1. Field of the Invention
The present invention relates to ink printers and, particularly, to a printing system and method having a dot matrix-type printer using a liquid ink reservoir.
2. Description of the Related Art
Dot matrix printers (sometimes referred to as “impact matrix printers”) are well known in the art. A dot matrix printer is a type of computer printer with a print head that runs back and forth, or in an up and down motion, on the page and prints by impact, striking an ink-soaked cloth ribbon against the paper, much like a typewriter. Unlike a typewriter or daisy wheel printer, letters are drawn out of a dot matrix, and thus, varied fonts and arbitrary graphics can be produced.
Each of the openings is tapped to threadably engage the threaded collar 17 of a solenoid assembly 18.
Die cast member 11 is further provided with a first mounting portion 20 having a first groove 21 provided in a first upright portion 22 and a groove 21a provided in a second upright portion 24. The grooves 21 and 21a are adapted to receive a flat plate 25 provided with a plurality of openings 26, each receiving an associated one of the solenoid wires 19.
A second supporting section 27 die cast as an integral part of member 11 and positioned in front of section 20 is comprised of a first groove 28 extending from a first upright portion 29 and a second groove 28a provided in a second upright portion 30. These grooves are adapted to receive a flat plate 31 provided with a plurality of openings 32, each receiving an associate one of the solenoid wires 19.
A final upright portion 34 is die cast as an integral portion of member 11 and is provided with a centrally located opening 35, with the opening widening at ledge 38 to form a wider opening 39. In operation, the solenoid wires 19 may be selectively moved in the directions shown by arrows 40 and 41 (as shown in
The armature member 57, which is formed of a permanent magnet material, is secured to a circular shaped disc 61, formed of a springy or resilient metallic material, by means of rivet 62. A thin wafer 63 is positioned between armature 57 and the left-hand surface of spring 61 and a second wafer 64 is positioned between the right-hand surface of spring 61 and the head of rivet 62, to reduce vibration.
A relatively thick disc shaped member 65, having a central opening 65a, is positioned within shell 50 and has a continuous annular shaped projecting flange portion 65b engaging the left-hand surface of spring 61. The armature assembly, including spring 61 and armature 57, as well as disc 65, is rigidly secured within shell 50 by means of a cap 66 having a tapped interior surface 67 which threadably engages the threaded portion 68 of shell 50.
In operation, with the coil assembly 55 de-energized, spring 61 assumes its flat shape, as shown in
The coil assembly is wound upon a cylindrical shaped bobbin 70, which is then inserted into the hollow annular portion 54 of shell 50. The tubular shaped wire guide 58 has its left-hand portion secured to the interior opening 56a by means of a suitable epoxy. An epoxy is also preferably applied between the threaded portion 68 of shell 50 and the tapped portion 67 of cap 66 in order to firmly join the shell 53 and cap 66 after appropriate adjustment (i.e., tightening) of cap 66 upon the shell. A small opening 66a is provided at the center of cap 66 to adjust the amount of travel which the armature 57 may experience and to thereby control the amount of travel experienced by each print wire 19.
Printer head 100, shown in
Thus, a printing system and method solving the aforementioned problems is desired.
The printing system is a dot matrix-type printer utilizing a liquid ink reservoir. The reservoir includes a lower wall, at least one sidewall and an open upper end. The reservoir is adapted for receiving a volume of liquid ink. A plurality of pins are disposed within the reservoir, each pin having a lower end and a tapered upper end terminating in a printing tip. The plurality of pins are arrayed in parallel rows within the reservoir, each pin extending vertically with respect to the reservoir.
In use, the reservoir is held stationary, the liquid ink being contained therein by gravity alone. A printing substrate, such as a piece of paper, is drawn over the open upper end of the reservoir by conventional means, such as rollers or the like. Thus, as opposed to a conventional dot matrix printer, where a printer head moves relative to a stationary piece of paper, the paper of the present system moves relative to the stationary reservoir.
A driver selectively vertically translates the plurality of pins, with each individual pin being selectively driven separate of the other pins. In a non-printing state, each pin is positioned so that the lower end is located adjacent the lower wall of the reservoir, and the printing tip is positioned beneath the surface of the volume of ink received within the reservoir. Upon selective vertical translation of one of the pins, the selected pin is translated upwardly so that the printing tip thereof contacts the printing substrate to form a dot thereon, the ink being carried on the surface of the printing tip of the pin. The pin is then selectively lowered back into the reservoir beneath the surface of the liquid ink.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The printing system 10, as shown in
A plurality of pins 44 are disposed within the reservoir 12, each pin 44 having a main body 16, which may be cylindrical, as shown, or may have any other suitable type of configuration, the main body 16 having a lower end and a tapered upper end terminating in a printing tip 48. As shown in
In use, the reservoir 12 is held stationary, the liquid ink I being contained therein by gravity alone. A printing substrate, such as a piece of paper P, is drawn over the open upper end of the reservoir 12 by conventional means, such as rollers or the like. It should be understood that any suitable mechanism for drawing the paper P across the open upper end of reservoir 12 may be utilized. Such paper transfer mechanisms are well known in the field of copy machines, and such a copy machine roller system may be utilized to transfer the paper P across the upper end of the reservoir 12. One such system is shown in U.S. Pat. No. 4,009,957, which is hereby incorporated by reference in its entirety. As opposed to a conventional dot matrix printer, where a printer head moves relative to a stationary piece of paper, the paper P of the present system moves relative to the stationary reservoir 12.
As shown in
The driver 33 selectively vertically translates the plurality of pins 44, each individual pin 44 being selectively driven separate of the other pins 44. As shown in
As best shown in
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/282,225, filed Jan. 4, 2010.
Number | Name | Date | Kind |
---|---|---|---|
173718 | Edison | Feb 1876 | A |
3151543 | Preisinger | Oct 1964 | A |
3329964 | Mutschler et al. | Jul 1967 | A |
4279519 | Shiurila | Jul 1981 | A |
4643599 | Taguchi et al. | Feb 1987 | A |
4806956 | Nishikawa et al. | Feb 1989 | A |
4913568 | Torisawa | Apr 1990 | A |
4984911 | Nakayama | Jan 1991 | A |
6123469 | Suzuki et al. | Sep 2000 | A |
6176629 | Suzuki et al. | Jan 2001 | B1 |
6561707 | Garramone et al. | May 2003 | B2 |
6695496 | Nakagaki et al. | Feb 2004 | B2 |
6849127 | Vann et al. | Feb 2005 | B2 |
7547096 | Matysiak | Jun 2009 | B2 |
Number | Date | Country |
---|---|---|
57159662 | Oct 1982 | JP |
61280947 | Dec 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20110164089 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61282225 | Jan 2010 | US |