The present disclosure relates to printing, and particularly to printing on plastic materials. More particularly, the present disclosure relates to ink jet printing on plastic materials.
According to the present disclosure, a digital print system is configured to provide decorations on polymeric articles through a digital printing process. The digital print system includes a rotary carrier, a printing unit, and a curing unit. The printing unit includes a support wheel and a plurality of transfer units coupled to the support wheel for rotation about an axis with the support wheel. The rotary carrier continuously rotates about the axis to move each transfer unit past the printing unit and the curing unit during the digital printing process.
In illustrative embodiments, the digital printing process includes applying a layer of transfer fluid on an outer surface of each transfer unit prior and then applying a decoration-forming deposit on an outer surface of the layer of transfer fluid. The digital printing process may further include curing, at least partially, the decoration-forming deposit after the step of applying the decoration-forming deposit on the layer of transfer fluid. The decoration-forming deposit may then be transferred from each transfer unit to a polymeric article to decorate the polymeric article.
In illustrative embodiments, the decoration-forming deposit has a first surface tension and a first viscosity and the layer of transfer fluid has a second surface tension and a second viscosity. The first surface tension may be about equal to or slightly less than the second surface tension and the first viscosity may be less than the second viscosity. In some embodiments, the decoration-forming deposit includes an ink and the layer of transfer fluid comprises a hydrocarbon such as petroleum jelly or mineral oil, for example.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A print system 10 in accordance with the present disclosure is configured to form a decoration 12 on a polymeric article 14 through a digital printing process 100 as shown in
In illustrative embodiments, the digital printing process 100 includes applying a transfer fluid 15 to the rotary carrier 16 prior to applying the decoration-forming deposit 24 on the rotary carrier 16 as shown in
The rotary carrier 16 includes a support wheel 26 and a plurality of transfer units 28 (also called transfer blankets) coupled to a radially outer surface 30 of the support wheel 26 relative to the axis 22 as shown in
The digital printing process 100 completes several steps at various angular positions relative to axis 22 as the support wheel 26 rotates about axis 22. The digital printing process 100 includes a step 102 of applying the transfer fluid 15 to an outer surface 32 of a transfer unit 28 to form a layer of the transfer fluid 15 along the outer surface 32. Step 102 occurs at a first angular position 34 about axis 22 (or between first angular position 34 and second angular position 36). The layer of transfer fluid 15 may be applied along an entire surface area of the outer surface 32 or only a portion thereof. The step 102 of applying the transfer fluid 15 may include rolling the transfer fluid 15 onto the outer surface 32 of the transfer unit 28 with one or more transfer rollers 33. The step 102 of applying the transfer fluid 15 may include applying a continuous and/or constant layer of transfer fluid 15 on the outer surface 32. The layer of transfer fluid 15 may have a radial thickness within a range of about 1 micrometer to about 2 micrometers. In some embodiments, the thickness is within a range of about 0.01 micrometers to about 0.1 micrometers. In some embodiments, the thickness is within a range of about 0.5 micrometers to about 2.5 micrometers. In some embodiments, the thickness is greater than about 1 micrometer.
The digital printing process 100 includes a step 104 of rotating the rotary carrier 16 including the transfer unit 28 with the layer of transfer fluid 15 to a second angular position 36 as shown in
The digital printing process 100 includes a step 108 of rotating the rotary carrier 16 including the transfer unit 28 with the layer of transfer fluid 15 and the decoration-forming deposit 24 to a third angular position 38 as shown in
During the step 108 of curing, the decoration-forming deposit 24 is brought under or near light source 41 as shown in
The digital printing process 100 includes a step 112 of rotating the rotary carrier 16 including the transfer unit 28 with the layer of transfer fluid 15 and the cured decoration-forming deposit 40 to a fourth angular position 42 as shown in
Illustratively, the polymeric article 14 is a container having a cylindrical or a tapered side wall (i.e. a side wall with a varying diameter from a top end to a bottom end of the article 14) as shown in
The container rotates in a direction 50 opposite to a direction 52 of rotation of the rotary carrier 16 so that the decoration 12 is provided around a circumference of the side wall of the container or partway around the circumference of the side wall. In some embodiments, the polymeric article may include a sheet or another polymeric article having a planar surface, such as a closure, lid, or cap, on which the decoration 12 is provided.
The digital printing process 100 may include a step 116 of post-transfer processing of the polymeric article 14 with the cured decoration-forming deposit 40 applied thereon as shown in
Prior to being coated or decorated with the decoration forming deposit 24, 40, the polymeric articles 14 are formed in a step 120. Step 120 may be included in the digital printing process or may be separate from the digital printing process 100. The polymeric article 14 may be formed using any suitable forming method, such as, for example, rotary thermoforming, deep draw thermoforming, blow molding, injection molding, casting, molding on a tread of molds, flatbed thermoforming, etc. Once formed, the polymeric article 14 may be pretreated prior to receiving the decoration-forming deposit 24, 40 at step 114. Pre-treating the polymeric article 14 may include increasing a surface tension of at least the portion(s) of the polymeric article 14 that receives the decoration forming deposit 24, 40 at step 114. In one example, the surface tension of the polymeric article 14 is increased from less than 40 dyne/cm to greater than 40 dyne/cm. In some embodiments, the surface tension of the polymeric article 14 is increased from about 20 dyne/cm to greater than or equal to 40 dyne/cm. In some embodiments, a varnish is applied on the polymeric article 14 prior to step 114.
In some embodiments, the transfer fluid 15 and any decoration forming deposit 24, 40 remaining on the transfer fluid 15 after the step 114 of transferring may be cleaned from the transfer unit 28 as shown in
In one non-limiting example, the decoration-forming deposit 24 has a first surface tension and a first viscosity, and the transfer fluid 15 has a second surface tension and a second viscosity. The first surface tension is about equal to or slightly less than the second surface tension, and the first viscosity is less than the second viscosity. In some embodiments, the transfer fluid 15 includes a UV curable varnish. In some embodiments, the transfer fluid 15 is omitted and each transfer unit 28 has the same or similar characteristics (i.e. viscosity and surface tension) to the transfer fluid 15.
In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 150 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 10 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 20 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 30 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 40 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 50 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 60 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 70 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 80 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 90 centipoise (cP) to about 100 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 90 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 80 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 70 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 60 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 50 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 40 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 30 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 20 cP. In some embodiments, the first viscosity is within a range of about 5 centipoise (cP) to about 10 cP.
In some embodiments, the second viscosity is within a range of about 200 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 200 centipoise (cP) to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 200 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 900 cP to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 1,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 2,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 3,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 4,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 5,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 6,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 7,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 8,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 9,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 10,000 cP to about 64,000 cP. In some embodiments, the second viscosity is within a range of about 300 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 400 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 500 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 600 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 700 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 800 centipoise (cP) to about 65,000 cP. In some embodiments, the second viscosity is within a range of about 900 centipoise (cP) to about 65,000 cP. In some embodiments, the first viscosity is less than 1,000 cP and the second viscosity is greater than 1,000 cP.
In some embodiments, the second surface tension is within a range of about 30 dyne/cm to about 38 dyne/cm and the first surface tension is within a range of about 25 dyne/cm to about 29 dyne/cm. In some embodiments, the second surface tension is within a range of about 30 dyne/cm to about 35 dyne/cm and the first surface tension is within a range of about 26 dyne/cm to about 28 dyne/cm. In some embodiments, the first surface tension is within a range of about 5 dyne/cm to about 10 dyne/cm less than the second surface tension.
The transfer fluid 15 may include a hydrocarbon. In some embodiments, the transfer fluid 15 includes petroleum jelly such as VASELINE®, for example. In some embodiments, the transfer fluid 15 includes mineral oil. In some embodiments, the transfer fluid 15 includes a blend of mineral oil(s) and wax(es). In some embodiments, the transfer fluid 15 includes a low acrylic gellen gum (LAGG). In some embodiments, the transfer fluid 15 includes water. In some embodiments, the transfer fluid 15 includes mineral oil and oil thickener such as hydrogenated vegetable oil, for example. The blend may include between 75% and 95% mineral oil and between 5% and 25% oil thickener. In some embodiments, the transfer fluid 15 includes a blend of petroleum jelly and an oil such as vegetable oil, for example. The blend may include between 25% and 75% coconut oil in some embodiments. The decoration-forming deposit 24 includes an ink. Illustratively, the ink is a curable acrylate ink, by UV light, for example.
After the step 106 of applying the decoration forming deposit 24 on the transfer fluid 15, the decoration-forming deposit 24 may spread across the transfer fluid 15 from a bead-shaped arrangement 60 to a dome-shaped arrangement 62 as shown in
The decoration-forming deposit 24 may change from the bead-shaped arrangement 60 to the dome-shaped arrangement 62 after being in contact with the transfer fluid 15 for a period of time (i.e. a degree of wetting and/or contact angle of the decoration-forming deposit 24). As previously described, the transfer fluid 15 and the decoration-forming deposit 24 are selected based on their viscosity and surface tension relative to one another. This relationship results in the decoration-forming deposit 24 having a degree of wetting that provides the dome-shaped arrangement 62 and thereby provides a non-blurry decoration 12 on polymeric article 14 at step 114 while the polymeric articles 14 are decorated through digital printing process 100 with a high output rate. In the dome-shaped arrangement 62, all of the decoration-forming deposit 24 is arranged above an upper surface 17 of the transfer fluid 15 and does not under-spread across upper surface 17, over-spread across the upper surface 17, or mix with the transfer fluid 15. Under-spreading across the upper surface 17, overspreading across the upper surface 17, or mixing with the transfer fluid 15 may result in a blurry decoration 12 on the polymeric article 14.
Another digital printing process 200 is shown in
A digital print unit 210 is configured to form decoration 212 on a polymeric article 214 through the digital printing process 200 as shown in
The digital printing process 200 further includes a step 204 of advancing the carrier 216 including the transfer unit 228 with the layer of transfer fluid 15 to a second position 236 as shown in
The digital printing process 200 further includes a step 208 of advancing the carrier 216 including the transfer unit 228 with the layer of transfer fluid 15 and the decoration-forming deposit 24 to a third position 238 as shown in
The digital printing process 200 includes a step 212 of advancing the carrier 216 including the transfer unit 228 with the layer of transfer fluid 15 and the cured decoration-forming deposit 40 to a fourth position 242 as shown in
The digital printing process 200 may include a step 216 of post-transfer processing of the polymeric article 14 with the cured decoration-forming deposit 40 applied thereon as shown in
The following numbered clauses describe embodiments that are contemplated and non-limiting:
Clause 1. A method of digital printing on a polymeric article includes providing a rotary carrier including a support wheel and a transfer unit coupled to the support wheel for rotation about an axis with the support wheel.
Clause 2. The method of clause 1, any other clause, or any combination of clauses, including rotating the rotary carrier and the transfer unit about the axis from a first angular position to a second angular position.
Clause 3. The method of clause 2, any other clause, or any combination of clauses, including applying a layer of transfer fluid on an outer surface of the transfer unit when the transfer unit is at the first angular position or between the first angular position and the second angular position.
Clause 4. The method of clause 3, any other clause, or any combination of clauses, including applying a decoration-forming deposit on the layer of transfer fluid.
Clause 5. The method of clause 4, any other clause, or any combination of clauses, including curing, at least partially, the decoration-forming deposit after the step of applying the decoration-forming deposit on the layer of transfer fluid.
Clause 6. The method of clause 5, any other clause, or any combination of clauses, including transferring the decoration-forming deposit from the transfer unit to the polymeric article when the transfer unit is at the second angular position.
Clause 7. The method of clause 1, any other clause, or any combination of clauses, wherein the decoration-forming deposit has a first surface tension and a first viscosity and wherein the layer of transfer fluid has a second surface tension and a second viscosity, the first surface tension being about equal to or less than the second surface tension and the first viscosity being less than the second viscosity.
Clause 8. The method of clause 7, any other clause, or any combination of clauses, wherein the decoration-forming deposit includes an ink.
Clause 9. The method of clause 7, any other clause, or any combination of clauses, wherein the layer of transfer fluid comprises a hydrocarbon.
Clause 10. The method of clause 9, any other clause, or any combination of clauses, wherein the layer of transfer fluid comprises petroleum jelly.
Clause 11. The method of clause 9, any other clause, or any combination of clauses, wherein the layer of transfer fluid comprises mineral oil.
Clause 12. The method of clause 7, any other clause, or any combination of clauses, wherein the first viscosity is within a range of about 5 cP to about 150 cP and the second viscosity is within a range of about 900 cP to about 65,000 cP.
Clause 13. The method of clause 12, any other clause, or any combination of clauses, wherein the first viscosity is within a range of about 5 cP to about 100 cP and the second viscosity are each within a range of about 1,000 cP to about 64,000 cP.
Clause 14. The method of clause 7, any other clause, or any combination of clauses, wherein the first surface tension is about 5 dyne/cm to about 10 dyne/cm less than the second surface tension.
Clause 15. The method of clause 7, any other clause, or any combination of clauses, wherein the first surface tension is within a range of about 25 dyne/cm to about 29 dyne/cm and the second surface tension is within a range of about 30 dyne/cm to about 38 dyne/cm.
Clause 16. The method of clause 15, any other clause, or any combination of clauses, wherein the first surface tension is within a range of about 26 dyne/cm to about 28 dyne/cm and the second surface tension is within a range of about 30 dyne/cm to about 35 dyne/cm.
Clause 17. The method of clause 7, any other clause, or any combination of clauses, wherein the transfer unit comprises urethane.
Clause 18. The method of clause 6, any other clause, or any combination of clauses, wherein the step of applying a layer of transfer fluid includes rolling the transfer fluid onto the transfer unit.
Clause 19. The method of clause 18, any other clause, or any combination of clauses, wherein the step of rolling the transfer fluid onto the transfer unit includes providing a continuous layer of the transfer fluid having a thickness within a range of about 0.01 micrometers to about 0.1 micrometers.
Clause 20. The method of clause 6, any other clause, or any combination of clauses, wherein the layer of transfer fluid does not cure during the step of curing.
Clause 21. The method of clause 6, any other clause, or any combination of clauses, further including a step of applying a varnish on the polymeric article.
Clause 22. The method of clause 6, any other clause, or any combination of clauses, further including pretreating the polymeric article so that the polymeric article has a surface tension greater than about 40 dyne/cm.
Clause 23. The method clause 6, any other clause, or any combination of clauses, wherein the step of curing the decoration-forming deposit includes exposing the decoration-forming deposit to a 395 nm light within a range of about 24 milliJoules to about 95 milliJoules.
Clause 24. A method of printing on a polymeric article includes providing a carrier including a support foundation and a transfer unit coupled to the support foundation for movement with the support foundation.
Clause 25. The method of clause 24, any other clause, or any combination of clauses, including advancing the carrier and the transfer unit from a first position to a second position.
Clause 26. The method of clause 25, any other clause, or any combination of clauses, including applying a layer of transfer fluid on an outer surface of the transfer unit when the transfer unit is between the first position and the second position.
Clause 27. The method of clause 26, any other clause, or any combination of clauses, including applying a decoration-forming deposit on the layer of transfer fluid.
Clause 28. The method of clause 27, any other clause, or any combination of clauses, including transferring the decoration-forming deposit from the transfer unit to the polymeric article when the transfer unit is at the second position.
Clause 29. The method of clause 28, any other clause, or any combination of clauses, further including a step of curing the decoration-forming deposit after applying the decoration-forming deposit to the layer of transfer fluid between the first position and the second position.
Clause 30. The method of clause 29, any other clause, or any combination of clauses, wherein the decoration-forming deposit includes an ink having a first surface tension and a first viscosity and wherein the layer of transfer fluid includes a primer fluid having a second surface tension and a second viscosity, the first surface tension being about equal to or less than the second surface tension and the first viscosity being less than the second viscosity.
Clause 31. A method of printing on a polymeric article includes providing a rotary carrier including a support wheel and a transfer unit coupled to the support wheel for rotation about an axis with the support wheel.
Clause 32. The method of clause 31, any other clause, or any combination of clauses, including rotating the rotary carrier and the transfer unit about the axis from a first angular position to a second angular position.
Clause 33. The method of clause 32, any other clause, or any combination of clauses, including applying a layer of transfer fluid on an outer surface of the transfer unit when the transfer unit is between the first angular position and the second angular position.
Clause 34. The method of clause 33, any other clause, or any combination of clauses, including applying a decoration-forming deposit on the layer of transfer fluid.
Clause 35. The method of clause 34, any other clause, or any combination of clauses, including transferring the decoration-forming deposit from the transfer unit to the polymeric article when the transfer unit is at the second angular position.
Clause 36. The method of clause 35, any other clause, or any combination of clauses, further including a step of curing the decoration-forming deposit after applying the decoration-forming deposit to the layer of transfer fluid between the first angular position and the second angular position.
Clause 37. The method clause 36, any other clause, or any combination of clauses, wherein the step of curing the decoration-forming deposit includes exposing the decoration-forming deposit to a 395 nm light within a range of about 24 milliJoules to about 95 milliJoules.
Clause 38. The method of clause 37, any other clause, or any combination of clauses, wherein the layer of transfer fluid does not cure during the step of curing.
Clause 39. A method of printing on a polymeric article includes providing a rotary carrier including a support wheel and a transfer unit coupled to the support wheel for rotation about an axis with the support wheel.
Clause 40. The method of clause 39, any other clause, or any combination of clauses, including rotating the rotary carrier and the transfer unit about the axis from a first angular position to a second angular position.
Clause 41. The method of clause 40, any other clause, or any combination of clauses, including applying a layer of transfer fluid on an outer surface of the transfer unit when the transfer unit is between the first angular position and the second angular position.
Clause 42. The method of clause 41, any other clause, or any combination of clauses, including applying a decoration-forming deposit on the layer of transfer fluid.
Clause 43. The method of clause 42, any other clause, or any combination of clauses, including increasing a tack of the decoration-forming deposit.
Clause 44. The method of clause 43, any other clause, or any combination of clauses, including transferring the decoration-forming deposit from the transfer unit to the polymeric article when the transfer unit is at the second angular position.
Clause 45. A method of printing on a polymeric article includes providing a rotary carrier including a support wheel and a transfer unit coupled to the support wheel for rotation about an axis with the support wheel.
Clause 46. The method of clause 45, any other clause, or any combination of clauses, including rotating the rotary carrier and the transfer unit about the axis from a first angular position to a second angular position.
Clause 47. The method of clause 46, any other clause, or any combination of clauses, including applying a decoration-forming deposit on the transfer unit.
Clause 48. The method of clause 47, any other clause, or any combination of clauses, including increasing a tack of the decoration-forming deposit.
Clause 49. The method of clause 48, any other clause, or any combination of clauses, including transferring the decoration-forming deposit from the transfer unit to the polymeric article when the transfer unit is at the second angular position.
Clause 50. The method of clause 49, any other clause, or any combination of clauses, including wherein the decoration-forming deposit has a first surface tension and a first viscosity and wherein the transfer unit has a second surface tension and a second viscosity, the first surface tension being about equal to or less than the second surface tension and the first viscosity being less than the second viscosity.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 63/168,471, filed Mar. 31, 2021, which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
6354700 | Roth | Mar 2002 | B1 |
9770922 | Cofler | Sep 2017 | B2 |
10085499 | Hao | Oct 2018 | B2 |
20020086914 | Lee | Jul 2002 | A1 |
20030165630 | Baker | Sep 2003 | A1 |
20040231028 | Triebes | Nov 2004 | A1 |
20060250427 | Kroon | Nov 2006 | A1 |
20070014955 | Tanley | Jan 2007 | A1 |
20070277690 | Gervasi | Dec 2007 | A1 |
20100079533 | Gulvin | Apr 2010 | A1 |
20120314011 | Wetjens | Dec 2012 | A1 |
20130145944 | Platt | Jun 2013 | A1 |
20140356538 | Schmitt | Dec 2014 | A1 |
20180250930 | Sato | Sep 2018 | A1 |
20180264163 | Muslet | Sep 2018 | A1 |
20180354253 | Sawin | Dec 2018 | A1 |
20200147944 | Muslet | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2015097614 | Jul 2015 | WO |
Entry |
---|
Polytek_SDS_Petroleum-Jelly Apr. 9, 2014 (Year: 2014). |
International (PCT) Search Report and Written Opinion for PCT/US22/22783 dated Jun. 13, 2022, BP-566 PCT ||, 11 pages. |
Abbot. “Printing Science: Principles and Practice” p. 9 and 19-26 May 2018; Entire Document, 8 pages. |
Kretzschmar. “Mechanical Properties of Ultraviolet-Assisted Paste Extrusion and 18 Postextrusion Ultraviolet-Curing of Three-Dimensional Printed Biocomposites” 127-137. 3D Printing and Additive Manufacturing. Web. 2019; p. 130, col. 2, para 2-3; DOI: 10.1089/3dp.2018.0148, 4 pages. |
International (PCT) Search Report and Written Opinion for PCT/US24/0729 dated Jun. 26, 2024, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20220314677 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
63168471 | Mar 2021 | US |