This invention relates to printing apparatus and, more particularly, to apparatus designed for printing on substantially cylindrical objects such as cans or bottles.
Electrostatic printers of the type described in WO 93/11866 eject charged solid particles dispersed in a chemically inert, insulating carrier fluid by using an applied electric field to first concentrate and then eject the solid particles. A single printhead will typically comprise a number of ejectors, each of which can be made to eject a volume of ink depending on the voltage applied at the ejection locations.
Various printhead designs have been described in the prior art, such as those in WO 93/11866, WO 97/27058, WO 97/27056, WO 98/32609, WO 98/42515, WO 01/30576 and WO 03/101741.
In order to achieve consistent ejection of ink from the printhead, precise control of the static pressure of the ink is required at the ejection locations. The ink pressure may be controlled through a combination of air pressure and gravity by using a reservoir with a weir which feeds the printheads, the difference in height between the top of the weir and the ejection locations determining the total depth of ink and, thus, the pressure due to gravity. A printhead in which the ejectors are at differing heights will experience varying ink pressures across its length which will cause a corresponding variation in ejection performance.
To print on a cylindrical object, one or more printheads may be aligned such that their ejectors are arranged parallel to the longitudinal axis of the object, which may then be rotated around its longitudinal axis as the printhead ejects a series of droplets onto its surface, allowing an image to be formed thereon.
US 2011/0232514 A1 discloses an apparatus for printing on bottles wherein the bottles are carried in a horizontal plane with their longitudinal axes being held vertical during printing. A single electrostatic printhead prints onto each bottle whilst moving along substantially the same path as the bottle.
The geometry of this printing apparatus requires that each printhead is aligned with its ejection locations arranged along a vertical axis. A pressure gradient is likely to exist between the different ejection locations which will require a complex ink feed apparatus and calibration process to produce high quality images.
WO 2012/147612 A1 discloses a printing apparatus wherein cans are printed upon by a number of printheads while both the cans and the printheads are moved in conjunction through a vertical plane.
The plurality of orientations of the printheads as disclosed here, which are additionally subjected to accelerating forces as they follow a circular motion, are also likely to require a complex ink feed apparatus and calibration process in order to produce high quality images.
US 2013/0269551 A1 discloses a printing apparatus wherein bottles or cans mounted on a carrier with their principal axes vertical are moved horizontally between print stations. The print stations are moved vertically relative to the bottles or cans, to bring them into and out of the vicinity of one another.
This apparatus also comprises vertically aligned ejectors, which will suffer from the disadvantages described above.
WO 2012/131478 A2 discloses a printing apparatus in which a cylindrical objects are carried by holding devices through a single vertical path comprising multiple printhead stations.
U.S. Pat. No. 6,769,357 B1 discloses a can printing apparatus wherein cans are carried through a substantially circular path between a series of printhead stations. The apparatus discloses a number of printhead stations comprising printheads in different orientations. Such a system would require a complex ink feed system to maintain the correct ink pressure at the various ejection locations.
Also, in many cases it is not possible for the entire image to be formed by a single printhead during one rotation of the object. It may be the case, for instance, that the image is formed of several colours, each of which must be printed by a different printhead. It may also be the case that, in order to achieve the desired print resolution or density, each ejector is required to make several passes over the object. Also, if the longitudinal extent of the object is greater than the width of a single printhead, several printheads may need to be positioned in order to span the entire surface. Alternatively, the same printhead may be moved relative to the object over several passes.
This general inability of a single inkjet printhead to form a complete image on a cylindrical object during a single pass is one factor which limits the rate at which cylindrical objects can be printed upon. The other limiting factor is the maximum rate at which a single printhead can print, which is generally a fixed characteristic of the type of printhead used and may not be increased.
In order to overcome this limitation and, thereby, increase the throughput of a printing system, it is necessary to perform multiple print operations in parallel. This may be achieved by several printheads at a printhead station simultaneously printing upon the same object, or several printhead stations which simultaneously print upon different objects. In general, it is possible to have a series of printhead stations, each of which comprises a number of printheads, arranged such that at each printhead station a cylindrical object is being printed upon by several printheads. The cylindrical objects may then be carried from one printhead station to the next in order that different aspects of the image may be printed at the different printhead stations. Using this technique, the total rate of print operations occurring simultaneously can be increased from that possible using a single printhead by a factor of Np×Ns, where Np is the number of printheads at each printhead station and Ns is the number of printhead stations in total. While Ns is not limited, there is only sufficient space for a certain number of printheads, Np, to be arranged such that they are able to simultaneously print into the same object. Furthermore, there are several reasons why using the maximum number of printheads which may print onto the same cylindrical object is not necessarily the optimum arrangement.
A problem arises when multiple printheads are oriented differently to eject ink in different directions. The ink feed apparatus which feeds the printhead ejectors must be maintained at a fixed orientation in order to regulate the pressure and flow of ink correctly to the ejectors. Therefore having multiple printhead orientations requires a more complicated design of the ink feed system for each printhead, which can be oriented independently of the printhead, adding to its physical size and complexity. Another problem with this arrangement is that the pressure control of each ink feed must be set independently to account for the different hydrostatic pressure that results from the variable height between the ink feed and the printhead ejectors when the printhead is arranged in different orientations, adding complexity to the operation of the ink feed apparatus.
Furthermore, if the ejectors of a single printhead do not lie in the same horizontal plane, the ink pressure at each ejection location will vary, affecting the ink output across the printhead and the quality of the printed image.
A further problem occurs when printheads are oriented to eject ink at an angle above the horizontal, as dust and other airborne particles are likely to settle onto the printing face of the printhead and compromise the reliability of ejection.
Furthermore, as it is necessary for an object to be printed on to be carried from one printhead station to the next, it is desirable that the arrangement of printheads at each printhead station does not obstruct the preferred path of the objects or holding devices between the printhead stations. Were the cylindrical surface of the object to be surrounded on all sides by printheads, it would require a highly complex motion of its holding device to extricate it from a first printhead station and another complex motion to position it in a second printhead station, compromising throughput and making the accurate registration of print from station to station very challenging.
There is a need to provide an arrangement of printheads and printhead stations which provides as great a throughput of objects as possible, without compromising the effectiveness of the printhead operation or making the movement of the objects between printhead stations impractical.
The present invention provides an apparatus for printing on substantially cylindrical objects. A substantially cylindrical object may be an object with a substantially constant cross section along at least portion of its length. It may also be an object which is substantially rotationally symmetric around a longitudinal axis along at least a portion of its length. Examples of substantially cylindrical objects include but are not limited to cans, bottles and tubes.
One embodiment of the present invention comprises a plurality of printheads; and at least one holding device movable relative to the printheads such that, in use, the holding device moves the object between the printheads, wherein the path of the at least one holding device comprises a plurality of vertical sections which are horizontally offset from one another, wherein each vertical section comprises at least two identically orientated printheads arranged such that they are vertically displaced from one another, with one directly above the other; and wherein the at least one holding device moves the object between the at least two printheads such that part or all of its path between the printheads is vertical.
This arrangement and orientation of printheads allows a more efficient method of bringing objects to be printed into the vicinity of printheads and then printing on said objects than is already known. By having the printheads arranged along a plurality of vertical paths, several individual printheads are able to function with their ejector arrays lying parallel to a horizontal plane, simplifying the pressure distribution across the ejection locations. Furthermore, by specifying that each printhead is identically oriented with respect to the horizontal plane, the ink feed set up required to deliver the correct pressure and flow rate of ink to the printheads can be further simplified.
The provision of a holding device that moves through a plurality of vertical paths allows for a number print systems providing a large throughput while minimizing the required complexity of the ink feed systems and printhead calibration processes. A single holding device may be used to carry one cylindrical object through a number or vertical paths, or, alternatively, perform a cycle within which a number of cylindrical objects are successively loaded and unloaded.
In another embodiment an apparatus for printing on cylindrical objects is provided, comprising a plurality of printhead stations arranged such that at least two of the printhead stations are horizontally offset from each other, wherein each printhead station comprises at least two printheads arranged such that they are at the same height and horizontally displaced from one another, thereby forming a gap between them through which a cylindrical object to be printed on my pass; and at least one holding device movable relative to the printheads such that, in use the holding device moves the object between the printheads such that part of its path between the printheads is vertical.
The vertical path through which the individual objects are carried again allows an optimal orientation of the printheads which simplifies the ink feed system needed to feed the ejectors. Furthermore, the placing of printheads on two sides of a gap through which the objects may be carried allows a greater number of printheads to simultaneously print onto the surface of the objects, increasing the number of parallel printing operations which may take place and, therefore, increasing the throughput of objects.
Another aspect of the invention provides apparatus for printing on cylindrical objects comprising at least one printhead station having at least one printhead with a linear array of ejectors, each of the at least one printheads being oriented at the same angle to the horizontal plane; and at least one holding device for holding a cylindrical object and moving the cylindrical object to a vicinity of the at least one printhead station such that the at least one printhead can print on the cylindrical object, the holding device being configured to rotate the cylindrical object about its longitudinal axis whilst keeping the longitudinal axis of the cylindrical object parallel with the array of ejectors while they are printing.
This allows that the array of ejectors remains in the same horizontal plane whilst printing, keeping the ink pressure constant across the ejection locations. Individual printheads may be combined to form a system in which multiple print operations take place in parallel, with a simple calibration process and ink feed systems which do not need to be varied between neighbouring printheads.
The present invention provides an apparatus and method for digitally printing on cans 31 or other cylindrical objects 31 which allows a high throughput whilst maintaining optimum print quality.
The orientation of each ejector is defined by its central axis, which is typically parallel to the z-axis as defined in
Typically, the ejector array is formed as a laminate structure which includes at least an ink inlet manifold, an ink inlet prism, a central tile and an ink outlet manifold. The central tile has the array of ejection points formed along its front edge and both the central tile and the prism include channels for supplying ink to or from the ejector array.
With reference to
The ejection of ink from the ejection locations 403 by the application of electrostatic forces is well understood by those of skill in the art and will not be described further herein.
The prism 202 comprises a series of narrow channels (not shown), corresponding to each of the individual ejection locations 403 in the central tile 201. The ink channels of each ejection location 403 are in fluid communication with the respective channels of the prism 202, which are, in turn, in fluid communication with a front portion 407 of the inlet manifold formed in the inflow block 101 (said inlet manifold being formed on the underside of the inflow block 101 as it is presented in
The ink is supplied to the ejection locations 403 by means of an ink supply tube 220 in the printhead 100 which feeds ink into the inlet manifold within the inflow block 101. The ink passes through the inlet manifold and from there through the channels of the prism 202 to the ejection locations 403 on the central tile 201. Surplus ink that is not ejected from the ejection locations 403 in use then flows along the ink channels of the central tile 201 into the outlet manifold 209 in the outflow block 102. The ink leaves the outlet manifold 209 through an ink return tube 221 and passes back into the bulk ink supply.
The channels of the prism 202 which are connected to the individual ejection locations 403 are supplied with ink from the inlet manifold at a precise pressure in order to maintain accurately controlled ejection characteristics at the individual ejection locations 403. The pressure of the ink supplied to each individual channel of the prism 202 by the ink inlet manifold is equal across the entire width of the array of ejection locations 403 of the printhead 100. Similarly, the pressure of the ink returning from each individual channel of the central tile 201 to the outlet manifold 209 is equal across the entire width of the array of ejection locations 403 and precisely controlled at the outlet, because the inlet and the outlet ink pressures together determine the quiescent pressure of ink at each ejection location 403.
The printhead 100 is also provided with an upper 204 and a lower 205 cleaning fluid manifold. The upper and lower cleaning fluid manifolds have respective inlets 105a, 105b through which rinse/cleaning fluid can be supplied to the printhead 100. The inflow 101 and outflow 102 blocks are both provided with cleaning fluid passages 401. The passages in the inflow block 101 are in fluid communication with upper cleaning fluid manifold 204 and those passages in the outflow block 102 are in fluid communication with the lower cleaning fluid manifold 205. Fluid connectors 206 link the cleaning fluid manifolds to the respective cleaning fluid passages.
The cleaning fluid passages 401 within the inflow and outflow blocks end at cleaning fluid outlets 207. The pathway to the ejection locations 403 continues along enclosed spaces 405 defined by the V-shaped cavity 402 in the datum plate 104 and the outer surfaces of the inflow 101 and outflow 102 blocks, until the point at which the ejection locations 403 themselves lie within the cavity 402. The two sides of the V-shaped cavity are, in this example, at 90 degrees to each other.
It can be seen that at the front of the printhead, an intermediate electrode plate is mounted on to a datum plate, which in turn is mounted onto the main body of the printhead. In
The air pressure in the reservoir 20 above the surface of the ink 23 is controlled and can be measured by a pressure sensor 27. Air can be either bled into or out of the reservoir 20 through an air bleed valve 28 (which can be supplied with air at any given pressure) or it can be pumped in or out of the reservoir by a pump 29 to maintain the pressure in the reservoir at a set point. The air pressure above the surface of the ink 23 in the reservoir 20 can be controlled in closed loop with the aforementioned pressure sensor 27 and set at a desired set point by control electronics 30, or programmed via a computer. Although air is described in this example, any other suitable gas may be used.
Such reservoirs 20 may be used to supply ink to, or receive unprinted ink from, a printhead by controlling the pressure set-point to be higher or lower than the ink pressure at the printhead tips respectively. In practice two such reservoirs 20 are used to control the ink pressure for the inlet and outlet of the printhead respectively.
Using this method, the pressure of ink at the printhead tips is substantially the average of the pressures of the two reservoirs 20 and the flow rate of ink through the printhead is determined by the difference in pressure between the two reservoirs 20.
For any given printhead, all of the ejector axes will lie in a single horizontal plane. Typically, the axes of ejectors belonging to different printheads may or may not lie in the same plane.
During the printing process, a cylindrical object 31, which could be a can or a bottle, is carried by a holding device (not shown), which may be a mandrel or another device known in the art suitable for holding said cylindrical object, through a vertical path into the vicinity of one printhead station 33.
At the printhead station 33 the object 31 is rotated about its longitudinal axis, which is kept stationary while the object is being printed upon by each of the printheads 32.
When the printing step to be performed at that particular printhead station 33 has been completed, which may be after several revolutions of the object 31, the object 31 is then moved further along the vertical path until it arrives at a second printhead station 33, at which a second printing process is performed. The second printing process is, in this case, the printing of a different colour separation. Each object 31 will be brought to four printhead stations 33 in total, each printing a different colour separation. At the end of a vertical section, the object 31 is unloaded and the printing process is complete.
During operation, several objects 31 are processed by the apparatus simultaneously; each object 31 being carried by a separate holding device. A first object 31 is printed upon at a first printhead station 33 while a second object 31 is printed upon at a second printhead station 33, after which the first object 31 is taken to the second printhead station 33 and the second object 31 is taken to a third printhead station 33. At any one time each of the eight printhead stations 33 prints upon a different object 31.
In
A complete cycle for any one holding device includes the following steps:
The holding device is loaded with a first cylindrical object at a first loading point 35.
The cylindrical object is then carried by the holding device between printhead stations 331-4, at each of which the holding device stops other than to rotate while the cylindrical object is printed upon.
The holding device then moves to a first unloading point 36 where the cylindrical object is unloaded.
The holding device then moves to a second loading point 35 where a second cylindrical object is loaded.
The second cylindrical object is then carried by the holding device between printhead stations 335-8, at each of which the holding device stops other than to rotate while the cylindrical object is printed upon.
The holding device then moves to a second unloading point 36 where the second cylindrical object is unloaded.
The holding device then returns to the first loading point 35 to repeat the cycle with a new object 31.
For any given printhead, all of the ejector axes will lie in a single horizontal plane. Typically, the axes of ejectors belonging to different printheads may or may not lie in the same plane.
Each vertical section is horizontally offset with respect to the other. In the pictured embodiment the two vertical sections are at the same height, although the vertical sections may be vertically offset as well as horizontally offset in other embodiments.
In another embodiment, shown in
In another embodiment, each cylindrical object may be taken to more than or fewer than four printhead stations 33.
In another embodiment, other stations may exist along the path of the cylindrical object, which process the object in other ways relating to the printing process, such as cleaning, inspection, pre-coating, extraction, heating, over-coating, fixing of the print, curing and the like.
In another embodiment, instead of being unloaded at the end of a first vertical section, the object 31 may be moved through a non-vertical path to the start of a second vertical section. The object 31 may then be moved through the second vertical section, stopping at multiple printhead stations 33, as in the first section.
This may be repeated through any number of vertical sections.
In another embodiment, each object 31 may be taken to each printhead station 33.
In general, a series of printheads 32 may be oriented such that they lie substantially above one another. The ejectors of the printheads 32 may lie in a substantially vertical plane or, alternatively, in an inclined plane. The printheads 32 may only be displaced by a small distance, such that they are able to print onto the same object 31 simultaneously, thereby comprising a printhead station 33. The printheads 32 may also be displaced by a greater distance, such that an object 31 must be carried between them in order to be printed on by each of the printheads 32. In general, the printheads 32 may be arranged into a series of vertically displaced printhead stations 33, themselves comprising vertically displaced printheads 32. These sections of vertically displaced printheads 32 may be repeated such that an object 31 could be carried through a non-vertical path between neighboring vertical sections. As in the above embodiments, a series of objects may be brought into the vicinity of a series of printhead stations 33 in sequence using several holding devices.
In the pictured embodiment the printhead stations are at the same height, although the printhead stations may be vertically offset as well as horizontally offset in other embodiments.
In alternative embodiments, there may be more or fewer than four printhead stations 33 and each printhead station 33 may comprise more or fewer than two printheads 32.
In another embodiment the paths may not be semi-circular but, instead, comprise horizontally displaced vertical sections connected through non-vertical connecting portions. In such an embodiment, the objects 31 would be brought into the vicinity of and through the printhead stations 33 during the vertical sections of the path.
Any of the above described embodiments may include printheads 32 which are displaced in a direction parallel to the longitudinal axis of the object 31. In other words, printheads 32 which are displaced along the axis of ejectors or transverse to the motion of the object 31 surface. If this displacement is small, i.e. less that the spacing between adjacent ejectors, the ejectors are said to be “interleaved”, producing a smoother, higher resolution image. If the displacement is large, as in
The “stitched” or “interleaved” printheads may be positioned on opposite sides of the object 31, or on the same side with a vertical offset allowing them to be overlapped.
The printheads 32 may also be moved parallel to the axis of their ejector array (x-axis,
Number | Date | Country | Kind |
---|---|---|---|
1407440.5 | Apr 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/051229 | 4/28/2015 | WO | 00 |