The following applications, the disclosures of each being totally incorporated herein by reference are mentioned:
U.S. Provisional Application Ser. No. 60/631,651, filed Nov. 30, 2004, entitled “TIGHTLY INTEGRATED PARALLEL PRINTING ARCHITECTURE MAKING USE OF COMBINED COLOR AND MONOCHROME ENGINES,” by David G. Anderson, et al.;
U.S. Provisional Patent Application Ser. No. 60/631,918, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” by David G. Anderson et al.;
U.S. Provisional Patent Application Ser. No. 60/631,921, filed Nov. 30, 2004, entitled “PRINTING SYSTEM WITH MULTIPLE OPERATIONS FOR FINAL APPEARANCE AND PERMANENCE,” by David G. Anderson et al.;
U.S. application Ser. No. 10/761,522, filed Jan. 21, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Barry P. Mandel, et al.;
U.S. application Ser. No. 10/785,211, filed Feb. 24, 2004, entitled “UNIVERSAL FLEXIBLE PLURAL PRINTER TO PLURAL FINISHER SHEET INTEGRATION SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/881,619, filed Jun. 30, 2004, entitled “FLEXIBLE PAPER PATH USING MULTIDIRECTIONAL PATH MODULES,” by Daniel G. Bobrow.;
U.S. application Ser. No. 10/917,676, filed Aug. 13, 2004, entitled “MULTIPLE OBJECT SOURCES CONTROLLED AND/OR SELECTED BASED ON A COMMON SENSOR,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/917,768, filed Aug. 13, 2004, entitled “PARALLEL PRINTING ARCHITECTURE CONSISTING OF CONTAINERIZED IMAGE MARKING ENGINES AND MEDIA FEEDER MODULES,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/924,106, filed Aug. 23, 2004, entitled “PRINTING SYSTEM WITH HORIZONTAL HIGHWAY AND SINGLE PASS DUPLEX,” by Lofthus, et al.;
U.S. application Ser. No. 10/924,113, filed Aug. 23, 2004, entitled “PRINTING SYSTEM WITH INVERTER DISPOSED FOR MEDIA VELOCITY BUFFERING AND REGISTRATION,” by Joannes N. M. deJong, et al.;
U.S. application Ser. No. 10/924,458, filed Aug. 23, 2004, entitled “PRINT SEQUENCE SCHEDULING FOR RELIABILITY,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 10/924,459, filed Aug. 23, 2004, entitled “PARALLEL PRINTING ARCHITECTURE USING IMAGE MARKING ENGINE MODULES (as amended),” by Barry P. Mandel, et al;
U.S. application Ser. No. 10/933,556, filed Sep. 3, 2004, entitled “SUBSTRATE INVERTER SYSTEMS AND METHODS,” by Stan A. Spencer, et al.;
U.S. application Ser. No. 10/953,953, filed Sep. 29, 2004, entitled “CUSTOMIZED SET POINT CONTROL FOR OUTPUT STABILITY IN A TIPP ARCHITECTURE,” by Charles A. Radulski et al.;
U.S. application Ser. No. 10/999,326, filed Nov. 30, 2004, entitled “SEMI-AUTOMATIC IMAGE QUALITY ADJUSTMENT FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Robert E. Grace, et al.;
U.S. application Ser. No. 10/999,450, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING FOR AN INTEGRATED PRINTING SYSTEM,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/000,158, filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. application Ser. No. 11/000,168, filed Nov. 30, 2004, entitled “ADDRESSABLE FUSING AND HEATING METHODS AND APPARATUS,” by David K. Biegelsen, et al.;
U.S. application Ser. No. 11/000,258, filed Nov. 30, 2004, entitled “GLOSSING SYSTEM FOR USE IN A TIPP ARCHITECTURE,” by Bryan J. Roof;
U.S. application Ser. No. 11/001,890, filed Dec. 2, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/002,528, filed Dec. 2, 2004, entitled “HIGH RATE PRINT MERGING AND FINISHING SYSTEM FOR PARALLEL PRINTING,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/051,817, filed Feb. 4, 2005, entitled “PRINTING SYSTEMS,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/069,020, filed Feb. 28, 2004, entitled “PRINTING SYSTEMS,” by Robert M. Lofthus, et al.;
U.S. application Ser. No. 11/070,681, filed Mar. 2, 2005, entitled “GRAY BALANCE FOR A PRINTING SYSTEM OF MULTIPLE MARKING ENGINES,” by R. Enrique Viturro, et al.;
U.S. application Ser. No. 11/081,473, filed Mar. 16, 2005, entitled “PRINTING SYSTEM,” by Steven R. Moore;
U.S. application Ser. No. 11/084,280, filed Mar. 18, 2005, entitled “SYSTEMS AND METHODS FOR MEASURING UNIFORMITY IN IMAGES,” by Howard Mizes;
U.S. application Ser. No. 11/089,854, filed Mar. 25, 2005, entitled “SHEET REGISTRATION WITHIN A MEDIA INVERTER,” by Robert A. Clark et al.;
U.S. application Ser. No. 11/090,498, filed Mar. 25, 2005, entitled “INVERTER WITH RETURN/BYPASS PAPER PATH,” by Robert A. Clark;
U.S. application Ser. No. 11/090,502, filed Mar. 25, 2005, entitled IMAGE QUALITY CONTROL METHOD AND APPARATUS FOR MULTIPLE MARKING ENGINE SYSTEMS,” by Michael C. Mongeon;
U.S. application Ser. No. 11/093,229, filed Mar. 29, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien;
U.S. application Ser. No. 11/095,872, filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Paul C. Julien;
U.S. application Ser. No. 11/094,864, filed Mar. 31, 2005, entitled “PRINTING SYSTEM,” by Jeremy C. dejong, et al.;
U.S. application Ser. No. 11/095,378, filed Mar. 31, 2005, entitled “IMAGE ON PAPER REGISTRATION ALIGNMENT,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/094,998, filed Mar. 31, 2005, entitled “PARALLEL PRINTING ARCHITECTURE WITH PARALLEL HORIZONTAL PRINTING MODULES,” by Steven R. Moore, et al.;
U.S. application Ser. No. 11/102,899, filed Apr. 8,2005, entitled “SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.;
U.S. application Ser. No. 11/102,910, filed Apr. 8, 2005, entitled “COORDINATION IN A DISTRIBUTED SYSTEM,” by Lara S. Crawford, et al.;
U.S. application Ser. No. 11/102,355, filed Apr. 8, 2005, entitled “COMMUNICATION IN A DISTRIBUTED SYSTEM,” by Markus P. J. Fromherz, et al.;
U.S. application Ser. No. 11/102,332, filed Apr. 8, 2005, entitled “ON-THE-FLY STATE SYNCHRONIZATION IN A DISTRIBUTED SYSTEM,” by Haitham A. Hindi;
U.S. application Ser. No. 11/109,558, filed Apr. 19, 2005, entitled “SYSTEMS AND METHODS FOR REDUCING IMAGE REGISTRATION ERRORS,” by Michael R. Furst et al.;
U.S. application Ser. No. 11/109,566, filed Apr. 19, 2005, entitled “MEDIA TRANSPORT SYSTEM,” by Mandel et al.;
U.S. application Ser. No. 11/109,996, filed Apr. 20, 2005, entitled “PRINTING SYSTEMS,” by Michael C. Mongeon et al.;
U.S. application Ser. No. 11/115,766, Filed Apr. 27, 2005, entitled “IMAGE QUALITY ADJUSTMENT METHOD AND SYSTEM,” by Robert E. Grace;
U.S. application Ser. No. 11/122,420, filed May 5, 2005, entitled “PRINTING SYSTEM AND SCHEDULING METHOD,” by Austin L. Richards;
U.S. application Ser. No. 11/136,821, filed May 25, 2005, entitled “AUTOMATED PROMOTION OF MONOCHROME JOBS FOR HLC PRODUCTION PRINTERS,” by David C. Robinson;
U.S. application Ser. No. 11/136,959, filed May 25, 2005 entitled “PRINTING SYSTEMS”, by Kristine A. German et al.;
U.S. application Ser. No. 11/137,634, filed May 25, 2005, entitled “PRINTING SYSTEM”, by Robert M. Lofthus et al.;
U.S. application Ser. No. 11/137,251, filed May 25, 2005, entitled “SCHEDULING SYSTEM”, by Robert M. Lofthus et al.;
U.S. C-I-P application Ser. No. 11/137,273, filed May 25, 2005, entitled “PRINTING SYSTEM”, by David G. Anderson et al.;
U.S. Publication No. 2006-0066885-A1, published Dec. 7, 2006, entitled “INTER-SEPARATION DECORRELATOR”, by Edul N. Dalal et al.;
U.S. Publication No. 2006-0274334-A1, published Dec. 7, 2006, entitled “LOW COST ADJUSTMENT METHOD FOR PRINTING SYSTEMS”, by Michael C. Mongeon;
U.S. Publication No. 2006-0280517A1, published Dec. 14, 2006, entitled “WARM-UP OF MULTIPLE INTEGRATED MARKING ENGINES”, by Bryan J. Roof et al.;
U.S. application Ser. No. 11/156,778, filed Jun. 20, 2005, entitled “PRINTING PLATFORM”, by Joseph A. Swift;
U.S. Publication No. 2006-0285159-A1, published Dec. 21, 2006, entitled “METHOD OF ORDERING JOB QUEUE OF MARKING SYSTEMS”, by Neil A. Frankel.
The present disclosure relates to a continuous feed printing system that integrates one or more printing system modules. A continuous feed (CF) printing system prints on a band or roll of paper as opposed to a sheet printing system that prints on discrete sheets of media.
Integrated sheet printing systems, such as the system illustrated in
The CF format is advantageous for offset print applications because of its media handling ability. One web of media is processed through a print system from the media roll input to the media roll output. The CF format is very reliable because the web is processed through the printing system as one media sheet. However, conventional CF printing systems can require a sizable investment and do not provide the modularity of an integrated cut sheet printing system as described with reference with
This disclosure provides a modular CF printing system to enable a higher web process speed relative to the CF printing system described with reference to
U.S. Pat. No. 6,786,149, entitled “HIGH SPPED CONTINUOUS FEEED PRINTING SYSTEM”, issued Sep. 7, 2004 to Lomoine et al., the entire disclosure which is incorporated by reference, provides a high speed continuous feed printing system.
According to one embodiment, a printing system is provided that includes one or more printing modules, the one or more printing modules comprising a media web transport input; a media web image transfer point; a media web transport output; a primary image transfer system; a secondary image transfer system; and an intermediate image transfer point coupling the primary image transfer system and a secondary image transfer system. The secondary image transfer system is adapted to accept an image from the primary image transfer system at the intermediate image transfer point, and the secondary image transfer system is adapted to transfer the image from the secondary image transfer system to a media web at the media transfer point. The media web transport input and media web transport output provide a media web path to route the media web from the media web transport input to the media web transfer point, and from the media web transfer point to the media web transport output.
According to another embodiment, a method of printing is provided. The method comprising transporting a media web to a first printing module transport input; transporting the media web from the first printing module transport input to an image transfer point; transferring an image from a secondary image transfer system to the media web at the image transfer point; and transporting the media web to a first printing module transport output from the image transfer point subsequent to the image being transferred to the media web. The secondary image transfer system is adapted to accept an image from a primary image transfer system at an intermediate image transfer point and the primary image system transfers an image to the secondary image transfer system at a speed less than the speed of the image being transferred to the media web.
According to another embodiment, a xerographic printing system is provided. The xerographic printing system includes two or more horizontally aligned printing modules, each printing module comprising a media web transport input; a media web image transfer point; a media web transport output; a primary image transfer system; a secondary image transfer system; and an intermediate image transfer point. The intermediate image transfer point coupling the primary image transfer system and secondary image transfer system. The secondary image transfer system is adapted to accept an image from the primary image transfer system at the intermediate image transfer point, and the secondary image transfer system is adapted to transfer the image from the secondary image transfer system to a media web at the media transfer point. The media web transport input and media web transport output provide a media web path to route the media web from the media web transport input to the media web transfer point, and from the media web transfer point to the media web transport output. The two or more horizontally aligned printing modules provide a continuous media path web from the media web transport input of a first end printing module to the media web transport output of a second end printing module, wherein any printing modules positioned between the first end printing module and the second end printing module are aligned to provide a continuous media web path between the first end printing module and the second end printing module.
With reference to
To provide an increased media web speed, as compared to a CF printing system as illustrated in
The overall process speed of the CF printing system described with reference to
The overall operation of the CF printing system of
As the media web is processed through the printing modules 34, 36, 38, 40, 42, and 44, image marking is accomplished at the processing speed of the media web. A controller (not shown) may be integrated with the CF printing system to control the overall operation of the system, including the timing of each printing module 34, 36, 38, 40, 42, and 44, as related to its image transfer to the media web 53. By controlling the timing of the printing modules, maximum web speed can be achieved and overlay printing can be accomplished. To achieve maximum web speed, multiple printing modules can cooperatively transfer images onto the media web 53, thereby producing a completely filled media web 53. This cooperative transfer of images requires transferring image files to the appropriate printing modules at the correct time for proper sequencing of the transformed images on the media web 53. Overlay printing is accomplished by sequential printing of multiple images on a particular area or page of the media web 53. For example, printing module one 34 may print black text on a specific page of the media web 53 and printing module four 40 may print a color logo on the same page or area of the media web 53. The net result will be an overlay printed product.
With reference to
The electronic xerographic printing system operates by the primary image belt 66 accepting color separation images from each of the four photoreceptor modules. The primary image belt 66 subsequently transports the resultant 4-later image to the intermediate transfer point 60. An image transfer is completed at the intermediate image transfer point 60 coupling the primary image transfer system 56 and secondary image transfer system 58. As illustrated in
A drive roll 74 drives the secondary image transfer belt 68 at the primary image transfer belt 66 speed to accomplish the image transfer. In addition to the bias roll 70 and drive roll 74, in one exemplary embodiment the secondary image transfer belt 68 is routed along a fixed idler roll 76 and a tension roll 78, respectively. The rolls are mounted to a frame 80 which includes a frame pivot point 82 and is adapted to pivot about the frame pivot point 82. After the image has been transferred to the secondary image transfer belt 68, the frame 80 is pivoted upwardly to decouple the primary and secondary image transfer belts. One exemplary embodiment includes an electromechanical pivot motor 84 and gear assembly 86 attached to the frame for actuating an upward movement of the frame 80. With the image transferred to the secondary image transfer belt 68, the drive roll 74 is driven by an electromechanical drive motor 88 to the speed of the media web. The secondary image transfer system frame 80 is pivoted upwardly to couple the media web 53 and secondary image transfer belt 68 for transferring the image to the media at the media web image transfer point 52.
As referenced in
Subsequent to the disengagement and decoupling of the secondary image transfer belt 68 from the media web 53, the secondary image transfer belt 68 is decelerated to the speed of the primary image transfer belt 66 and an image is transferred from the primary image transfer system to the secondary image transfer system as previously described. The image transfer cycles are repeated to provide a continuous feed printing system. Other features that may be incorporated to the secondary image transfer system include a belt tensioning device 100, a belt cleaner 102 and a bias charge roll 104.
Referring to
Referring to
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4437402 | Fischer | Mar 1984 | A |
4579446 | Fujino et al. | Apr 1986 | A |
4587532 | Asano | May 1986 | A |
4836119 | Siraco et al. | Jun 1989 | A |
5004222 | Dobashi | Apr 1991 | A |
5080340 | Hacknauer et al. | Jan 1992 | A |
5095342 | Farrell et al. | Mar 1992 | A |
5159395 | Farrell et al. | Oct 1992 | A |
5208640 | Horie et al. | May 1993 | A |
5272511 | Conrad et al. | Dec 1993 | A |
5326093 | Sollitt | Jul 1994 | A |
5435544 | Mandel | Jul 1995 | A |
5473419 | Russel et al. | Dec 1995 | A |
5489969 | Soler et al. | Feb 1996 | A |
5504568 | Saraswat et al. | Apr 1996 | A |
5525031 | Fox | Jun 1996 | A |
5557367 | Yang et al. | Sep 1996 | A |
5568246 | Keller et al. | Oct 1996 | A |
5570172 | Acquaviva | Oct 1996 | A |
5596416 | Barry et al. | Jan 1997 | A |
5629762 | Mahoney et al. | May 1997 | A |
5710968 | Clark et al. | Jan 1998 | A |
5778377 | Marlin et al. | Jul 1998 | A |
5884910 | Mandel | Mar 1999 | A |
5983062 | Sameshima | Nov 1999 | A |
5995721 | Rourke et al. | Nov 1999 | A |
6059284 | Wolf et al. | May 2000 | A |
6125248 | Moser | Sep 2000 | A |
6241242 | Munro | Jun 2001 | B1 |
6297886 | Cornell | Oct 2001 | B1 |
6341773 | Aprato et al. | Jan 2002 | B1 |
6384918 | Hubble, III et al. | May 2002 | B1 |
6450711 | Conrow | Sep 2002 | B1 |
6463248 | Jia et al. | Oct 2002 | B1 |
6476376 | Biegelsen et al. | Nov 2002 | B1 |
6476923 | Cornell | Nov 2002 | B1 |
6493098 | Cornell | Dec 2002 | B1 |
6537910 | Burke et al. | Mar 2003 | B1 |
6550762 | Stoll | Apr 2003 | B2 |
6554276 | Jackson et al. | Apr 2003 | B2 |
6577925 | Fromherz | Jun 2003 | B1 |
6607320 | Bobrow et al. | Aug 2003 | B2 |
6608988 | Conrow | Aug 2003 | B2 |
6612566 | Stoll | Sep 2003 | B2 |
6612571 | Rider | Sep 2003 | B2 |
6621576 | Tandon et al. | Sep 2003 | B2 |
6633382 | Hubble, III et al. | Oct 2003 | B2 |
6639669 | Hubble, III et al. | Oct 2003 | B2 |
6731898 | Landa et al. | May 2004 | B1 |
6745002 | Nakashima et al. | Jun 2004 | B2 |
6819906 | Herrmann et al. | Nov 2004 | B1 |
20020078012 | Ryan et al. | Jun 2002 | A1 |
20020103559 | Gartstein | Aug 2002 | A1 |
20030077095 | Conrow | Apr 2003 | A1 |
20040085561 | Fromherz | May 2004 | A1 |
20040085562 | Fromherz | May 2004 | A1 |
20040088207 | Fromherz | May 2004 | A1 |
20040150156 | Fromherz et al. | Aug 2004 | A1 |
20040150158 | Biegelsen et al. | Aug 2004 | A1 |
20040153983 | McMillan | Aug 2004 | A1 |
20040216002 | Fromherz et al. | Oct 2004 | A1 |
20040225391 | Fromherz et al. | Nov 2004 | A1 |
20040225394 | Fromherz et al. | Nov 2004 | A1 |
20040247365 | Lofthus et al. | Dec 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060291930 A1 | Dec 2006 | US |