1. Technical Field
The present invention relates to a printing method and a printer.
2. Related Art
There have been widely adopted a method of applying a functional fluid using an inkjet process of ejecting the functional fluid as droplets, and then solidifying the functional fluid thus applied to thereby form a film. Further, as the functional fluid there are used a variety of fluid like substances such as a fluid including dyes or pigments and having a function of coloring or a fluid including metal particles and having a function of forming metal wiring.
JP-A-2004-283635 discloses a droplet ejection device for applying a functional fluid to a substrate using an inkjet process. The droplet ejection device is provided with a stage for moving the substrate and a carriage for moving a droplet ejection head. The droplet ejection head is provided with nozzles for ejecting droplets. The moving directions of the stage and the carriage are perpendicular to each other. Further, when the droplet ejection head is located at a place opposed to a place to be coated with the functional fluid, the droplets are ejected. Further, by landing the functional fluid at predetermined positions, the substrate is printed with a predetermined pattern.
However, in the related art described above, there exists the following problem.
In some cases the pattern printed by ejecting the droplets on the substrate breaks away from the substrate, and therefore, a technology for improving the adhesiveness of the pattern with respect to the substrate is requested.
An advantage of some aspect of the invention is to provide a printing method and a printer improving the adhesiveness of the printed pattern.
An aspect of the invention is directed to a printing method including preprocessing a substrate by irradiating the substrate in a heated state with an activation light beam, and printing, after the preprocessing, a predetermined pattern on the substrate by ejecting a droplet to the substrate.
Therefore, according to the printing method of this aspect of the invention, the surface of the substrate can be reformulated by irradiating the substrate with the activation light beam such as an ultraviolet ray in the preprocessing, and at the same time, the adhesiveness of the predetermined pattern printed on the substrate in the printing with respect to the substrate can be improved by eliminating the organic substances on the surface of the substrate.
Further, in the preprocessing of the above aspect of the invention, a procedure of heating the substrate at a temperature equal to or lower than the allowable temperature limit of the substrate can preferably adopted. In this case, it is preferable to heat the substrate at a temperature in a range of 150° C. through 200° C. from the viewpoint of reformulating the surface of the substrate with a predetermined characteristic.
Thus, according to this aspect of the invention, it becomes possible to improve the adhesiveness of the predetermined pattern printed on the substrate with respect to the substrate without damaging the substrate.
The aspect of the invention may preferably be configured such that the droplet to be ejected to the substrate is a droplet of a fluid curing with the activation light beam.
Thus, according to this configuration, both of the improvement in the adhesiveness of the print pattern to the substrate and the curing of the droplet ejected to the substrate can be performed using the same light source, which can make a contribution to downsizing and price reduction of the device.
The aspect of the invention may preferably be configured such that the activation light beam is an ultraviolet ray.
Thus, according to this configuration, since there is adopted the configuration of emitting the ultraviolet ray using, for example, the low-pressure mercury vapor lamp, the reformulation process of the substrate can be performed at low voltage, and at the same time, the printing can efficiently be performed using the heat generated by the irradiation of the ultraviolet ray.
In the printing, in the case of printing the predetermined pattern on the semiconductor device disposed on the substrate, the print pattern representing the attribute information of the semiconductor device can be deposited with a high adhesiveness.
Another aspect of the invention is directed to a printer including a preprocessing section adapted to irradiate a substrate with an activation light beam while heating the substrate, and a printing section adapted to print a predetermined pattern on the substrate by ejecting a droplet to the substrate.
Therefore, according to the printer of this aspect of the invention, the surface of the substrate can be reformulated by irradiating the substrate with the activation light beam such as an ultraviolet ray in the preprocessing section, and at the same time, the adhesiveness of the predetermined pattern printed on the substrate in the printing section with respect to the substrate can be improved by eliminating the organic substances on the surface of the substrate.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, a printing method and a printer according to an embodiment of the invention will be explained with reference to
It should be noted that the embodiment shows an aspect of the invention, but do not limit the scope of the invention, and can arbitrarily be modified within a technical concept of the invention. Further, in the drawings explained hereinafter, in order to make each constituent easy to understand, the actual structures and the structures of the drawings are made different from each other in scale size, number, and so on.
In the present embodiment, an example of the printer characteristic for the invention and the printing method of performing printing by ejecting droplets using the printer will be explained with reference to
Firstly, a semiconductor circuit board as an example of an object on which drawing is performed using the printer will be explained.
The semiconductor devices 3 are mounted on the board 2. Further, marks (print patterns, predetermined patterns) such as a company name mark 4, a model code 5, and a serial number 6 are drawn on each of the semiconductor devices 3. These marks are drawn using the printer.
As shown in
The supply section 8 is provided with a storage container in which a plurality of semiconductor circuit boards 1 is stored. Further, the supply section 8 is provided with a staging place 8a, and supplies the semiconductor circuit board 1 from the storage container to the staging place 8a.
The preprocessing section 9 has a function of reforming a surface of the semiconductor device 3 while heating the surface thereof. Due to the preprocessing section 9, the semiconductor device 3 is adjusted in the spread of the droplet ejected thereon and adhesiveness of the marks to be printed thereon. The preprocessing section 9 is provided with a first staging place 9a and a second staging place 9b, and takes in the semiconductor circuit board 1 from the first staging place 9a or the second staging place 9b to perform the reformulation of the surface of the semiconductor devices 3. Subsequently, the preprocessing section 9 moves the semiconductor circuit board 1 after performing the process thereon to the first staging place 9a or the second staging place 9b, and then makes the semiconductor circuit board 1 stand ready. The first staging place 9a and the second staging place 9b are collectively referred to as a staging place 9c. Further, the place where the preprocessing is performed in the preprocessing section 9 is referred to as a processing place 9d.
The cooling section 11 has a function of cooling the semiconductor circuit board 1 on which the heating and surface reformulation have been performed in the preprocessing section 9. The cooling section 11 has processing places 11a, 11b each for holding and cooling the semiconductor circuit board 1. The processing places 11a, 11b are collectively referred to as a processing place 11c if appropriate.
The application section 10 has a function of ejecting the droplets to and thereby drawing (printing) the marks on the semiconductor devices 3, and at the same time, solidifying or curing the marks thus drawn thereon. The application section 10 is provided with a staging place 10a, and moves the semiconductor circuit board 1 before drawing from the staging place 10a and then performs the drawing process and the curing process. Subsequently, the application section 10 moves the semiconductor circuit board 1 after drawing to the staging place 10a, and then makes the semiconductor circuit board 1 stand ready.
The storage section 12 is provided with a storage container capable of storing a plurality of semiconductor circuit board 1. Further, the storage section 12 is provided with a staging place 12a, and stores the semiconductor circuit board 1 from the staging place 12a to the storage container. The operator takes out the storage container storing the semiconductor circuit boards 1 from the printer 7.
A conveying section 13 is disposed in the central place of the printer 7. As the conveying section 13, a scalar robot provided with two arm sections is used. Further, a grip section 13a for gripping the semiconductor circuit board 1 is disposed at the tip of the arm. The staging places 8a, 9c, 10a, 11c, and 12a are located in a moving range 13b of the grip section 13a. Therefore, the grip section 13a is capable of moving the semiconductor circuit board between the staging places 8a, 9c, 10a, 11c, and 12a. The control section 14 is a device for controlling the overall operation of the printer 7, and manages the operating condition of each of the constituents of the printer 7. Further, the control section 14 outputs an instruction signal for moving the semiconductor circuit board to the conveying section 13. Thus, it is arranged that the drawing is performed on the semiconductor circuit board 1 while the semiconductor circuit board 1 sequentially passes through the constituents of the printer 7.
Hereinafter, the details of the constituents will be explained.
On the elevating plate 17, there is disposed a storage container 18 having a rectangular solid shape, and a plurality of semiconductor circuit boards 1 is stored in the storage container 18. The storage container 18 is provided with opening sections 18a in the both side faces located in the Y direction, and it is arranged that the semiconductor circuit board 1 can be taken in and out through the opening sections 18a. Inside the side faces 18b located on both sides in the X direction of the storage container 18, there are formed rails 18c each having a convex shape, and the rails 18c are disposed extending in the Y direction. The rails 18c are arranged in the Z direction at regular intervals. By inserting the semiconductor circuit boards 1 along the rails 18c from the Y direction or the −Y direction, the semiconductor circuit boards 1 are stored so as to be arranged in the Z direction.
On the Y-direction side of the base 15, there are disposed a board pullout section 22 and a staging platform 23 via a support member 21. In the place located on the Y-direction side of the storage container 18, the staging platform 23 is disposed overlapping above the board pullout section 22. The board pullout section 22 is provided with an arm 22a elongated and contracted in the Y direction, and a translation mechanism for driving the arm 22a. The translation mechanism is not particularly limited providing the mechanism moves linearly, and in the present embodiment, an air cylinder acting by the compressed air is adopted, for example. At one end of the arm 22a, there is disposed a click section 22b bent to form a roughly rectangular shape, and the tip of the click section 22b is formed in parallel to the arm 22a.
When the board pullout section 22 extends the arm 22a, the arm 22a penetrates the storage container 18. Then, the click section 22b moves to the −Y-direction side of the storage container 18. Subsequently, after the elevating device 16 moves down the semiconductor circuit board 1, the board pullout section 22 contracts the arm 22a. On this occasion, the click section 22b moves while pushing one end of the semiconductor circuit board 1.
As a result, as shown in
After the semiconductor circuit board 1 is moved by the conveying section 13 from the upper surface of the staging platform 23, the board pullout section 22 extends the arm 22a. Subsequently, the elevating device 16 moves down the storage container 18, and then the board pullout section 22 moves the semiconductor circuit board 1 from the inside of the storage container 18 to the upper surface of the staging platform 23. In a manner as described above, the supply section 8 moves the semiconductor circuit board 1 from the storage container 18 to the upper surface of the staging platform 23 one-by-one. After moving all of the semiconductor circuit boards 1 located inside the storage container 18 to the upper surface of the staging platform 23, the operator replaces the storage container 18 thus emptied with the storage container 18 with the semiconductor circuit boards 1 stored. Thus, the supply section 8 can be supplied with the semiconductor circuit boards 1.
On the upper surface of the first stage 27, there is disposed a mounting surface 27a, and the mounting surface 27a is provided with a suction type chuck mechanism. By the conveying section 13 mounting the semiconductor circuit board 1 on the mounting surface 27a and then operating the chuck mechanism, the preprocessing section 9 can fix the semiconductor circuit board 1 to the mounting surface 27a. Similarly, on the upper surface of the second stage 28, there is also disposed a mounting surface 28a, and the mounting surface 28a is provided with a suction type chuck mechanism. By the conveying section 13 mounting the semiconductor circuit board 1 on the mounting surface 28a and then operating the chuck mechanism, the preprocessing section 9 can fix the semiconductor circuit board 1 to the mounting surface 28a.
The first stage 27 incorporates a heating device 27H to thereby heat the semiconductor circuit board 1 mounted on the mounting surface 27a to predetermined temperature under the control of the control section 14. Similarly, the second stage 28 incorporates a heating device 28H to thereby heat the semiconductor circuit board 1 mounted on the mounting surface 28a to predetermined temperature under the control of the control section 14.
The location of the mounting surface 27a when the first stage 27 is located on the X-direction side corresponds to the first staging place 9a, and the location of the mounting surface 28a when the second stage 28 is located on the X-direction side corresponds to the second staging place 9b. The staging place 9c corresponding to the first staging place 9a and the second staging place 9b is located within the operation range of the grip section 13a, and the mounting surface 27a and the mounting surface 28a are exposed in the staging place 9c. Therefore, the conveying section 13 can easily mount the semiconductor circuit board 1 on the mounting surfaces 27a, 28a. After the preprocessing is performed on the semiconductor circuit board 1, the semiconductor circuit board 1 stands ready on the mounting surface 27a located at the first staging place 9a or the mounting surface 28a located at the second staging place 9b. Therefore, the grip section 13a of the conveying section 13 can move while easily gripping the semiconductor circuit board 1.
On the −X-direction side of the base 24, there is erected a support section 29 having a plate-like shape. On the X-direction side of the support section 29, a guide rail 30 extending in the Y direction is disposed on the upper side thereof. Further, in the place opposed to the guide rail 30, there is disposed a carriage 31 moving along the guide rail 30. The carriage 31 is provided with a translation mechanism, and is able to reciprocate. As the translation mechanism, a mechanism substantially the same as the translation mechanism provided to the elevating device 16 can be used, for example.
On the base 24 side of the carriage 31, there is disposed a processing section 32. As the processing section 32, there can be cited a low-pressure mercury vapor lamp, a hydrogen burner, an excimer laser, a plasma discharge section, a corona discharge section, and so on as an example. In the case of using the mercury vapor lamp, by irradiating the semiconductor circuit board 1 with ultraviolet light, the liquid-repellent property of the surface of the semiconductor circuit board 1 can be reformulated. In the case of using the hydrogen burner, the oxidized surface of the semiconductor circuit board 1 can be roughened by partial reduction of the surface, in the case of using the excimer laser, the surface of the semiconductor circuit board 1 can be roughened by partial melt-solidification of the surface thereof, and in the case of using the plasma discharge or the corona discharge, the surface of the semiconductor circuit board 1 can be roughened by mechanically grinding the surface thereof. In the present embodiment, the mercury vapor lamp is adopted, for example. The preprocessing section 9 makes the carriage 31 reciprocate while irradiating the semiconductor circuit board 1 with the ultraviolet light from the processing section 32 in the condition of heating the semiconductor circuit board 1 with the heating devices 27H, 28H. Thus, the preprocessing section 9 is arranged to be able to irradiate a large area of the processing place 9d with the ultraviolet light.
The preprocessing section 9 is entirely covered by an exterior section 33. Inside the exterior section 33, there is disposed a door section 34 capable of moving up and down. Further, as shown in
When either one of the mounting surface 27a and the mounting surface 28a is located in the staging place 9c, the conveying section 13 supplies the mounting surface 27a or the mounting surface 28a with the semiconductor circuit board 1. Subsequently, the preprocessing section 9 moves either one of the first stage 27 and the second stage 28 on which the semiconductor circuit board 1 is mounted to the processing place 9d, and then performs the preprocessing. After the preprocessing is terminated, the preprocessing section 9 moves the first stage 27 or the second stage 28 to the staging place 9c. Subsequently, the conveying section 13 removes the semiconductor circuit board 1 from the mounting surface 27a or the mounting surface 28a.
The cooling section 11 is provided with cooling plates 110a, 110b such as heat sinks respectively disposed in the processing places 11a, 11b, and each having an upper surface functioning as an adsorptive retention surface for the semiconductor circuit board 1.
The processing places 11a, 11b (cooling plates 110a, 110b) are located inside the operation range of the grip section 13a, and the cooling plates 110a, 110b are exposed in the processing places 11a, 11b. Therefore, the conveying section 13 can easily mount the semiconductor circuit board 1 on the cooling plates 110a, 110b. After the cooling process is performed on the semiconductor circuit board 1, the semiconductor circuit board 1 stands ready on the cooling plate 110a located at the processing place 11a or the cooling plate 110b located at the processing place 11b. Therefore, the grip section 13a of the conveying section 13 can move while easily gripping the semiconductor circuit board 1.
Then, the application section 10 for ejecting droplets to and thereby forming marks on the semiconductor circuit board 1 will be explained with reference to
On the upper surface 37a of the base 37, there are disposed a pair of guide rails 38 extending in the Y direction across the full width thereof in the Y direction so as to protrude from the surface. Above the base 37, there is attached a stage 39 provided with a translation mechanism, not shown, corresponding to the pair of guide rails 38. As the translation mechanism of the stage 39, there can be used a linear motor or a screw type translation mechanism. In the present embodiment, a linear motor is adopted, for example. Further, it is arranged that the translation mechanism moves back and forth along the Y direction at a predetermined speed. Moving back and forth repeatedly is referred to as scanning movement. Further, on the upper surface 37a of the base 37, there is disposed a sub-scanning position detecting device 40 in parallel to the guide rails 38, and the sub-scanning position detecting device 40 detects the location of the stage 39.
On the upper surface of the stage 39, there is formed a mounting surface 41, and a suction type board chuck mechanism, not shown, is disposed on the mounting surface 41. After the semiconductor circuit board 1 is mounted on the mounting surface 41, the board chuck mechanism fixes the semiconductor circuit board 1 to the mounting surface 41.
The position of the mounting surface 41 when the stage 39 is located on the −Y-direction side corresponds to the staging place 10a. The mounting surface 41 is disposed so as to be exposed within the operation range of the grip section 13a. Therefore, the conveying section 13 can easily mount the semiconductor circuit board 1 on the mounting surface 41. After the application is performed on the semiconductor circuit board 1, the semiconductor circuit board 1 stands ready on the mounting surface 41 as the staging place 10a. Therefore, the grip section 13a of the conveying section 13 can move while easily gripping the semiconductor circuit board 1.
On both sides of the base 37, the sides being located in the X direction, there is erected a pair of support platforms 42, and the pair of support platforms 42 are bridged with a guide member 43 extending in the X direction. On a lower part of the guide member 43, there is disposed a guide rail 44 extending in the X direction across the full width thereof in the X direction so as to protrude from the surface thereof. The carriage 45 attached movably along the guide rail 44 is formed to have a roughly rectangular solid shape. The carriage 45 is provided with a translation mechanism, and as the translation mechanism, a mechanism substantially the same as the translation mechanism provided to the stage 39 can be used. Further, the carriage 45 performs the scanning movement along the X direction. A main scanning position detecting device 46 is disposed between the guide member 43 and the carriage 45, and thus the location of the carriage 45 can be measured. On the lower side of the carriage 45, there is disposed a head unit 47, and the droplet ejection head, not shown, is disposed on a surface of the head unit 47, the surface being located on the stage 39 side, so as to protrude from the surface thereof.
Inside each of the curing units 48, there is disposed an irradiation device for emitting the ultraviolet light for curing the droplets thus ejected. The curing units 48 are disposed at positions across the head unit 47 in the main scanning direction. The irradiation device is composed of a light emitting unit, a radiator plate, and so on. The light emitting unit is provided with a number of light emitting diode (LED) elements arranged. The LED elements are each an element supplied with electricity and emitting ultraviolet light as the light of an ultraviolet ray.
On the upper side in the drawing of the carriage 45, there is disposed a reservoir 50, and the reservoir 50 reserves the functional fluid. The droplet ejection head 49 and the reservoir 50 are connected to each other via a tube not shown, and the functional fluid in the reservoir 50 is supplied to the droplet ejection head 49 via the tube.
The functional fluid has a resin material, a photopolymerization initiator as a curing agent, and a solvent or a dispersion medium as primary materials. By adding a colorant such as a pigment or a dye, or a functional material such as a lyophilic or lyophobic surface modification material to the primary materials, the functional fluid having a unique function can be formed. In the present embodiment, a white pigment is added, for example. The resin material of the functional fluid is a material for forming the resin film. The resin material is not particularly limited so long as it is in the liquid form at normal temperature, and can form a polymer through polymerization. Further, the resin materials with low viscosity are preferable, and those in oligomeric form are preferable. Those in monomeric form are further preferable. The photopolymerization initiator is an additive agent acting on the crosslinkable group of the polymer to promote the cross-linking reaction, and benzyl dimethyl ketal and so on can be used as the photopolymerization initiator. The solvent or the dispersion medium is for adjusting the viscosity of the resin material. By making the functional fluid have a viscosity easy to eject from the droplet ejection head, it becomes possible for the droplet ejection head to stably eject the functional fluid.
The lower surface of each of the curing units 48 is provided with an irradiation opening 48a. Further, the ultraviolet light emitted by the irradiation device is emitted from the irradiation openings 48a toward the semiconductor circuit board 1.
On the upper side of each of the cavities 53, there is disposed a diaphragm 55 vibrating in a vertical direction to thereby expand and contract the internal volume of the cavity 53. On the upper side of each of the diaphragms 55 and at the place opposed to each of the cavities 53, there is disposed a piezoelectric element 56 extending and contracting in a vertical direction to thereby vibrate the diaphragm 55. The piezoelectric element 56 extends and contracts in the vertical direction to thereby pressurize and vibrate the diaphragm 55, and the diaphragm 55 decreases and increases the internal volume of the cavity 53 to thereby pressurize the cavity 53. Thus, the pressure in the cavity 53 varies, and the functional fluid 54 supplied in the cavity 53 is ejected through the nozzle 52.
When each of the droplet ejection heads 49 receives a nozzle drive signal for controlling the drive of the piezoelectric element 56, the piezoelectric element 56 extends to cause the diaphragm 55 to decrease the internal volume of the cavity 53. As a result, a corresponding amount of the functional fluid 54 to the amount of decrease in the volume is ejected as a droplet 57 from the nozzle 52 of the droplet ejection head 49. It is arranged that the semiconductor circuit board 1 to which the functional fluid 54 is applied is irradiated with the ultraviolet light from the irradiation openings 48a to thereby solidify or cure the functional fluid 54 including the curing agent.
On the Y-direction side of the base 74, there are disposed a board push-out section 78 and a staging platform 79 via a support member 77. In the place located on the Y-direction side of the storage container 18, the staging platform 79 is disposed overlapping above the board push-out section 78. The board push-out section 78 is provided with an arm 78a moving in the Y direction, and a translation mechanism for driving the arm 78a. The translation mechanism is not particularly limited providing the mechanism moves linearly, and in the present embodiment, an air cylinder acting by the compressed air is adopted, for example. On the staging platform 79 there is mounted the semiconductor circuit board 1, and it is arranged that the arm 78a can have contact with the semiconductor circuit board 1 at the center of an end thereof on the Y-direction side.
By the board push-out section 78 moving the arm 78a in the −Y direction, the arm 78a moves the semiconductor circuit board 1 in the −Y direction. The staging platform 79 is provided with a recessed section having a width roughly the same as the X-direction width of the semiconductor circuit board 1, and the semiconductor circuit board 1 moves along the recessed section. Further, the position of the semiconductor circuit board 1 in the X direction is determined by the recessed section. As a result, as shown in
After the conveying section 13 moves the semiconductor circuit board 1 to the upper surface of the staging platform 79, the elevating device 75 raises the storage container 18. Then, the board push-out section 78 drives the arm 78a to move the semiconductor circuit board 1 to the inside of the storage container 18. In such a manner as described above, the storage section 12 stores the semiconductor circuit board 1 inside the storage container 18. After a predetermined number of semiconductor circuit boards 1 are stored inside the storage container 18, the operator replaces the storage container 18 having the semiconductor circuit boards 1 stored with an empty storage container 18. Thus, the operator can carry the plurality of semiconductor circuit boards 1 to a subsequent process in a lump.
The storage section 12 has the staging place 12a for mounting the semiconductor circuit board 1 stored therein. The conveying section 13 can store the semiconductor circuit board 1 into the storage container 18 in cooperation with the storage section 12 only by mounting the semiconductor circuit board 1 on the staging place 12a.
Then, the conveying section 13 for conveying the semiconductor circuit board 1 will be explained with reference to
A rotation mechanism 85 is disposed at an end of the upper surface of the first arm section 84, the end being opposite to the support platform 83. The rotation mechanism 85 is composed of an electric motor, an angle detector, a reduction mechanism, and so on, and has a function substantially the same as that of the rotation mechanism installed inside the support platform 83. Further, an output shaft of the rotation mechanism 85 is coupled to a second arm section 86. Thus, the rotation mechanism 85 can detect the rotational angle of the second arm section 86 to thereby rotate the second arm section 86 to a desired angular position.
An elevating device 87 is disposed at an end of the upper surface of the second arm section 86, the end being opposite to the rotation mechanism 85. The elevating device 87 is provided with a translation mechanism, and can extend and contract by driving the translation mechanism. As the translation mechanism, a mechanism substantially the same as that of the elevating device 16 of the supply section 8 can be used. On the lower side of the elevating device 87, there is disposed a rotation device 88.
The rotation device 88 is only required to be able to control the rotational angle, and can be composed of a variety of types of electric motors and a rotational angle sensor combined with each other. Besides the above, a step motor which can rotate at a predetermined rotational angle can also be used. In the present embodiment, a step motor is adopted, for example. Further, a reduction device can also be disposed. It becomes possible to rotate at a finer angular pitch.
On the lower side in the drawing of the rotation device 88, the grip section 13a is disposed. Further, the grip section 13a is coupled to the rotation shaft of the rotation device 88. Therefore, the conveying section 13 can rotate the grip section 13a by driving the rotation device 88. Further, the conveying section 13 can move up and down the grip section 13a by driving the elevating device 87.
The grip section 13a has four linear fingers 13c, and at the tip of each of the fingers 13c, there is formed an adsorption mechanism for adsorbing the semiconductor circuit board 1 by suctioning. Further, the grip section 13a can operate the adsorption mechanism to thereby grip the semiconductor circuit board 1.
On the −Y-direction side of the base 82, there is disposed a control device 89. The control device 89 is provided with a central processing unit, a storage section, an interface, an actuator drive circuit, an input device, a display device, and so on. The actuator drive circuit is a circuit for driving the rotation mechanism 83a, the rotation mechanism 85, the elevating device 87, the rotation device 88, and the adsorption mechanisms of the grip section 13a. Further, these devices and circuits are connected to the central processing unit via the interface. In addition thereto, an angle detector is also connected to the central processing unit via the interface. The storage section stores a software program representing the operation procedure for controlling the conveying section 13 and the data used for the control. The central processing unit is a device for controlling the conveying section 13 with the software program. The control device 89 obtains the outputs of the detectors disposed in the conveying section 13 to thereby detect the location and the posture of the grip section 13a. Further, the control device 89 performs the control of moving the grip section 13a to a predetermined position by driving the rotation mechanism 83a and the rotation mechanism 85.
Then, the printing method using the printer 7 described above will be explained with reference to
As shown in the flowchart of
Among the steps described above, the preprocessing step S2 through the printing step S4 are the characterizing portion of the invention, and therefore, the characterizing portion will be explained in the following description.
In the preprocessing step S2, either one of the first stage 27 and the second stage 28 is located in the staging place 9c in the preprocessing section 9. The conveying section 13 moves the grip section 13a to the place opposed to the stage located in the staging place 9c. Subsequently, the conveying section 13 moves down the grip section 13a, and then releases the adsorption of the semiconductor circuit board 1 to thereby mount the semiconductor circuit board 1 on either one of the first stage 27 and the second stage 28 located in the staging place 9c. As a result, as shown in
The first and second stages 27, 28 are heated in advance by the heating devices 27H, 28H, and therefore the semiconductor circuit board 1 mounted on either one of the first stage 27 and the second stage 28 is heated promptly to a predetermined temperature. The temperature to which the semiconductor circuit board 1 is heated is preferably the temperature at which the surface of the semiconductor circuit board 1 (the surface of the semiconductor 3) can effectively be reformulated or the elimination of organic substances from the surface can efficiently be performed, and at the same time, equal to or lower than the allowable temperature limit of the semiconductor circuit board 1 (including the semiconductor device 3) as described later, and in the present embodiment, the semiconductor circuit board 1 is heated to the temperature of, for example, 180° C. so that the temperature is within the range of 150° C. through 200° C.
Further, when the conveying section 13 moves the semiconductor circuit board 1 to the upper surface of the first stage 27, the preprocessing is performed on the semiconductor circuit board 1 on the second stage 28 in the processing place 9b located inside the preprocessing section 9. Subsequently, after the preprocessing of the semiconductor circuit board 1 on the second stage 28 is terminated, the second stage 28 moves the semiconductor circuit board 1 to the second staging place 9b. Subsequently, the preprocessing section 9 drives the first stage 27 to thereby move the semiconductor circuit board 1 mounted on the first staging place 9a to the processing place 9d opposed to the carriage 31. Thus, it is possible to start the preprocessing of the semiconductor circuit board 1 on the first stage 27 immediately after the preprocessing of the semiconductor circuit board 1 on the second stage 28 is terminated.
Subsequently, in the preprocessing section 9, the semiconductor device 3 mounted on the semiconductor circuit board 1 is irradiated with the ultraviolet light. Thus, the chemical bonding of the organic irradiation target object in the surface layer of the semiconductor device 3 is broken, and at the same time, the radical oxygen separated from the ozone generated by the ultraviolet ray is bonded to the molecule thus broken in the surface layer to thereby be converted into a functional group (e.g., —OH, —COH, or —COOH) with high hydrophilicity. Thus, the surface of the semiconductor circuit board 1 can be reformulated, and at the same time, the elimination of the organic substances on the surface can be performed. Here, the semiconductor device 3 (the semiconductor circuit board 1) is irradiated with the ultraviolet light in the condition of being previously heated at 180° C. as described above, the surface thereof can effectively be reformulated with the increased collision speed of the molecules in the surface layer without exerting damages to the semiconductor circuit board 1, and at the same time, the organic substances on the surface can efficiently be eliminated. By driving the first stage 27 after performing the preprocessing, the preprocessing section 9 moves the semiconductor circuit board 1 to the first staging place 9a.
Similarly, when the conveying section 13 moves the semiconductor circuit board 1 to the upper surface of the second stage 28, the preprocessing is performed on the semiconductor circuit board 1 on the first stage 27 in the processing place 9b located inside the preprocessing section 9. Subsequently, after the preprocessing of the semiconductor circuit board 1 on the first stage 27 is terminated, the first stage 27 moves the semiconductor circuit board 1 to the first staging place 9a. Subsequently, the preprocessing section 9 drives the second stage 28 to thereby move the semiconductor circuit board 1 mounted on the second staging place 9b to the processing place 9d opposed to the carriage 31. Thus, it is possible to start the preprocessing of the semiconductor circuit board 1 on the second stage 28 immediately after the preprocessing of the semiconductor circuit board 1 on the first stage 27 is terminated. Subsequently, the preprocessing section 9 irradiates the semiconductor device 3 mounted on the semiconductor circuit board 1 with the ultraviolet ray to thereby make it possible to effectively reformulate the surface without exerting damages to the semiconductor circuit board 1, and at the same time, efficiently eliminate the organic substances on the surface similarly to the case of the semiconductor circuit board 1 on the first stage 27 described above. By driving the second stage 28 after performing the preprocessing, the preprocessing section 9 moves the semiconductor circuit board 1 to the second staging place 9b.
When the preprocessing of the semiconductor circuit board 1 is completed in the preprocessing step S2, and the process proceeds to the cooling step S3, the conveying section 13 mounts the semiconductor circuit board 1 located in the staging place 9c on the cooling plate 110a or 110b disposed respectively in the processing places 11a, 11b. Thus, the semiconductor circuit board 1 heated in the preprocessing step S2 is cooled (temperature adjustment) for a predetermined period of time to the temperature (e.g., the room temperature) suitable for performing the printing step S4.
The semiconductor circuit board 1 thus cooled in the cooling step S3 is conveyed by the conveying section 13 to the upper surface of the stage 39 located in the staging place 10a of the application section 10. In the printing step S5, the application section 10 operates the chuck mechanism to hold the semiconductor circuit board 1 mounted on the stage 39 to the stage 39. Subsequently, the application section 10 ejects the droplets 57 from the nozzles 52 provided to the droplet ejection heads while performing the scanning movement of the stage 39 and the carriage 45. Thus, the marks such as the company name mark 4, the model code 5, and the serial number 6 are drawn on the surface of each of the semiconductor devices 3. Subsequently, the marks are irradiated with the ultraviolet ray from the curing units 48 installed in the carriage 45. Thus, since the photopolymerization initiator for starting the polymerization by the ultraviolet ray is included in the functional fluid 54 for forming the mark, the surfaces of the marks are immediately solidified or cured. After performing the printing, the application section 10 moves the stage 39 on which the semiconductor circuit board 1 is mounted to the staging place 10a. Thus, it becomes possible to make it easy for the conveying section 13 to grip the semiconductor circuit board 1. Then, the application section 10 stops the operation of the chuck mechanism to thereby release holding of the semiconductor circuit board 1.
Subsequently, the semiconductor circuit board 1 is conveyed by the conveying section 13 to the storage section 12, and is then stored into the storage container 18 in the storage step S5.
As explained hereinabove, in the present embodiment since the semiconductor circuit board 1 is irradiated with the ultraviolet ray while being heated in the preprocessing step S2 prior to the printing step S4, the surface can effectively be reformulated with the increased collision speed of the molecules in the surface layer, and at the same time, the organic substances on the surface can efficiently be eliminated to thereby make it possible to effectively improve the adhesiveness of the marks (the print patterns) such as the company name mark 4, the model code 5, and the serial number 6. In particular, since in the present embodiment the semiconductor circuit board 1 is heated to the temperature in the range of 150° C. through 200° C., it is possible to effectively perform the surface reformulation and the organic substance elimination on the surface without exerting damages to the semiconductor devices 3.
Further, in the present embodiment, the activation light beam for curing the droplets in the printing step S4 and the activation light beam for performing the preprocessing in the preprocessing step S2 are derived from the same light source, both of the improvement in the adhesiveness of the print pattern to the semiconductor circuit board 1 (the semiconductor device 3) and the curing of the droplets ejected on the semiconductor circuit board 1 (the semiconductor device 3) can be performed, which can make a contribution to downsizing and price reduction of the device. In particular, in the present embodiment, since the ultraviolet ray is emitted using the low-pressure mercury vapor lamp, the reformulation process of the semiconductor circuit board 1 can be performed at low voltage, and at the same time, the preprocessing step can efficiently be performed using the heat generated by the irradiation of the ultraviolet ray.
Further, in the present embodiment, since the semiconductor circuit board 1 is cooled by providing the cooling step S3 after the preprocessing step S2 and prior to the printing step S4, wet-spreading of the droplets landed on the semiconductor device 3 can be prevented to thereby form a fine pattern.
Although the explanation is hereinabove presented regarding the preferable embodiment of the invention with reference to the accompanying drawings, it is obvious that the invention is not limited to such an example as described above. The various shapes and combinations of the constituents presented in the embodiment described above are provided for exemplification only, and can be modified in various ways within the spirit or scope of the invention in accordance with design needs and so on.
For example, although in the embodiment described above the ultraviolet curing ink such as UV ink is used, the invention is not limited thereto, but it is possible to use a variety of types of activation light curable ink for which a visible light beam or an infrared ray can be used as the curing light.
Further, the same can be applied to the light source, and it is possible to use a variety of types of activation light sources for emitting the activation light such as visible light, namely to use a variety of types of activation light beam irradiation sections.
Here, the “activation light beam” in the invention is not particularly limited providing the irradiation with the light beam can provide energy capable of generating a starting seed in the ink, and broadly includes alpha ray, gamma ray, X-ray, ultraviolet ray, visible light beam, electron beam, and so on. Among the above, from the viewpoint of the curing sensitivity and availability of the device, the ultraviolet ray and the electron beam are preferable, and the ultraviolet ray is particularly preferable. Therefore, it is preferable to use the ultraviolet curing ink, which can be cured by being irradiated with the ultraviolet light, as the activation light curing ink, as in the case of the present embodiment.
Although in the embodiment described above the cooling section 11 has the cooling plates 110a, 110b such as heat sinks, it is also possible to leave the semiconductor circuit board 1 thus heated in the atmosphere at lower temperature for a predetermined period of time to thereby cool the semiconductor circuit board 1 to predetermined temperature.
Although in the embodiment described above, the first stage 27 incorporates the heating device 27H, and the second stage 28 incorporates the heating device 28H, it is also possible that no heating device is incorporated in the preprocessing section, and it is arranged that the semiconductor circuit board 1 is heated before the semiconductor circuit board 1 is conveyed to the preprocessing section, and the semiconductor circuit board 1 in the heated state is conveyed to the preprocessing section.
The entire disclosure of Japanese Patent Application No. 2010-267396, filed Nov. 30, 2010 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2010-267396 | Nov 2010 | JP | national |