous printing forme attachment channel and having the option of attaching a printing forme 29 that extends over the entire width. In this case as well, the commercial printing units are operated using heatset ink, and the printing press has a dryer 15.
One or more of these second printing units 03, such as, for example, heatset printing units 03 or a heatset machine line 25, has a folder 18, typically a heatset folder 18, arranged downstream from it. In addition to having a cutting cylinder, a transport cylinder and a jaw cylinder, a heatset folder 18, for semi-commercial products, advantageously has additional units, such as, devices of forming a 2nd lengthwise fold and/or a 2nd cross fold and/or a stitcher and/or a plough fold.
The at least one second type printing unit 03 is arranged laterally, to the side of the alignment of the first printing units 02, seen from a top plan view, as taken in
The printing press system in accordance with the present invention, and as depicted in
A machine alignment M2 that is perpendicular to the axial direction of the printing group cylinders 14; 16 of the printing unit(s) 03 of the second type can have only one printing unit 03 arranged in it. Alternatively, a plurality of printing units 03, with a second printing unit 03 of the second type being indicated by dashed lines, of the second type in the manner of a linear machine, or at least one printing unit 03 and a dryer 15 and/or other units, such as cooling rollers and/or a coating unit may be arranged in machine alignment M2. A configuration of this type, comprising one or more second printing units 03, for example, together with a supplementary dryer 15, and the like, in a machine alignment M2, is also characterized in, the discussion which follows, as machine line 25, and in specific cases also as heatset machine line 25. The second machine alignment M2 and/or the direction of passage of a web through an optionally included dryer 15 is oriented, for example, essentially perpendicular to the first machine alignment M1. With the linear arrangement of the first printing press 01, the axial direction of the printing group cylinders 14; 16 of the second printing unit(s) 03 extends essentially parallel to the machine alignment M1 of the first printing press 01.
In the machine alignment M1 of the first printing press 01, a superstructure 05 with at least one turning device 10 is provided. The turning device 10 is configured such that a web 21 entering into it, from the second printing unit 03 or from the second printing press 31, can be turned 90° into the alignment of a web 11 or of a partial web of the first printing press 01. In other words, with the turning device 10, a web 21 from the second printing press 31 traveling in direction of transport T2 can be turned 90° to a direction of transport T1 that is parallel to the machine alignment M1 of the first printing press 01, and can be fed to the former assembly 07 of the first printing press 01.
Therefore, with the above-described lateral, or angular, arrangement of the two printing presses 01; 31 and/or of the first and second printing units 02; 03 of different types, and with the turning device 10, in addition to a printing unit 02 of the first type, a printing unit 03 of the second type, such as, for example, a heatset printing unit 03, is, or can be assigned to the former assembly 07 of the first printing press 01, in at least one operating mode involving the turning of a web 21 or partial web.
This turning device 10 can be viewed as a turning device 10 for a superstructure 05 that is assigned to this first printing press 01, with turning device 10 being assigned to this first printing press 01 in stand-alone production. However, an additional turning device, not specifically shown here, can also be advantageously assigned in the superstructure 05 to the first printing press 01, to allow the webs 11 or the partial webs 11.1; 11.2; 11.3, which are traveling in the first printing press 01, to be turned variably into different alignments that are parallel to the machine alignment M1. The second printing press 31 can also be equipped, in its superstructure 39, with a turning device that is different from the turning device 10. This makes it possible to turn the webs 21 or the partial webs 21.1; 21.2, which are traveling in the second printing press 31, variably into different alignments that are parallel to the machine alignment M2, as is discussed below.
In addition to the first former assembly 07, another, second former assembly 17 is assigned to the two printing presses 01; 31, as shown in
Depending upon the machine width of the two printing press 01; 31 and/or of their printing units 02; 03, or in other words, depending on the maximum web width to be printed and/or the number of pages, such as, for example, newspaper pages, situated axially along the printing group cylinders 04; 06; 14; 16, the two former assemblies 07; 17 can have the same or a different number of fold formers 09; 19, arranged side by side horizontally as a former group. Also, depending upon the products to be chiefly produced on the two printing presses in stand-alone production, the two printing presses 01; 31 can have fold formers 09; 19 of the same or of a different effective width or former format. Thus, for example, the one former assembly, either 17 or 07, can have a group of two fold formers 19; 09 side by side and the other former assembly 07; 17 can have a group of three fold formers 09; 19, each of the same effective width or the same former format, as depicted in
In the case of multiple-width presses, such as, for example, double-width or triple-width printing units 02; 03, a longitudinal cutting device 34; 36 is provided in the web path between the printing unit 02; 03 and the respectively assigned former assembly 07; 17. With a printing unit 02; 03 that is n- or m-times wide, wherein, m=1, 2, 3, . . . , in configuration, the forme cylinder 04; 14 bears 2*n, respectively 2*m print pages of a specific format, and especially of a newspaper format, side by side in an axial direction in one operating mode, for example, and the longitudinal cutting device 34; 36 is structured to cut a web 11; 21 that has been printed by this printing unit 02; 03 lengthwise into at least n or m partial webs 11.1; 11.2; 11.3 or 21.1; 21.2, respectively.
In principle, the respective longitudinal cutting device 34; 36, for each of the two printing presses 01; 31, can be arranged in the web path either upstream or downstream from the turning device 10. In the former case, the already narrow partial webs 11.1; 11.2; 11.3 and/or 21.1; 21.2 are to be fed over guide rollers 13; 20 and/or turning devices 10 to the formers 09; 19. In the latter case, with multiple-width webs 11; 21 a “multiple width” turning bar 32, as will be discussed below, is necessary if the multiple-width web 11; 21 or if a multiple-width partial web 11.1; 11.2; 11.3 or 21.1; 21.2 is not to be moved in a straight line, but instead is to be turned into the machine alignment M1; M2 of the other printing press 01; 31. However, it is also possible, with at least one of the printing presses 01; 31, or even with both, for a longitudinal cutting device 34; 36 to be provided between printing unit 02; 03 and turning device 10, and for a second longitudinal cutting device 34′; 36′, which is indicated by dashed lines, to be provided between turning device 10 and former assembly 07; 17. In this case, a web 11; 21 can be cut into partial webs 11.1; 11.2; 11.3 or 21.1; 21.2, which are the width of the former, during straight-line travel shortly before reaching the former assembly 07; 17, whereas in the operating mode that involves an angled web lead or hybrid production, the partial webs 11.1; 11.2; 11.3 or 21.1; 21.2, that are to be turned into the other machine line 25; 30 can be cut before reaching the turning device 10.
In one embodiment, the turning device 10 can be configured such that, as needed, a web 21; 11 coming from only one of the printing presses 31; 01 can be fed to the former assembly 07 of the other printing press 01. In another advantageous embodiment of the turning device 10, it can be configured such that, optionally or simultaneously, one or more webs 21 and/or partial webs from the second printing press 31 can be fed to the former assembly 07 of the first printing press 01, and conversely, one or more webs 11 and/or partial webs from the first printing press 01 can be fed to the former assembly 17 of the second printing press 31.
In one advantageous embodiment, as depicted in
In this embodiment of the two printing units 02; 03 and/or the two printing presses 01; 31 and/or machine lines 30; 25, which are arranged perpendicular to one another, it is provided that the former assembly 07, which is assigned to the first printing unit 02 or to the first printing press 01, is arranged in the machine alignment M1 for the straight-line travel of webs 11 that have been printed in this machine. The former assembly 17, which is assigned to the other printing unit 03 or printing press 31, and which is perpendicular to the first, is arranged in the machine alignment M2 for the straight-line travel of webs 21 that have been printed in this second machine line 25. In “normal” print operation, such as, for example, with stand-alone production, in which webs 11; 21 of the two different printing units 02; 03 are not to be combined, production can be performed, in each case, in straight-line travel to the assigned former assembly 07; 17. The former assemblies 07; 17 are then also situated orthogonally to one another, in terms of the direction of transport T1; T2 of a web 11; 21 running up to each former assembly 07; 17, with this direction being projected into the horizontal plane. Each of the two printing units 02; 03 or the two machine lines 30; 25, which are oriented orthogonally to one another, is assigned a former assembly 07; 17. The direction of transport T1; T2 of a web 11; 21 running up to this former assembly 07; 17, with this direction being projected into the horizontal plane, extends parallel to the corresponding machine alignment M1; M2 or perpendicular to the rotational axis of the printing group cylinders 04; 06 or 14; 16 of the printing units 02; 03 that are assigned in straight-line travel.
In this configuration, as represented in
In the X-configuration, such as is depicted in
The terms “single-width”, “multiple-width”, “double-width”, etc. should generally be understood to mean that “single-width” refers to the effective width of the relevant unit or of a web or partial web width corresponding to two print pages, especially to two newspaper pages, arranged side by side. Because, for example, a fold former 09; 19 for a specific format has the width of two print pages, such as, for example, vertical newspaper pages or horizontal tabloid pages, a single-width former assembly 07; 17 corresponds to the width of two print pages and has only one fold former 09; 19, viewed transversely to the direction of web travel, a double-width former assembly 07; 17 has two fold formers 09; 19 side by side, a triple-width former assembly 07; 17 has three fold formers 09; 19 and an n-width former assembly 07; 17 has n fold formers 09; 19, side by side.
In the example of
In
In
a) through c) show, by way of example, an operating situation involving hybrid production on the former assembly 07 of the first printing press 01 of the first type. A partial web 21.1 from the second printing press 31, which partial web 21.1 is cut lengthwise before reaching the turning device 10, is turned 90° over a guide element 32, such as, for example, a turning bar 32 of the turning device 10, and is directed into the alignment of a partial web 11.1 from the first printing press 01. To accomplish this, the superstructure 05 has the turning devices 10 and at least the one group of guide rollers 13. The turning device 10, such as, for example, a turning deck 10, has a group of a plurality of turning bars 32, which are arranged one above another, positioned in different planes. Advantageously, at least some of the group of turning bars 32 correspond, in terms of the position of their planes, with at least two guide rollers 13 of the group of guide rollers 13, in such a way that the web 21 or the partial web 21.1, which is optionally fed over one of three turning bars 32, which are arranged one above another, can come to lie either above, as seen in
In another configuration, for each partial web 21.1; 21.2 from the second printing press 31 that is to be turned, a single turning bar 32 can be provided in the turning device 10, with the height of this single turning bar 32 bar corresponding to four rollers from the group of guide rollers 13 in such a way that, depending upon the guidance of two webs 11.1; 11.2, 11.3 that have been printed in the first printing presses 01, these alternatively both come to lie above the turned web, both lie below or one lies below and one lies above the turned web 21.
In
In the example of
In
In
The first printing press 01 can also be configured such that the first printing units 02 can optionally be operated at n-width of the larger format and n+1-width of the smaller format, as, for example, in
In the configuration of the former assembly 07b of
In the configuration of the former assembly 07c shown in
In the configuration of the former assembly 17b, as seen in
In a configuration of the former assembly 17 that is not shown, and according to the principle of
In
In
In addition to the above-described X-configuration, a configuration, as is represented in
In the T-configuration, as shown, for example, in
In addition, turning bars 32 in the turning devices 10, or a second turning device 10, and a guide roller or a group of guide rollers 20 can also be provided such that, through these guide rollers 20 and/or turning devices 10, one or more webs 11 from the first machine line 30 or the first printing press 01 can be optionally turned 90° and can be fed to the former assembly 17 of the second machine line 25 or printing press 31, rather than being fed to the former assembly 07 which is assigned in straight-line travel. Thus, webs 11; 21 from the machine lines 30 and 25 can again be combined on a former assembly 07; 17 to form a hybrid product.
In the preferred embodiment of
Roll changers 12, for use in supplying the printing units 02 with the webs 11, which webs 11 are not shown in
The printing units 03 of the second printing press 31 are situated laterally, as discussed above, to the side of the machine alignment M1 of the first printing press, and orthogonally thereto. A roll changer 26 for supplying the printing units 03 with the webs 21 is also provided for the printing unit 03 and is situated, for example, in a plane below the plane that contains the printing units 03. The printing unit(s) 03 of the second printing press 31 are, for example, single-width in structure and can be advantageously configured as heatset printing units 03. In this case, a dryer 15, such as, for example, a hot air dryer, a UV dryer or an IR dryer, is provided in the web path. The printing units 03 of the second type can also be single circumference or double circumference in structure, based upon a newspaper page. In principle, the two printing presses 01; 31 and/or their printing units 02; 03 can differ in multiple ways as described above, with respect to process, substrate, ink type, and/or printing cylinder size.
In the area in which the two machine alignments M1; M2 intersect, the turning device 10 with at least one turning bar 32 is arranged such that in hybrid production, the direction of transport T2 of the web 21 can be brought 90° into the alignment of a partial web 11.1; 11.2, or into the alignment of a fold former 09 of the first printing press 01. Preferably, in hybrid production, the direction of transport T1 of a partial web 11.1; 11.2 can also optionally be brought 900 into the alignment of the web 21 or of the fold former 19 of the second printing press 31, via the turning device 10. The turning bar 32 is preferably structured so as to be movable in a direction along the machine alignment M2, all as seen in
In
In
In the subsequent
In
In
In
In
In
In the example depicted in
The printing units 02 of the first printing press 01 are configured, for example, as printing towers 02, each of which printing towers preferably has two stacked H-printing units. In principle, the printing towers 02 can also have two stacked satellite printing units or can have four blanket-to-blanket printing groups for use in double-sided printing.
In the present example depicted in
Roll changers 12, which are not specifically shown in
Furthermore, preferably in the web path between the printing unit 02 and the assigned former assembly 07, units of a so-called superstructure 05, such as, for example, a group of guide rollers 13, or a guide roller group 13, which are not specifically shown, can be provided, over which superstructure 05 the printed webs 11 can be fed, thereby allowing the sequence of the sections to be established on the fold former 09. If applicable, the superstructure 05 can also have additional units, such as, for example, a longitudinal cutting device and/or an additional turning devices for partial-width webs, and which are assigned to the first printing press.
As can be seen in
In the embodiment represented in
Webs 11, which are to be printed in the first printing press 01 that is preferably configured as a newspaper printing press 01, are then, for example, rolled off of the roll changer 12, which is not specifically shown here, are fed through the printing unit 02, where they are printed in a single or multicolor process, are then fed via one of the guide rollers in the guide roller group 13 to the former assembly 07, are folded lengthwise on a fold former 09 and are fed to the folder 08 for further processing. In the case of multiple-width webs 11, with a width of, for example, four or even six newspaper pages wide, these webs can be cut into partial-width webs, either directly in front of a turning device, which is not specifically shown, for the first printing press 01, such as, a turning deck, or immediately before reaching the fold former 09, by the use of a longitudinal cutting device, which also is not specifically shown. Viewed alone, the printing press 01 which is configured in this way, is therefore fully equipped having been provided with printing units 02, if applicable with a turning device, with a former assembly 07 and with a folder 08, and thus can be operated independently of another. It is equipped for the printing and, if applicable, for the further processing of the product to be chiefly produced with this printing press 01, using the units required for this purpose, such as, for example, corresponding printing units 02 and/or former assemblies 07 and/or folders 08.
At least one printing unit 03 or one machine line 25 or printing press 31 of a second type is again arranged to the side of the machine alignment M1 of the first printing press 01. The printing units 02; 03 of the first and second type are orthogonal to one another, as discussed above. In other words, the machine alignment M2 and/or the direction of passage through the dryer 15 is, for example, essentially perpendicular to the machine alignment M1. A plurality of printing units 03 or of machine lines 25 of the second type can also be assigned to the first printing press 01, and can be offset laterally, as shown in
The forme cylinder 14 of the heatset printing unit 03 preferably has an effective cylinder width, and is thus usable for printing a web 21, which effective cylinder width corresponds to at least four newspaper pages of the format to be printed on the first printing press 01, such as, for example, newspaper printing press 01.
At least one former assembly 17, with at least one fold former 19 and with one folder 18 arranged downstream from this, such as, for example, a heatset folder 18, and with the at least one former assembly 17 being different from the former assemblies 07 of the printing press 01, is assigned to one or more of the heatset printing units 03 or the heatset machine lines 25.
As has already been described in reference to previous preferred embodiments, the two machine lines 30; 25 that are perpendicular to one another, are both configured as printing presses 01; 31 for the straight-line travel of printed webs 11; 21. In other words, the former assemblies 07; 17 are preferably oriented such that material webs 11; 21 running up to the fold formers 09; 19 each have a direction of transport T1; T1′; T2, which is projected into the horizontal plane and which extends along, or parallel to, the machine alignment M1; M2 of the respective machine line 30; 25. In other words, the webs 11, that have been printed in the printing units 02, and the webs 21, that have been printed in the printing units 03, can be fed to their assigned fold formers 09; 19 in so-called straight-line travel in one operating mode.
In this configuration of the two printing units 02; 03 and/or of the two printing presses 01; 31 and/or of the two machine lines 30; 25 arranged perpendicular to one another, it is then provided that, as shown, for example, in
In this orthogonal or crossed configuration, or X-configuration, of the first and the second machine lines 30; 25, the printing unit 03 and the former assembly 17 for the second machine line 25, which are assigned in straight-line travel, are situated on different sides of the machine alignment M1 of the first machine line 30, as viewed in a horizontal projection and as seen in
In one advantageous embodiment, the heatset former assembly 17 has at least two, and preferably has three fold formers 19, which are arranged side by side in the same machine plane. The latter applies, for example, in connection with webs that are triple-width with regard to a certain print page format. The fold formers 19 each have, for example, a width that measures less than half of a maximum web width to be processed in the printing unit 03 and/or the total widths of which equal the maximum web width. The width of each fold former 19 corresponds, for example, essentially to one-third of the maximum web width of a triple-width web 21 to be processed in the second printing press 31. The maximum web width to be processed can be, for example, 54″. The outer two of the three fold formers 19 are preferably both configured to be movable transversely to the direction of transport T3; T3′ of the entering web 21. The center fold former 19 can be fixed in place in a transverse direction. The three fold formers 19 can be arranged offset from one another in a vertical direction such that they nevertheless intersect, when viewed in a horizontal direction, as discussed below. Thus, although the three fold formers 19, in terms of their operations engineering, are situated within a shared machine plane, they can nevertheless be shifted laterally, in relation to one another, without impeding one another. This is advantageous when different web widths are to be processed. The above-mentioned folder 18 is arranged downstream from the former assembly 17, and, in addition to the fold formers 19 that form a longitudinal fold, has, for example, a further, second longitudinal folding unit for use in forming a second longitudinal fold.
A web 21 that has been printed in the machine line 25, in either heatset or in coldset operation, can, for example, be rolled off of a roll changer 26, which is not specifically shown here, and can be fed through the printing unit 03, where it is printed in a single- or a multicolor process. Web 21 is then fed, in heatset operation, through the activated dryer 15, such as a hot air, a UV or an IR dryer, and, if applicable, is then fed through a cooling device, which is typically located downstream, or, in coldset operation, is fed through the deactivated dryer 15 or around that dryer in straight-line travel to the former assembly 17, is folded lengthwise over a fold former 19, and is fed to the folder 18 for further processing. In the case of multiple-width webs 21, such as, for example, of four or six print pages wide, these webs 21 can be cut into partial-width webs, either directly in front of the turning device 22, or directly before each web reaches the fold former 19, by the use of the longitudinal cutting device, not shown, and if applicable can optionally be laterally offset via a turning device that is assigned to the second printing press 31, and which is not specifically shown here. The heatset machine line 25, along with an optionally provided dedicated turning device, the former assembly 17 and the folder 18, therefore forms a separate, fully equipped second printing press 31, such as, for example, a separate telephone book or magazine printing press 31. It can be operated independently from the first printing press 01, and it is, for example, equipped for printing and, if necessary, for further processing the product that is to be chiefly produced with this printing press 31, using the units required for this, such as, for example, the respectively corresponding printing units 03 and/or the former assemblies 17 and/or the folders 18.
In a first production situation for the printing press 31 of the first type, for example, the heatset printing press 31, a magazine, telephone book, or catalog production process can, for example, be performed using this machine in pure heatset operation, and with webs 21 that are six pages wide, based upon this print page format, on the three fold formers 19. The printing formes 29 on the forme cylinders 14 are then equipped, as discussed previously, with the six print images of this format, which are located side by side.
In another production situation, the forme cylinders 14 of the second printing unit 03 can also optionally be loaded with one or more printing formes 28, which printing formes 28 bear print images in a newspaper format, and especially in the newspaper format to be printed in the first printing press 01, or print images in the tabloid format to be printed in the first printing press 01. For example, four print pages of the corresponding format can be arranged side by side. Preferably, this production situation for the machine line 25 of the second type can occur optionally in heatset or in coldset operation, taking into account the corresponding ink and/or the corresponding paper and/or the activity or the web path with respect to the dryer 15, as has been discussed above.
To enable a combined production process, and specifically a so-called hybrid production process, as in the above-mentioned examples, at least one web 21 that has been printed in a second printing unit 03, and especially in the heatset machine lines 25, can be transferred to the first printing press 01, and can be fed, together with at least one web 11 that has been printed in a first printing unit 02, over a fold former 09 of the former assembly 07.
Because the machine line 25 and/or its machine alignment M2 is oriented transversely to the printing press 01 and/or its machine alignment M1, a web 21 coming from the machine line 25, as in the above-mentioned preferred embodiments, can, in a simple manner, be placed selectively over, between or under web sections of webs 11.1; 11.2; 11.3 that have been printed in the printing press 01, from the side, at a wide range of levels, in the superstructure 05. With the angled arrangement of the printing units 02; 03 or their machine alignments M1; M2 in relation to one another, the webs 21 that have been printed in the machine line 25 can be introduced, such as, for example, as heatset webs 21, in hybrid production at any level in the superstructure 05, and can thereby be inserted, without significant turning and combining operations, into the finished hybrid product.
To accomplish this, the first printing press 01, and especially in its superstructure 05, has at least one turning bar 32 at the level of the machine alignment M2 of the second machine line 25 and/or has one printing press 31, with which a web 21 or a partial web 21.1; 21.2, which is entering from the direction of the machine alignment M2, can be turned in a direction of transport along the machine alignment M1 and/or the direction of transport T1; T2′. The at least one turning bar 32 is essentially inclined 450 relative to the direction of transport T2 of the incoming web 21 and/or the machine alignment M2.
In the represented embodiment of
If the machine lines 25 can be optionally operated in heatset operation or in coldset operation, then in one production situation, such as, for example, during newspaper production involving a large number of pages, one or more of the machine lines 25, such as the one, for example, equipped with printing formes having newspaper print pages, can be operated in coldset mode, and can insert “normal” sections of newspaper pages printed in coldset into the newspaper product produced on the coldset folder 08.
In another production situation, in which a hybrid product, which is comprised of newspaper pages and of at least one high-quality printed page, is to be produced, one or more of the machine lines 25 can be operated in heatset mode, and the heatsetprinted partial webs 21.1; 21.2 can be combined with the partial webs 11.1; 11.2; 11.3 printed on the newspaper printing press 01, via the turning device 10.
For all of the preceding preferred embodiments of the printing press system in accordance with the present invention, a further improvement provides for at least one of the printing units 02; 03 and/or a former assembly 07; 17 of the first or second printing press 01; 31 to be configured to produce so-called “pop-up” products, as is also depicted in
To accomplish this result, in a first configuration, a former assembly 07 for the first printing press 01 can be equipped with two groups of fold formers 09; 09′, the effective widths of which differ, and which are therefore configured for use in folding partial webs 11.1; 11.2; 11.3 of different widths. In a further improvement, fold formers 09; 09′ of at least one of the two former groups can be configured to be movable transversely to the web run-up direction, and thus transversely to the direction of web transport T1, and optionally to be adjustable in terms of their effective width via the provision of removable and/or fold-away insertion pieces. Depending upon each partial web width, the two adjacent fold formers 09; 09′ are then brought into a position relative to one another such that a distance a09; a09′ between the former peaks, as depicted in
In another variation of the present invention, the fold formers 09; 09′ with the larger, maximum necessary effective width, for example corresponding to the representation of
What has been stated in the individual preferred embodiments regarding the components of the individual units, such as printing units 02; 03, former assemblies 07; 17, turning device 10; 42 and/or folders 08; 18, and the like, is to be transferred, where appropriate and where possible, to the respective other preferred embodiments, and vice versa. The teaching regarding comparable configurations of the two printing presses 01; 31 and/or printing units 02; 03 are also to be applied to one another, as in order to avoid repetition, not all details have been repeated in reference to each example.
While preferred embodiments of a printing machine system, in accordance with the present invention, have been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes in, for example, the drives for the various press components, the structure of the roll changers, and the like could be made without departing from the true spirit and scope of the present invention, which is accordingly to be limited only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 020 322 | May 2006 | DE | national |
This application is the U.S. national phase, under 35 USC 371, of PCT/EP2006/065426, filed Aug. 17, 2006; published as WO 2007/071460 A1 on Jun. 28, 2007 and claiming priority to U.S. 60/750,357, filed Dec. 15, 2005 and to DE 10 2006 020 322.4, filed May 3, 2006, the disclosures of which are expressly incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/065426 | 8/17/2006 | WO | 00 | 6/11/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/071460 | 6/28/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1240011 | Bechman | Sep 1917 | A |
1240014 | Bechman | Sep 1917 | A |
1972506 | Wood | Sep 1934 | A |
2920887 | Keightley | Jan 1960 | A |
5117753 | Mamberer | Jun 1992 | A |
5676056 | Stein et al. | Oct 1997 | A |
6892635 | Herbert | May 2005 | B2 |
6899026 | Weis | May 2005 | B2 |
7159514 | Eckert et al. | Jan 2007 | B2 |
7845276 | Eckert et al. | Dec 2010 | B2 |
20060187472 | Elschner et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
40 12 396 | Oct 1991 | DE |
102 38 010 | Mar 2004 | DE |
20 2005 010 058 | Nov 2005 | DE |
0 741 020 | Nov 1996 | EP |
1 683 634 | Jul 2006 | EP |
WO 03031182 | Apr 2003 | WO |
WO 2004024448 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090064880 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60750357 | Dec 2005 | US |