The present invention relates to a printing material container, and specifically relates to the technique to prevent the accidental contacts between terminals disposed on a printing material container.
A ink cartridge attachable to a printing apparatus, for example, ink jet printer may have various functions, for example, ink information holding function or remaining ink level detection function. In this case, the ink cartridge may have to have electrical interconnection with the printing apparatus. For example, there is a case that terminals are disposed on both ink cartridge side and printing apparatus side, and when the ink cartridge is attached to the printing apparatus, terminals of both sides contact each other. And the structure of ink cartridge to prevent damage by shorting to data storage medium mounted on the ink cartridge is known, wherein the shorting is caused by adhesion of ink droplet to terminals to connect the data storage medium to the printing apparatus.
However, in above technology, in the case that at least two kinds of terminals to which different voltages are respectively applied are disposed on the ink cartridge, there is a risk that the shorting between the terminals to which different voltages are applied occurs and the occurred shouting give the damage to the ink cartridge or the printing apparatus. The shorting between the terminals to which different voltages are applied is, for example, the accidental contact between terminal to which high voltage is applied and terminal to which low voltage is applied. Such a problem is not only with ink cartridge but also with other container contains other printing material, for example, toner.
An object of the present invention, which is intended to address the problem noted above, is to prevent the shorting between the terminals to which different voltages are applied in printing material container on which at least two kinds of terminals to which different voltages are respectively applied are disposed.
To achieve the above object, a first aspect of the invention provides a printing material container attachable to a printing apparatus by being inserted in a predetermined insertion direction. The printing material container pertaining to the first aspect of the invention is characterized by comprising:
a body that contains a printing material;
a plurality of low voltage circuit terminals arranged so as to form a first row on the body, wherein the first row is orthogonal to the insertion direction, wherein the plurality of low voltage circuit terminals respectively contact a plurality of terminals of a low voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus; and
a plurality of high voltage circuit terminals arranged so as to form a second row on the body, wherein the second row is orthogonal to the insertion direction and are arranged further towards the insertion direction than the first row, wherein the plurality of high voltage circuit terminals respectively contact a plurality of terminals of a high voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus.
According to the printing material container pertaining to the first aspect of the invention, the low voltage circuit terminals are arranged so as to form the first row orthogonal to the insertion direction, the high voltage circuit terminals are arranged so as to form the second row orthogonal to the insertion direction, and the high voltage circuit terminals are arranged further towards the insertion direction side than the first row. In the result, during the motion of insertion, during the motion of release, or in imperfect insertion state, even if the container moves from fixing point in backward direction of the insertion direction, the low voltage circuit terminals may not accidentally contact the terminals of a high voltage circuit, because the low voltage circuit terminals of the container back away from the terminals of a high voltage circuit of the printing apparatus. Therefore, it is possible to prevent the shorting between the terminals to which different voltages are applied.
A second aspect of the invention provides a printing material container attachable to a printing apparatus by being inserted in a predetermined insertion direction. The printing material container pertaining to the second aspect of the invention is characterized by comprising:
a body that contains a printing material;
a plurality of low voltage circuit terminals arranged so as to form a first row on the body, wherein the first row is parallel to the insertion direction, wherein the plurality of low voltage circuit terminals respectively contact a plurality of terminals of a low voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus; and
a plurality of high voltage circuit terminals arranged so as to form a second row on the body, wherein the second row is parallel to the insertion direction and is different from first row, wherein the plurality of high voltage circuit terminals respectively contact a plurality of terminals of a high voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus.
According to the printing material container pertaining to the second aspect of the invention, low voltage circuit terminals are arranged so as to form the first row parallel to the insertion direction, the high voltage circuit terminals are arranged so as to form the second row parallel to the insertion direction, the second low being different from the first row. In the result, during the motion of insertion, during the motion of release, or in imperfect insertion state, even if the container moves from fixing point in backward direction of the insertion direction, the high voltage circuit terminal of the container or the terminal for high voltage circuit of the printing apparatus may not accidentally contact the low voltage circuit terminal of the container or the terminal of a low voltage circuit of the printing apparatus. Therefore, it is possible to prevent the shorting between the terminals to which different voltages are applied.
A third aspect of the invention provides a printing material container attachable to a printing apparatus by being inserted in a predetermined insertion direction. The printing material container pertaining to the third aspect of the invention is characterized by comprising:
a body that contains a printing material;
a plurality of low voltage circuit terminals arranged so as to form a first row on the body, wherein the first row is parallel to the insertion direction, wherein the plurality of low voltage circuit terminals respectively contact a plurality of terminals of a low voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus; and
a plurality of high voltage circuit terminals arranged on the body, wherein the plurality of high voltage circuit terminals respectively contact a plurality of terminals of a high voltage circuit provided with the printing apparatus when the printing material container is attached to the printing apparatus, wherein the plurality of high voltage circuit terminals include one earth terminal, wherein the one earth terminal is arranged on the first row and is arranged further towards the insertion direction side than the plurality of low voltage circuit terminals, wherein a other terminal among the plurality of high voltage circuit terminals except the one earth terminal is arranged so as to form a second row that is parallel to the insertion direction and is different from first row, wherein the one earth terminal is connected with the other terminal forming the second row via a capacitor.
According to the printing material container pertaining to the third aspect of the invention, during the motion of insertion, during the motion of release, or in imperfect insertion state, when the container moves from fixing point in backward direction of the insertion direction, the one earth terminal may contact the terminal for the low voltage circuit of the printing apparatus and, via the one earth terminal, the high voltage may be instantaneously applied from the high voltage circuit terminal to the terminal for low voltage circuit of the printing apparatus. But, because there is the capacitor between the earth terminal and the high voltage circuit terminal and the capacitor is charging, the applied voltage to the terminal for low voltage circuit of the printing apparatus may be rapidly decreased. Therefore it is possible to prevent the damage to the law voltage circuit by such a contact.
A fourth aspect of the invention provides a printing apparatus. The printing apparatus pertaining to the fourth aspect of the invention is characterized by comprising a printing material container holder having terminals respectively corresponding to the plurality of low voltage terminals and the plurality of high voltage terminals provided with a printing material container according to any of claim 1 to claim 9.
According to the printing material container pertaining to the third aspect of the invention, the similar functions and effects as the printing material containers of the first, second and third aspects of the invention can be obtained. In addition, the printing apparatus of the fourth aspect of the invention may also be actualized in a variety of aspects in a way similar to the printing material containers of the first, second and third aspects of the invention.
Following, the image processing device of the present invention is described based on the embodiments with reference to drawings.
Construction of Printing Apparatus and Ink Cartridge 70:
The sub-scanning mechanism for feeding the paper P includes gear train 23 to transmit rotation of the paper feed motor 22 to the platen 26. And the main scanning mechanism for reciprocating the carriage 30 has a sliding shaft 34 that is arranged in parallel with the axis of the platen 26 to hold the carriage 30 in a slidable manner, a pulley 38 that supports an endless drive belt 36 spanned between the carriage motor 24 and the pulley 38, and a position sensor 39 that detects the position of the origin of the carriage 30.
The cartridge holder 62 includes guide 65 and same number of ink supply port 66 and terminal board 100 as the number of attachable ink cartridge. The guide 65 has a function to allow the ink cartridge 70 inserted in predetermined insertion direction R and not to allow it in other direction. And the ink cartridge 70 is inserted in predetermined insertion direction R and the position in which the bottom surface 73 of the ink cartridge 70 touches locating face 64 is the fixing position of the ink cartridge 70.
The ink supply port 66 is inserted into ink supply opening 74 described below of the ink cartridge 70 to supply the ink to the printing head 68, when the ink cartridge 70 is attached to the cartridge holder 62. On the terminal board 100, terminals corresponding to some kinds of terminals arranged on circuit board 110 described below of the ink cartridge 70 are disposed.
Next, the ink cartridge 70 is described. As shown in
A piezoelectric actuator is used for the sensor 72 in this embodiment. It is possible to detect the ink remaining level by applying the voltage to the piezoelectric actuator to oscillate the piezoelectric element due to inverse piezoelectric effect and measuring the oscillation frequency of the voltage caused by piezoelectric effect due to residual oscillation thereof. Namely, this oscillation frequency bespeaks characteristic frequency of the surrounding structure (the body 71 and ink) oscillated together with piezoelectric element, and the characteristic frequency changes depending on the ink remaining level. So it is possible to detect the ink remaining level by measuring the oscillation frequency.
The circuit board 110 is mounted on the outer surface parallel to an insertion direction R of the body 71 (direction shown by an arrow R in
In the structure of the first embodiment, as shown in
The cartridge processing circuit 61 is described briefly. As shown in
The cartridge detection circuit 611 is a lower voltage circuit that is connected with a power supply VCC3.3 and is actuated at a relatively low voltage of 3.3 V. The cartridge detection circuit 611 is linked with the three terminals 101 to 103 (hereafter referred to as cartridge detection circuit terminals). Among the three cartridge detection circuit terminals 101 to 103, the terminals 101 and 103 are connected to the power supply of 3.3 V via a pull-up resistance (not shown) (hereafter referred to as cartridge detection terminals), whereas the terminal 102 is grounded (hereafter referred to as lower-voltage ground terminal). The cartridge detection circuit 611 detects the conduction state of the cartridge detection terminals 101 and 103 with the lower-voltage ground terminal 102 for the specification of attachment or detachment of the ink cartridge 70 and for identification of the type of the ink cartridge 70.
The sensor driving circuit 612 is a higher voltage circuit that is connected with a power supply VCC45 and is actuated at a relatively high voltage of 45 V. The sensor driving circuit 612 is linked with the two terminals 104 and 105 (hereafter referred to as sensor driving circuit terminals). Out of the two sensor driving circuit terminals 104 and 105, the terminal 104 has application of a voltage of 45 V at the maximum by the sensor driving circuit 612 (hereafter referred to as sensor input-output terminal), whereas the other terminal 105 is grounded (hereafter referred to as higher-voltage ground terminal). The sensor driving circuit 612 applies a voltage to the sensor 72 of the ink cartridge 70 via the sensor input-output terminal 104, while detecting a voltage generated by the residual vibration of the sensor 72 via the sensor input-output terminal 104.
In the specification hereof, the terminology ‘lower voltage circuit’ and ‘higher voltage circuit’ do not imply the absolute values of voltages but represent one circuit actuated at a preset voltage and another circuit actuated at a higher voltage relative to the preset voltage, like the cartridge detection circuit 611 and the sensor driving circuit 612 described above.
The terminal arrays are described in detail with reference to
The description first regards the terminals on the terminal board 100 of the cartridge holder 62. Among the five terminals on the terminal board 100, the three cartridge detection circuit terminals 101 to 103 are aligned on a line (line A1) perpendicular to the insertion direction R as shown by the two-dot chain line in
The line B1 of the sensor driving circuit terminals 104 and 105 is located after the line A1 of the cartridge detection circuit terminals 101 to 103 in the insertion direction R. In this embodiment, the insertion direction R of the ink cartridge 70 is downward as shown in
The description then regards the terminal arrays on the circuit board 110 of the ink cartridge 70. There are three different structures 110a to 110c of the circuit board 110 as shown in
The circuit board 110a has three terminals 111 to 113 (hereafter referred to as lower voltage circuit terminals) that respectively correspond to the three terminals 101 to 103 on the terminal board 100 connecting with the cartridge detection circuit 611 (lower voltage circuit), and two terminals 114 and 115 (hereafter referred to as higher voltage circuit terminals) that respectively correspond to the two terminals 104 and 105 on the terminal board 100 connecting with the sensor driving circuit 612 (higher voltage circuit).
Like the three cartridge detection circuit terminals 101 to 103 on the terminal board 100, the three lower voltage circuit terminals 111 to 113 on the circuit board 110a are aligned on a line (line A2) perpendicular to the insertion direction R as shown by the two-dot chain line in
Like the two sensor driving circuit terminals 104 and 105 on the terminal board 100, the two higher voltage circuit terminals 114 and 115 on the circuit board 110a are aligned on a line (line B2) different from the line A2 and perpendicular to the insertion direction R as shown by the broken line in
In the specification hereof, among the three lower voltage circuit terminals 111 to 113 on the circuit board 110, the terminals 111 and 113 corresponding to the cartridge detection terminals 101 and 103 on the terminal board 100 are called the cartridge detection terminals, while the terminal 112 corresponding to the lower-voltage ground terminal 102 on the terminal board 100 is called the lower-voltage ground terminal. Out of the two higher voltage circuit terminals 114 and 115 on the circuit board 110, the terminal 114 corresponding to the sensor input-output terminal 104 on the terminal board 100 is called the sensor input-output terminal, while the terminal 115 corresponding to the higher-voltage ground terminal 105 on the terminal board 100 is called the higher-voltage ground terminal.
A length ‘h’ of the higher voltage circuit terminals 114 and 115 in the insertion direction R on the circuit board 110a (see
The circuit board 110b does not have one 111 of the cartridge detection terminals, whereas the circuit board 110c does not have the other 113 of the cartridge detection terminals 113. Otherwise the circuit boards 110b and 110c have the similar structures to that of the circuit board 110a described above.
In the ink cartridge 70 of the first embodiment, the lower voltage circuit terminals 111 to 113 are aligned on the line A2, and the higher voltage circuit terminals 114 and 115 are aligned on the line B2 different from the line A2. The line B2 of the higher voltage circuit terminals 114 and 115 is located after the line A2 of the lower voltage circuit terminals 111 to 113 in the insertion direction R. While the position of the ink cartridge 70 is deviated from the proper attachment position in the direction opposite to the insertion direction R, for example, in the course of attachment, in the course of detachment, or in the event of improper attachment (for example, when the ink cartridge 70 is positioned above the proper attachment position), the lower voltage circuit terminals 111 to 113 of the ink cartridge 70 are farther from the sensor driving circuit terminals 104 and 105 of the printing apparatus 20. The lower voltage circuit terminals 111 to 113 (the cartridge detection terminals and the lower-voltage ground terminal) of the ink cartridge 70 accordingly do not come into contact with the sensor driving circuit (higher voltage circuit) terminals 104 and 105 (the sensor input-output terminal and the higher-voltage ground terminal) of the printing apparatus 20. The ink cartridge 70 is inserted in the insertion direction R to a preset end position to be properly attached. The attachment position of the ink cartridge 70 is thus not deviated farther in the insertion direction R. This arrangement effectively prevents a short circuit between the terminals of different voltages, thus protecting the ink cartridge 70 and the printing apparatus 20 from potential damages induced by the short circuit.
The length ‘h’ of the higher voltage circuit terminals 114 and 115 in the insertion direction R of the ink cartridge 70 is shorter than the inter-terminal distance ‘t’ between the corresponding sensor driving circuit terminals 104 and 105 and the cartridge detection circuit terminals 101 to 103 (located on the upper line in the insertion direction R) of the printing apparatus 20. While the position of the ink cartridge 70 is deviated from the proper attachment position in the direction opposite to the insertion direction R, for example, in the course of attachment, in the course of detachment, or in the event of improper attachment, the sensor driving circuit (higher voltage circuit) terminals 104 and 105 and the cartridge detection circuit (lower voltage circuit) terminals 101 to 103 of the printing apparatus 20 are not interconnected (bridged) to cause a short circuit by the higher voltage circuit terminals 114 and 115 of the ink cartridge 70. This arrangement ensures effective prevention of a short circuit between the terminals of different voltages.
In the event of ink leakage, ink is often leaked in the vertical direction of the ink cartridge 70, that is, from the upper cartridge cover or from the lower ink supply opening, to cause ink adhesion to the terminals on the outside of the ink cartridge 70. The ink cartridge 70 has the lower voltage circuit terminals located in the upper portion and the higher voltage circuit terminals located in the lower portion. The vertical ink leakage thus preferentially causes a short circuit between the terminals of an identical voltage and desirably prevents a short circuit between the terminals of different voltages, which has the higher potential for the severer damage.
In the printing apparatus 20 of this embodiment, the sensor driving circuit terminals 104 and 105 are located in the lower portion of the cartridge holder 62. Any foreign substance (for example, a paperclip) that may cause a short circuit between terminals hardly reaches the position of contact with the sensor driving circuit terminals 104 and 105. This arrangement effectively prevents a short circuit between the sensor driving circuit (higher voltage circuit) terminals 104 and 105 and the other terminals, which has the higher potential for the severer damage.
This modification has the following advantage in addition to the advantages of the embodiment using the separate lower voltage circuit terminals. The structure of the modified example does not require the wiring for connection of the individual terminals and reduces the total number of parts of the ink cartridge 70.
A second embodiment of the invention is described below with reference to
The primary difference from the first embodiment is the terminal arrays on the terminal board 100 and the circuit board 110. The structure of the second embodiment is otherwise similar to that of the first embodiment and is thus not specifically described here. The following description regards only the terminal arrays.
In the structure of the second embodiment, the three cartridge detection circuit terminals 101 to 103 on the terminal board 100 are aligned on a line (line C1) parallel to the insertion direction R as shown by the two-dot chain line in
The terminal array on the circuit board 110 is determined corresponding to the terminal array on the terminal board 100. The two or the three lower voltage circuit terminals 111 to 113 on the circuit board 110 are aligned on a line (line C2) parallel to the insertion direction R as shown by the two-dot chain line in
c) shows the ink cartridge 70 set in the proper attachment position in the second embodiment. In the proper attachment position of
In the ink cartridge 70 of the second embodiment, the lower voltage circuit terminals 111 to 113 are aligned on the line C2, and the higher voltage circuit terminals 114 and 115 are aligned on the line D2 different from the line C2. While the position of the ink cartridge 70 is deviated from the proper attachment position in the direction opposite to the insertion direction R, for example, in the course of attachment, in the course of detachment, or in the event of improper attachment, there is only a contact between the terminals of an identical voltage aligned in parallel to the insertion direction R. There is accordingly no accidental contact of the higher voltage circuit terminals 114 and 115 or the sensor driving circuit terminals 104 and 105 with the lower voltage circuit terminals 111 to 113 or with the cartridge detection circuit terminals 101 to 103. This arrangement effectively prevents a short circuit between the terminals of different voltages.
A third embodiment of the invention is described below with reference to
The primary difference from the first embodiment is three higher voltage circuit terminals and two lower voltage circuit terminals on both the terminal board 100 and the circuit board 110 and a corresponding change of the electrical structure (wiring).
As shown in
There are three different structures 110a, 110b, and 110c of the circuit board 110 corresponding to the different arrangements of the higher voltage circuit terminals. The circuit board 110a has three higher voltage circuit terminals, that is, two sensor input-output terminals 114 and 119 and one higher-voltage ground terminal 115. The circuit board 110b does not have one 119 of the two sensor input-output terminals, whereas the circuit board 110c does not have the other 114 of the two sensor input-output terminals. Otherwise the circuit boards 110b and 110c have the similar structures to that of the circuit board 110a described above.
As shown in
The third embodiment has the similar fundamental structure to that of the first embodiment with only the difference in numbers of the respective terminals and accordingly exerts the similar functions and effects to those of the first embodiment.
A fourth embodiment of the invention is described below with reference to
The numbers of the respective terminals on and the electrical structure of the terminal board 100 and the circuit board 110 in the fourth embodiment are similar to those of the third embodiment. The primary difference from the third embodiment is the terminal arrays.
In the structure of the fourth embodiment, the two cartridge detection circuit terminals 101 and 102 on the terminal board 100 are aligned on a line (line C1 like the second embodiment) parallel to the insertion direction R as shown by the two-dot chain line in
In the structure of the fourth embodiment, while the position of the ink cartridge 70 is deviated from the proper attachment position in the direction opposite to the insertion direction R, for example, in the course of attachment, in the course of detachment, or in the event of improper attachment, the higher-voltage ground terminal 115 of the ink cartridge 70 may come into contact with one of the cartridge detection circuit terminals (for example, the terminal 101) of the printing apparatus 20. In this event, a high voltage may temporarily be applied from the sensor input-output terminal 114 or 119 connecting with the higher-voltage ground terminal 115 to the cartridge detection circuit terminal of the printing apparatus 20 in contact with the higher-voltage ground terminal 115. This event is described in detail below.
c) shows the positional relation between the terminal board 100 and the circuit board 110 in the event of deviation of the ink cartridge 70 from the proper attachment position in the direction opposite to the insertion direction R in the fourth embodiment. In this illustrated example, the higher-voltage ground terminal 115 of the ink cartridge 70 is accidentally in contact with the cartridge detection circuit terminal 101 of the printing apparatus 20. The sensor input-output terminal 104 of the printing apparatus 20 that may have application of a high voltage of 45 V at the maximum is accidentally in contact with the sensor input-output terminal 119 of the ink cartridge 70. When the sensor driving circuit 612 applies a high voltage to the sensor input-output terminal 104, the high voltage is applied to the cartridge detection circuit terminal 101 via the path of the sensor input-output terminal 104—the sensor input-output terminal 119—the higher-voltage ground terminal 115—the cartridge detection circuit terminal 101.
As shown in
The sensor 72 provided for measuring the remaining quantity of ink is also used as the capacitor to have the function of preventing or at least relieving the potential damage of the circuit structure. This structure desirably prevents or at least relieves the potential damage of the lower voltage circuit without increasing the total number of parts.
The positions of the higher voltage circuit terminals or the positions of the lower voltage circuit terminals may be exchanged arbitrarily, except the positions of the higher-voltage ground terminals 105 and 115 in the fourth embodiment and the positions of the lower-voltage ground terminals 102 and 112 in the first embodiment. Such positional exchange does not affect the functions and the effects of the present invention described above.
Like the modified example of the first embodiment, the multiple lower voltage circuit terminals on the circuit board 110 of the ink cartridge 70 in the second through the fourth embodiments may be integrated to one flat plate terminal. Such modification advantageously reduces the total number of parts like the modified example of the first embodiment, in addition to the functions and the effects of the second through the fourth embodiments described above.
The above embodiments regard application of the present invention to the ink cartridge 70 and to the printing apparatus 20 with the corresponding attachment structure. The technique of the invention is, however, not restricted to the ink cartridge but may be applied to a container of another printing material, for example, a toner cartridge, and to a printing apparatus with a corresponding attachment structure.
While the present invention has been described on the basis of the embodiment and variations, these embodiment and variations of the invention described herein are merely intended to facilitate understanding of the invention, and implies no limitation thereof. Various modifications and improvements of the invention are possible without departing from the spirit and scope thereof as recited in the appended claims, and these will naturally be included as equivalents in the invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-253788 | Sep 2004 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2005/016205 | 8/30/2005 | WO | 00 | 6/25/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/025578 | 3/9/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5363134 | Barbehenn et al. | Nov 1994 | A |
5610635 | Murray et al. | Mar 1997 | A |
5711619 | Kaneko et al. | Jan 1998 | A |
6000773 | Murray et al. | Dec 1999 | A |
6039428 | Juve | Mar 2000 | A |
6536871 | Haddick et al. | Mar 2003 | B1 |
6550902 | Shinada et al. | Apr 2003 | B2 |
6729184 | Tsukada et al. | May 2004 | B2 |
7219985 | Shinada et al. | May 2007 | B2 |
20020167574 | Shinada et al. | Nov 2002 | A1 |
20020171700 | Shinada et al. | Nov 2002 | A1 |
20020180823 | Shinada et al. | Dec 2002 | A1 |
20030043216 | Usui et al. | Mar 2003 | A1 |
20030058296 | Shinada et al. | Mar 2003 | A1 |
20030085969 | Shinada et al. | May 2003 | A1 |
20040155913 | Kosugi et al. | Aug 2004 | A1 |
20050195255 | Shinada et al. | Sep 2005 | A1 |
20050270315 | Yamamoto | Dec 2005 | A1 |
20060033790 | Shinada et al. | Feb 2006 | A1 |
20060119677 | Shinada et al. | Jun 2006 | A1 |
20060203050 | Shinada et al. | Sep 2006 | A1 |
20070126770 | Asauchi | Jun 2007 | A1 |
20070149044 | Asauchi | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
0 412 459 | Feb 1991 | EP |
0 997 297 | May 2000 | EP |
1 114 726 | Jul 2001 | EP |
1 188 567 | Mar 2002 | EP |
1 219 437 | Jul 2002 | EP |
1 279 503 | Jan 2003 | EP |
1 281 523 | Feb 2003 | EP |
0 805 028 | Jul 2003 | EP |
1 462 262 | Sep 2004 | EP |
1 598 198 | Nov 2005 | EP |
1 792 733 | Jun 2007 | EP |
2 369 801 | Jun 2002 | GB |
2 424 623 | Oct 2006 | GB |
06-320818 | Nov 1994 | JP |
09 320750 | Dec 1997 | JP |
10-086357 | Apr 1998 | JP |
11-312554 | Nov 1999 | JP |
2001-147146 | May 2001 | JP |
2002-154222 | May 2002 | JP |
2003-103796 | Apr 2003 | JP |
2003-152297 | May 2003 | JP |
2004-050573 | Feb 2004 | JP |
2005-343037 | Dec 2005 | JP |
2006-100398 | Apr 2006 | JP |
9855324 | Dec 1998 | WO |
2006025578 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080259135 A1 | Oct 2008 | US |