1. Field of the Invention
The present invention relates generally to printing presses and other imaging devices and more particularly to an image-carrying cylinder.
2. Background Information
In a web offset lithographic printing press, a printing plate for an image to be printed is inked, and the image is then transferred to a blanket, which transfers the image to a continuous web of material. The printing press typically has four printing units, each for printing one of four colors on the web. As the web passes by the blanket cylinders of the printing units, it becomes moist, which can lead to an expansion of the web. The expansion of the web in the axial direction of the printing cylinders is known as web fanout. If fanout occurs, the print or images on the web thus expand slightly as the web passes each printing unit. The second and further printing units need to be properly registered with respect to the web images or print in an axial direction of the cylinders, so that, for example, a second color is applied by the second print unit directly over an image already printed by the first printing unit.
For some printing applications, multi-plate plate cylinders carrying a plurality of images across the width of the cylinder are used. These plate cylinders have a plurality of axially-spaced printing plates. For proper register of each printing plate and to correct web fanout, the plates may be movable independently of one another in an axial direction.
U.S. Pat. No. 4,207,815 purports to disclose a two-plate plate cylinder. One plate fits on a large diameter portion and another plate fits on a tube rotatable and axially movable with respect to the large diameter portion. The tube is fastened to a stepped shaft. Helical gearing is provided to set the axial and circumferential register of the plates.
U.S. Pat. No. 5,383,393 purports to disclose a multicolor lithographic rotary press comprising a plurality of printing sections arranged along a traveling line of a paper web, a plurality of register adjusting means, a paper stretching means, and a plurality of width adjusting means. Each of the printing sections further includes at least one divided plate cylinder, each divided section of which is independently moved in the axial direction and/or circumferential direction. The device of the '393 patent further discloses a register adjusting means mechanically connected to each of the divided plate cylinders in the printing sections, and includes an adjusting mechanism for actuating the divided sections in response to the control unit connected to a sensor for detecting the lines and images printed on the paper web by each of the printing sections.
Commonly-owned U.S. Ser. No. 09/627,639 entitled “Multi-Plate Plate Cylinder for a Printing Press”, which is hereby incorporated by reference herein, discloses a multi-plate plate cylinder having independently registerable shells. Commonly-owned U.S. Ser. No. 09/675,494 entitled “Web Fanout Control System”, which is hereby incorporated by reference herein, discloses a web fanout control system for a printing press having multiple images carrying by the plate cylinder.
An object of the present invention is to provide a multiple-image-carrying cylinder and printing press that can accommodate variable image and web format sizes, i.e., different image and web widths. An alternate or additional object of the present invention is to permit web fanout control and proper register for such a printing press.
The present invention provides a multiple-image-carrying cylinder having a cylinder section having at least part of a first image to be printed. A shell is axially movable with respect to the cylinder section, the shell having at least part of a second image to be printed. A ring located between the shell and the cylinder section and is axially movable with respect to the shell and the cylinder section, the ring capable of having another part of the first image when connected to the cylinder section and capable of having another part of the second image when connected to the shell.
“Ring” and “shell” as defined herein are simply any type of structure having at least a partially curved outer surface.
By having the ring move between the cylinder section and the shell, various width images can be accommodated by the cylinder, while still permitting web fanout control and proper register.
A controller can set the shell as a function of a web width.
If the first image, for example, is narrow enough to fit entirely on the cylinder section, the ring is moved against the shell. The second image next to the first image thus is located on the outer surface of both the ring and the shell. The ring and shell can then move together axially to provide proper web fanout control.
If a new wider image is desired to replace the narrow first image, the ring is moved against the cylinder section and the wider image is located on both the cylinder section and the ring. A new image alongside the wider image is located entirely on the shell. The cylinder section and the ring then remain together and the shell can move to provide web fanout control and spacing between the two images.
Additional rings, axially movable with respect to the ring, shell and cylinder section, can be provided between the shell and the cylinder section to provide for even more formats.
Preferably, the cylinder section is axially stationary.
An additional shell maybe provided opposite the shell on another side of the cylinder section, as is an additional ring.
In a preferred embodiment, at least six images are carried by the cylinder section, the shell and the ring. Thus a six-image-wide press with the capability to support variable formats and to provide web fanout control is provided.
Preferably, the cylinder is a plate cylinder for carrying at least two flat printing plates. The cylinder section, shell and ring then all provided with axially-extending gaps having lock-up mechanisms. The lock-up mechanisms can be controlled for example by hydraulic pressure, and may be similar for example to those disclosed in U.S. Pat. No. 5,284,093 to Guaraldi et al., which is hereby incorporated by reference herein.
The axial movement of the shell and ring may be controlled by a mechanical actuator or a hydraulic actuator. The mechanical actuator for example may include a motor and lateral drive gear for the shell and a lateral drive gear for the ring. A throwoff gear connects the shell drive gear and the ring drive gear. If the throwoff gear is engaged, the ring moves with the shell and if the throwoff gear is disengaged, the ring remains with the cylinder section.
With the gear thrown off, manual adjustment of the ring is also possible.
Preferably, the shell and the ring have outer surfaces that define approximate half circles, with matching other half circles completing the full outer surface, for a two-around press. However, fully circular shells and rings for one-around presses are possible.
The shell and ring may be attached by dovetail joints to a cylinder body to permit axial movement, but to limit other movements. The cylinder body for example may have a dovetail slot and dovetails of the shells and rings fit into the slot. The dovetails can be smaller than the slot so that a clearance in the slot results, permitting easy axial movement. A sliding wedge can be used to occupy the clearance to fix the dovetails in place during operation. When axial movement is desired, the sliding wedge can be moved so that the clearance again results.
The present invention also provides a method for permitting variable width images on a cylinder comprising the steps of:
Preferably, the images are located on flat printing plates, and the cylinder sections all have lock-up mechanisms. However, sleeve-shaped printing plates or direct imaging of the cylinder are also possible.
Exemplary embodiments of the present invention are described below by reference to the following drawings, in which:
A web 2 is printed with side-by-side images, for example six wide, in a first color in first printing unit 5. Second printing unit 6 then prints a second color over the first images. Due to fanout of web 2, the images printed by the second printing unit 6 may be laterally adjusted to compensate for the fanout.
A control unit 200, for example one including a microprocessor, can read inputs from sensors 201, 202 for determining a width of web 2. The sensors 201, 202 can be located after or before the blanket cylinders 12, 22. Control unit 200 can then set the proper web width, as will described below.
Shell 31 has a width WS, rings 32 and 34 have a width WR, and section 33 has a width WC. A distance FD for fanout control is adjustable depending on the desired fanout compensation.
In
The cylinder 10 maybe two-around, in which case a paired shell 131, second printing plate 42, and second lock-up mechanism 52 are also provided, as shown in FIG. 4. In a one-around press, shell 31 is substantially circular. Presses with more than two images located circumferentially around the cylinder are also possible.
Rings 32, 34 and shell 35 may have a similar construction to shell 31, and may also have corresponding paired rings or shells located circumferentially around the cylinder 10 for a two-around press.
All of the lock-up mechanisms for rings 32, 34, shells 31 and 35 and cylindrical section 33 may be hydraulically actuated. Drive 56 can move both shell 31 and ring 32 axially and independently, and a similar drive may be provided on the opposing side for ring 34 and shell 35.
For a different extra ring embodiment of the present invention,
Drives 56 and 156 can be controlled by controller 200 (FIG. 1), which can thus set the position of rings 132, 32, 31 as a function of the web width, and also provide for fanout compensation.
For the cylinder 10 shown in
For web fanout control of cylinder 10 in
If it is desired that a narrower width web be printed with narrower images, the plates or images I1, I2, I3, I4, I5, I6 can be removed. Shell 31 can be moved against ring 32, and the throw-off gear engaged so that ring 32 and shell 31 move together. As shown in
Thus a variable width image-carrying cylinder can be provided which also permits proper fanout control.
Instead of the fully mechanical drive 56, it is also possible to move shell 31 mechanically and move the ring 32 axially via an hydraulic mechanism. The shells and rings may be fixed in place axially by a movable wedge in a dovetail joint clearance.
Preferably, the shell width WS is greater than the cylinder section width WC and greater than or equal to section width WC and ring width WR combined. In
In the embodiment of
Number | Name | Date | Kind |
---|---|---|---|
664584 | Roesen | Dec 1900 | A |
4207815 | Watanabe | Jun 1980 | A |
5383393 | Ueda et al. | Jan 1995 | A |
6553908 | Richards et al. | Apr 2003 | B1 |
Number | Date | Country |
---|---|---|
10135506 | Feb 2002 | DE |
510744 | Oct 1992 | EP |
58151252 | Sep 1983 | JP |
03140245 | Jun 1991 | JP |
07241976 | Sep 1995 | JP |
10058642 | Mar 1998 | JP |
11314344 | Nov 1999 | JP |
2000954 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20030047092 A1 | Mar 2003 | US |