The present exemplary embodiments relate to media (e.g., document or paper) handling systems and systems for printing thereon and is especially applicable for a printing system comprising a plurality of associated marking engines.
The subject application is related to the following co-pending applications:
U.S. Ser. No. 10/924,106, for “Printing System with Horizontal Highway and Single Pass Duplex”;
U.S. Ser. No. 10/924,459, for “Parallel Printing Architecture Consisting of Containerized Image Marking Engine Modules”; and
U.S. Ser. No. 10/924,458, for “Print Sequence Scheduling for Reliability”.
Printing systems including a plurality of marking engines are known and have been generally referred to as tandem engine printers or cluster printing systems. See U.S. Pat. No. 5,568,246. Such systems especially facilitate expeditious duplex printing (both sides of a document are printed) with the first side of a document being printed by one of the marking engines and the other side of the document being printed by another so that parallel printing of sequential documents can occur. The process path for the document usually requires an inversion of the document (the leading edge is reversed to become the trailing edge) to facilitate printing on the back side of the document. Inverter systems are well known and essentially comprise an arrangement of nip wheels or rollers which receive the document by extracting it from a main process path, then direct it back on to the process path after a 180° flip so that what had been the trailing edge of the document now leaves the inverter as the leading edge along the main process path. Inverters are thus fairly simple in their functional result; however, complexities occur as the printing system is required to handle different sizes and types of documents and where the marking engines themselves are arranged in a parallel printing system to effect different types of printing, e.g., black only printing versus color or custom color printing.
As a document is transported along its process path through the system, the document's precise position must be known and controlled. The adjustment of the documents to desired positions for accurate printing is generally referred to as a registering process and the apparatus used to achieve the process are known as registration systems. Precision registration systems generally comprise nip wheels in combination with document position sensors whereby the position information is used for feedback control of the nip wheels to adjust the document to the desired position. It can be appreciated that many registration systems require some release mechanism from the media handling path upstream of the nip registration wheels so that the wheels can freely effect whatever adjustment is desired. This requires a relatively long and expensive upstream paper handling path. In parallel printing systems using multiple marking engines, the required registration systems also adds to the overall media path length. As the number of marking engines increases, there is a corresponding increase in the associated inverting and registering systems. As these systems may be disposed along the main process path, the machine size and paper path reliability are inversely affected by the increased length of the paper path required to effectively release the documents for registration.
Another disadvantageous complexity especially occurring in parallel printing systems is the required change in the velocity of the media/document as it is transported through the printing system. As the document is transported through feeding, marking, and finishing components of a parallel printing system, the process speed along the media path can vary to a relatively high speed for transport along a highway path, but must necessarily be slowed for some operations, such as entering the transfer/marking system apparatus. Effective apparatus for buffering such required velocity changes also requires an increase in the main process path to accommodate document acceleration and deceleration between the different speed sections of the process path.
Especially for parallel printing systems, architectural innovations which effectively shorten the media process path, enhance the process path reliability and reduce overall machine size are highly desired.
The proposed development comprises an inverter disposed in a parallel printing system for accomplishing necessary document handling functions above and beyond the mere document inversion function. The combined functions also include velocity buffering and registration within the inverter assembly for yielding a more compact and cost effective media path.
The velocity buffering occurs when a document is received from a main highway path when the document is traveling at a higher speed and then transported into a marking engine at a slower speed. Thus, the ingress to the inverter is at one speed, while the egress is at a second speed. Such an operating function would normally be accomplished at the entrance to the image transfer zone of the marking component. Alternatively, the inverter could perform an opposite velocity buffering function, the ingress could be at a low speed, while the egress would be at a higher speed. Such an operating function could normally be expected to occur at the exit of the marking engine.
A second combined function of the inverter apparatus is performing a document registration while the document is in the inverter assembly. The inverter assembly effectively decouples the document from the media process path so that only the inverter holds the document independently of the process path nip rollers. The inverter nips then can be controlled to deskew or laterally shift the document, thereby effectively completing all the necessary registration functions while simultaneously accomplishing an inverting function.
Alternative embodiments can effectively combine all three functions, inverting, velocity buffering and registering in the same inverter assembly for even more enhanced efficiency and size reductions in the paper handling path and overall machine size.
Another embodiment comprises the method of processing the document for transport through a printing system for enhancing document control and reducing transport path distance. The printing system includes an inverter assembly comprising a variable speed drive motor associated with nip drive rollers for grasping the document. The system also includes a marking engine. The method comprises transporting a document into the inverter assembly at a first speed, inverting the document in the inverter assembly, and transporting the document out of the inverter assembly in a second speed whereby a variance between the first and second speeds is buffered by the inverter assembly.
Advantages of the exemplary embodiments result from the combined processing functions of inversion, registration and velocity buffering for effectively shortening the document process path through a printing system, thereby reducing the overall machine size and enhancing the process path reliability.
a is an elevated view of a portion of the inverter assembly of
b is an elevated view of an inverter nip assembly as shown in
With reference to the drawings wherein the showings are for purposes of illustrating alternative embodiments and not for limiting same,
The marking engines 12, 14 shown in
With reference to
a is a partial elevated view of the inverter assembly of
With reference to
In
The examples depicted in
The advantages of an inverter assembly capable of performing registering and/or velocity buffering functions simultaneously, while accomplishing an inverting function provides numerous alternative advantageous architectures in parallel printing systems.
With reference to
The foregoing architectural embodiments describe an inverter assembly that performs the above inversion and cross-process actions within a very compact architectural envelope. The inverter assemblies 92, 94 use a convention reversing roll nip structure as the active inverting element. As a document enters the inverter assembly 92, 94, the reversing roll nip 64 takes control of the document and drives it in a forward direction until the sheet trailing edge reaches a predetermined stop location. The stop location is located slightly past a gate feature such as the duplex gate 62. The variable speed reversing process direction motor then stops and reverses the document transport direction, driving the document in a reverse direction from the reversing roll nips 64. The new lead edge of the document passes by the gate feature, either duplex gate 62 or simplex gate 60, so it exits the inverter assembly 50 in a different path than the input path.
With reference to
Alternative embodiments of the inverter assembly comprise maintaining separate nip rollers for the inverter and the registration functions (not shown). For example, a registration function could be performed by the input nip rollers 56 when the inverter nip rollers 64 are opened. Since many inverter systems already include a nip release, there is no cost penalty if the registration function is done at the entrance or exit of the inverter such that the inverter nip must be released during the registration process. Such a configuration maintains the important feature mentioned above of requiring no additional nip releases during sheet registration, while providing additional flexibility in terms of document path design and routing.
The subject embodiments enable very high registration latitudes (deskew, top edge registration and lead edge registration), since corrections can be made while a sheet both enters and exits the inverter assembly. By the nature of the inversion process, sheets entering the inverter assemblies are registered using the lead edge of the sheet (the lead edge becomes the trailing edge when it exits) to correct for any feeding/transporting registration errors. The removal of skew and lateral registration errors could be done while the sheet enters and exits the inverter, or the primary errors could be removed during the entrance phase and additional top edge and skew corrections could be made as the sheet exits the inverter (to correct for cut sheets and trailing edge/leading edge registration induced errors). Such a capability puts less stringent registration requirements on the feeders and other transports and thereby lowers overall system costs and enhances system reliability and robustness.
The exemplary embodiments have been described with reference to the specific embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the exemplary embodiments be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 10/924,113, filed Aug. 23, 2004 now U.S. Pat. No. 7,123,873.
Number | Name | Date | Kind |
---|---|---|---|
4579446 | Fujino et al. | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4836119 | Siraco et al. | Jun 1989 | A |
5004222 | Dobashi | Apr 1991 | A |
5008713 | Ozawa et al. | Apr 1991 | A |
5080340 | Hacknauer et al. | Jan 1992 | A |
5095342 | Farrell et al. | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5208640 | Horie et al. | May 1993 | A |
5272511 | Conrad et al. | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5489969 | Soler et al. | Feb 1996 | A |
5504568 | Saraswat et al. | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang et al. | Sep 1996 | A |
5568246 | Keller et al. | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5596416 | Barry et al. | Jan 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5710968 | Clark et al. | Jan 1998 | A |
5778377 | Marlin et al. | Jul 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5963770 | Eakin | Oct 1999 | A |
5995721 | Rourke et al. | Nov 1999 | A |
6059284 | Wolf et al. | May 2000 | A |
6125248 | Moser | Sep 2000 | A |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6341773 | Aprato et al. | Jan 2002 | B1 |
6384918 | Hubble, III et al. | May 2002 | B1 |
6402133 | Miyake | Jun 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke et al. | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson et al. | Apr 2003 | B2 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow et al. | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6612571 | Rider | Sep 2003 | B2 |
6621576 | Tandon et al. | Sep 2003 | B2 |
6633382 | Hubble, III et al. | Oct 2003 | B2 |
6639669 | Hubble, III et al. | Oct 2003 | B2 |
6819906 | Herrmann et al. | Nov 2004 | B1 |
6925283 | Mandel et al. | Aug 2005 | B1 |
6959165 | Mandel et al. | Oct 2005 | B2 |
6973286 | Mandel et al. | Dec 2005 | B2 |
7024152 | Lofthus et al. | Apr 2006 | B2 |
20020078012 | Ryan et al. | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20040085531 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen et al. | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040216002 | Fromherz et al. | Oct 2004 | A1 |
20040225391 | Fromherz et al. | Nov 2004 | A1 |
20040225394 | Fromherz et al. | Nov 2004 | A1 |
20040247365 | Lofthus et al. | Dec 2004 | A1 |
20060033771 | Lofthus et al. | Feb 2006 | A1 |
20060039728 | deJong et al. | Feb 2006 | A1 |
20060066885 | Anderson et al. | Mar 2006 | A1 |
20060067756 | Anderson et al. | Mar 2006 | A1 |
20060067757 | Anderson et al. | Mar 2006 | A1 |
20060114313 | Moore | Jun 2006 | A1 |
20060114497 | Anderson et al. | Jun 2006 | A1 |
20060115284 | Grace et al. | Jun 2006 | A1 |
20060115287 | Roof | Jun 2006 | A1 |
20060115288 | Roof | Jun 2006 | A1 |
20060132815 | Lofthus et al. | Jun 2006 | A1 |
20060176336 | Moore et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2003182907 | Jul 2003 | JP |
2004029443 | Jan 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20070031170 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10924113 | Aug 2004 | US |
Child | 11545176 | US |