The present invention generally relates to printing methods, more specifically, to a printing apparatus and method of providing security to desired information during a printing operation of a thermal transfer printer.
Printing systems such as copiers, printers, facsimile devices or other systems having a print engine for creating visual images, graphics, texts, etc. on a page or other printable medium typically include various media feeding systems for introducing original image media or printable media into the system. Examples include thermal transfer printers. Typically, a thermal transfer printer is a printer which prints on media by melting a portion of coating of ribbon stream so that it stays attached to the media on which the print is applied. It contrasts with direct thermal printing where no ribbon is present in the process. Typically, thermal transfer printers comprise a supply spindle operable for supplying a media web and ribbon, a print station having a printhead, and a take up spindle. During a printing operation, new ribbon and media is fed from the supply spindle to the print station for printing and then the ribbon is wound up by the take up spindle while the media is exited from the print station.
As the ribbon exits the print station it is rewound on the take up spindle. When printing sensitive information such as, for example, social security numbers, account numbers, and other similar private information, the unused portion of the ribbon will contain a negative image of the subject sensitive information. Undesirably, conventional thermal transfer printing methods provide no means of security to the information which is printed. Because the used ribbon on the take up spindle possesses a negative image of the previously printed image, the secrecy of the information printed on the media may be jeopardized.
It is therefore be desirable to provide a printing system and method which provides security means to information printed on media during a thermal transfer printing operation. It is also be desirable to provide a printing method which allows for the used ribbon of such a thermal transfer printer to be obscured such that the negative image is unable to be read.
The present invention is designed to overcome the deficiencies and shortcomings of the systems and devices conventionally known and described above. The present invention is designed to reduce the manufacturing costs and the complexity of assembly. In all exemplary embodiments, the present invention is directed to a method of securing and maintaining the integrity of desired information on a ribbon and media subsequent to a printing operation. According to aspects of the present invention, a printer is provided and generally comprises a print station having a printhead, a supply spindle for moving media through the print station and a ribbon drive assembly operable for feeding ribbon along a print path of the printer. In exemplary embodiments, the printhead is capable of being moved or lifted away from the media and ribbon subsequent to a print operation. Further, the ribbon fed through the ribbon drive assembly may be rewound a predetermined distance, thereby allowing for a second print operation on the space previously printed upon. More specifically, the used ribbon can be rewound and utilized to print a random pattern on a piece of waste media (stub) thus obscuring any previous images on the ribbon. In exemplary embodiments, the media can also be reversed a specific distance and reprinted with the used ribbon several times thus obscuring the image on the used ribbon.
If the waste media is printed on only once, the random pattern will reveal what was previously printer due to a lack of wax (ink) on the ribbon. Accordingly, in exemplary embodiments, the method steps are repeated a set number of times thereby eliminating negative images and also reducing the length of waste media required. The ribbon clean-up process can be printed after an original print operation has occurred.
Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present exemplary embodiments of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed. The accompanying drawings are included to provide a further understanding of the invention, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments of the invention, and together with the detailed description, serve to explain the principles and operations thereof.
The present subject matter may take form in various components and arrangements of components, and in various steps and arrangements of steps. The appended drawings are only for purposes of illustrating exemplary embodiments and are not to be construed as limiting the subject matter.
a is a plan view of the negative image remaining on a print ribbon described in
b is a plan view of the negative image remaining on a print ribbon described in
The present invention will now be described more fully hereinafter with reference to the accompanying drawings in which exemplary embodiments of the invention are shown. However, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These exemplary embodiments are provided so that this disclosure will be both thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Further, as used in the description herein and throughout the claims that follow, the meaning of “a”, “an”, and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
In exemplary embodiments of the present invention, a printing method is provided which overcomes the shortcomings of the prior art by providing a means of security to desired information subsequent to a printing operation. The method includes the provision of a thermal transfer printer (not shown) having a supply spindle operable for supplying a media web (not shown) or ribbon, a print station (not shown) having a printhead (not shown), and a take up spindle. Those skilled in the art will appreciate that many other components may be included within the printer and many configurations may be employed. In all exemplary embodiments, during a printing operation, new or supply ribbon and media is fed from the supply spindle to the print station for printing and then the ribbon is wound up by the take up spindle while the media is exited from the print station. As the ribbon exits the print station it is wound to a take up spindle.
Referring now to the drawings and specifically,
In exemplary embodiments, the spindles 12, 14 can be rotatably connected to a base plate 15 at one end and extend through a port 17, 19 of a cover plate 13 such that their respective distal ends 21, 23 are operative for receiving a roll of ribbon supply 26. Each spindle 12, 14 can be provided with an independently operated drive system comprising a plurality of gears 18, 20 for rotating the spindles 12, 14, a motor 22, 24 for driving the plurality of gears 18, 20, respectively, in both a clockwise or counter clockwise direction, and a rotary encoder (not shown). In exemplary embodiments, the drive system can be connected to the base plate 15. It will be understood by those skilled in the art that it is contemplated that the motor 22, 24 will be a DC motor, however, any type of motor suitable for powering the gears 18, 20 and spindles 12, 14 in a rotary movement may be employed. Further, in alternative exemplary embodiments, the motors 22, 24 are independently operated.
The drive assembly 10 can further comprise a circuit board 16 connected to the base plate 15 having a control processor (not shown) for each motor 22, 24 and attached to a side of the base plate 15. The electronics of the circuit board 16 similarly can include two sets of drive components (not shown) for each spindle 12, 14. In exemplary embodiments, the drive assembly 10 can use a processor core (not shown) with programmable digital and/or analog functions and communication components. However, it will be understood by those skilled in the art that a variety of processors may be used. In an exemplary embodiment, the processor (not shown), motor drive IC's (not shown), opto encoders (not shown) and associated circuitry (not shown) can be located on a single board 16 of the drive assembly 10. The processor (not shown) of the drive assembly 10 can be communicatively linked with a main processor of the printer PCB (not shown) via a SPI bus (not shown).
In exemplary embodiments, two independent control systems, one for each motor 22, 24, can be executed every 500 us seconds. By utilizing the independent motor system described above, subsequent to an initial print operation, the ribbon supply 26 may be rewound about the supply spindle 12 for additional print operations. Such print operations may be critical as the used ribbon oftentimes contains a reverse image of what was previously printed.
In exemplary embodiments, subsequent to the initial print operation, the print head (not shown) can be raised or lifted. Thereafter, the used ribbon 26 can be rewound a predetermined distance about the supply spindle 12 and utilized to print a random or block-out pattern on a piece of waste media (stub) thus obscuring any previous images on the ribbon 26. In exemplary embodiments, the media can also be reversed or rewound predetermined distance and reprinted with the used ribbon 26 several times thus further obscuring the image on the used ribbon. The repeated print operations may be desirable because if the waste media is printed on only once, the random pattern will reveal what was previously printer due to a lack of wax (ink) on the ribbon. Printing on the media only once would produce a negative image of the previous image. Reversing the media several times eliminates the negative image and also reduces the length of waste media required.
Referring now to
Turning next to
Finally turning to
Aspects according to the present invention contemplate that sensitive information will come is a plethora of forms. For exemplary purposes, such sensitive information can include: names, amounts, account numbers, addresses, memo entries, social security numbers, FEINs, ID numbers, medical information, financial information, passport numbers, draft numbers, document numbers; PINs, alphanumeric codes and any other similar information desired to be protected.
The embodiments described above provide advantages over conventional devices and associated methods of manufacture. It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Furthermore, the foregoing description of the preferred embodiment of the invention and best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation—the invention being defined by the claims.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/493,598, filed Jun. 6, 2011, entitled Ribbon Security Clean-up, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61493598 | Jun 2011 | US |