The field of the invention is inking systems and methods for printing presses for uniformly applying ink and/or dampening fluid to the printing plates and removing unwanted ink from the printing plates, especially from non-image areas.
An offset printing press typically includes a plate cylinder carrying one or more printing plates. The printing plates have oleophilic surfaces defining an image area, and hydrophilic surfaces defining a non-image area. An inker applies ink to the printing plate which collects on the oleophilic surfaces to form an image which can be transferred to a blanket cylinder which transfers the image to media. Dampening solution may be applied to non-image areas. By transferring the image from the printing plate onto a blanket roller, and then onto the media, the printing plate does not directly print the image on the media, hence the term offset printing.
The inker applies ink carried on one or more form rollers to the printing plate. When the form roller in the inker engages the printing plate, the ink film on the form roller contacting image areas on the printing plate is split such that approximately one-half of the thickness of the ink film is applied to the image area of the printing plate leaving approximately one-half the ink on the form roller that never recovers its original ink film thickness on the printed, ink depleted areas causing a condition referred to as starvation. The ink film on the form roller contacting non-image areas on the printing plate remains on the form roller causing a condition called accumulation.
This combination of accumulation and starvation results in undesirable “ghosted” images and image repeats being formed on the final printed product. In order to minimize this problem, many conventional inkers include a plurality of form rollers (for example, four) which each apply a small amount.
The printed product is monitored to determine when ink density has degraded beyond an acceptable level. In order to control the quality of the printing, conventional printer inkers also include a plurality of adjustable keys to control the amount of ink being applied to the form roller. These keys require constant adjustment to maintain the quality of the printed product.
Keyless inking systems are generally known in the prior art. Some prior art keyless systems have attempted to solve “ghosting,” starvation, and accumulation problems in keyless inking systems employing single or multiple form rollers. However, these solutions have not been completely successful in solving these problems.
U.S. Patent Publication No. US2001/0032559, to Price et al, published on Oct. 25, 2001, now U.S. Pat. No. 6,672,211, discloses “Inking Systems for Printing Presses.” The content of this application is hereby incorporated by reference in its entirety. Embodiments disclosed in this patent publication include keyless inking systems with one relatively large form roller for applying ink to a printing plate. Ink is applied to the form roller by an applicator roller having an ink carrying surface and a variable speed drive. The form roller and plate cylinder are rotated at the same rpm while the speed of the applicator roller is varied to vary the amount of ink applied to the form roller. A subtractive roller system removes excess ink from the form roller. For wash-up, the press drive and form roller are disengaged and the inking system is rotated by an inker roller drive while wash-up fluid is applied to the inking system.
The systems of U.S. Patent Publication No. US2001/0032559 work well under some printing conditions using some conventional inks. Under other conditions, some improvement is possible. For example, some undesirable “tinting” in the non-image areas has been observed to occur when the system is used with some standard inks formulated for multiple form roll applications.
It is known in the printing arts to treat a printing plate so that hydrophilic, non-printing areas thereof are treated with a dampening fluid. Two general types of dampening systems are known: contacting and non-contacting. With the inker, a non-contacting spray brush or spray head system may be used in which the dampening fluid travels from a source or reservoir through a gap from the spray brush or spray head to a form or transfer roller within the inker. Such systems are typically used in lithographic systems for printing newspapers. In such systems an emulsion of ink and dampening fluid may be formed, and ink feedback into the dampening fluid reservoir may occur.
Dampening systems that are in physical contact with the inking system, especially in contact with the inker form roller, during the printing process are referred to as continuous duty dampeners. The dampening systems that incorporate a non-contact dampening fluid spray brush or spray head that sprays dampening fluid into the inker are referred to as non-continuous duty dampeners.
Keyless inking has been proposed for use in newspaper printing in combination with the use of spray brush or spray head dampening. Newspaper printers have generally avoided continuous dampening for a number of reasons, including the fact that the standard and keyless inking systems have no means of preventing uncontrollable accumulation of ink and fountain solution in the inkers resulting in lost color control and ink feedback into the dampening fluid reservoir.
The inking systems disclosed herein employ at least one form roller in contact with the printing plate cylinder. Another roller may contact the plate and remove residual ink from non-image areas of the plate surface. A subtractive roller system, which contacts the at least one form roller, removes excess ink and dampening solution from the form roller after printing. An applicator roller then applies the necessary ink film to maintain desired color to the form roller. A continuous duty dampening system then continuously resupplies the required amount of dampening fluid as required by the ink film on the form roller.
Preferred embodiments of the present invention include a printing system having a rotating plate cylinder carrying a printing plate and a main form roller for applying ink to the printing plate. In accordance with this aspect of the invention the plate cylinder and the form roller are rotated at the same rpm so that the same areas on the form roller contact the same areas on the printing plate during each revolution of the plate cylinder. The plate cylinder and the form roller are configured to have somewhat different diameters and, thus, have different surface speeds at a nip formed there between. A residual ink removing roller also contacts the printing plate. In preferred embodiments, this roller has a diameter less than half that of the main form roller. The system is equipped with the keyless, subtractive inking system and a continuous duty, dampener system. In operation the system is capable of producing a desired uniform ink film on the image area of the plate cylinder and a film of dampening fluid in the non-image areas with essentially no tinting, ghosting, repeats, accumulation and starvation.
Other preferred embodiments of the present invention include systems for engaging and disengaging various of the rollers for different printing, clean-up and wash up modes.
More particularly, preferred embodiments of the present invention relate to an inking system for a printing system including a plate cylinder and, optionally, a blanket cylinder and impression cylinder. The inking system includes a large form roller rotationally contacting the printing plate at a nip and for applying ink to the printing plate. In preferred embodiments substantially all of the ink and dampening fluid applied to the printing plate is applied by this form roller. A secondary roller or clean-up roller, relatively smaller than the form roller, also rotationally contacts the printing plate at a nip located between the nip formed by the form roller and the application of ink to the blanket cylinder. The diameter of the secondary roller is substantially smaller than the diameter of the form roller. The clean-up roller removes residual ink and dampening fluid from non-image areas of the printing plate cylinder after ink has been applied to the printing plate by the form roller. An applicator roller rotationally contacts the main form roller for applying ink to the form roller. A continuous duty dampening system, including a dampener transfer roller in rotating pressural contact with the form roller, then applies a required amount of dampening fluid to the ink film on the form roller. After the inked, dampened form roller contacts the plate cylinders, an ink subtractive system including at least one roller rotationally contacts the form roller for removing excess ink and dampening fluid from the form roller.
In preferred embodiments the clean-up roller is friction driven at the speed of the printing system. The inking system advantageously includes a vibrator roller located so that the clean-up roller rotationally contacts the vibrator roller and the vibrator roller rotationally contacts the form roller, thus providing a path for fluid transfer between the form roller and the clean-up roller.
In other preferred embodiments the form roller and the clean-up roller have resilient coverings. The form roller may have approximately the same diameter as the plate cylinder. The radius of the clean-up roller is less than half the radius of the main form roller. Advantageously, the plate cylinder and the form roller are rotated at about the same rpm so that the same areas on the form roller contact the same areas on the at least one printing plate during each revolution of the plate cylinder; and the plate cylinder and the main form roller have slightly different diameters such that they have surface speeds at a nip formed between the plate cylinder and the form roller which differ by greater than one foot per minute. The difference in surface speeds at the nip formed between the plate cylinder and the form roller is preferably between four and ten feet per minute.
The inking system of preferred embodiments of the present invention includes a fluid subtractive system rather than ink and dampening fluid accumulation systems used in many prior art systems. This system may employ a resilient-surfaced transfer roller engaging the main form roller for removing excess ink from the form roller; a hard surfaced subtractive roller engaging the transfer roller for receiving excess from the transfer roller; and a scraper blade adjacent the subtractive roller for scraping excess ink from the subtractive roller.
The foregoing is intended to provide a convenient summary of the present disclosure.
Various objects and features will be apparent from this application including the accompanying drawings. One or more objects and advantages (but not necessarily all) may be achieved by the various aspects and embodiments of the present invention as herein described.
Drawings of preferred embodiments of the invention are annexed hereto so that the invention may be better and more fully understood.
a is a detail showing an alternative system for use in the embodiment of FIG. 7.
Referring to
Each printing assembly 11 includes a plate cylinder 12 carrying one or more printing plate 14 containing an image for printing on the media. The image (which may include text, graphics, pictures, etc.) is formed by image areas on the plate 14. The image areas receive ink from the inker 21 while the non-image areas are kept free of ink. These functions are performed by at least two rollers: a relatively large form roller 15 and a relatively smaller clean-up roller 17, each of which engages the plate cylinder 12.
Ink is applied to the printing plate 14 by the inker 21 to form a transferable inked image thereon corresponding to the image areas on the printing plate 14. The plate cylinder 12 may be rotated to engage the printing plate 14 with a rotatably mounted blanket cylinder 16, and transfer the inked image onto the blanket cylinder 16. The blanket cylinder 16 may then transfer the inked image to the media 13 which is pinched between the blanket cylinder 16 and an impression cylinder 19. A transfer cylinder 23 adjacent the impression cylinder 19 may be used to facilitate the transfer of the media 13 to an adjacent printing assembly 11 for applying a different color image to the media 13. A contacting, continuous duty dampener system 22 is provided to apply a desired amount of dampening fluid to the large form roller 15.
A printing assembly described in U.S. Patent Publication No. US2001/0032559 is shown in FIG. 2. The embodiment as shown in
The printing assembly 100 includes a plate cylinder 102 and an inking system 104. In a printing process, one or more printing assemblies may be used to produce single or multi-color printed product. In the process an ink and/or a coating is applied by each of the printing assemblies. In offset printing, the plate cylinder 102 is rotated to engage one or more removable printing plates 106 with a rotatably mounted blanket cylinder 108. The blanket cylinder 108 then transfers inked image(s) to the media which is pinched between the blanket cylinder 108 [a portion of which is shown in FIG. 2] and an impression cylinder [such as shown in FIG. 1]. Sequential adjacent printing assemblies may be used for applying coatings or different color images to the media as previously described in connection with FIG. 1.
The inking system 104 may include a keyless, subtractive inking system using a form roller 110. The plate cylinder and the form roller have different diameters and have different surface speeds at a nip 112 formed between the plate cylinder and the form roller. The differential speed produces sharper printed images and tends to remove debris from the plate surface. It also tends to eliminate repeats and inker related streaks produced by conventional inkers. Advantageously, the difference in surface speeds at the nip 112 is greater than one foot per minute, for example, between four and ten feet per minute, as taught in the above-mentioned patent publication.
In preferred embodiments, the plate cylinder 102 and the form roller may be rotated at the same rpm, so that the same areas on the form roller contact the same areas on printing plate(s) 106 during each revolution of the plate cylinder. This may be accomplished by appropriate selection of conventional drives, for example, the chain coupled drive 114 and drive motor 116 shown in FIG. 2.
The rotation of the form roller and plate cylinder at the same rotational speed eliminates repeats or ghostings caused by a lack of registration between surfaces of the printing plate and the form roller. By employing the above described techniques, registration between the surfaces of the printing plate and the main form roller is achieved, thus minimizing this kind of ghosting and repeating. It will be understood, however, that such a system may cause a more rapid build up of ink and/or dampening fluid in areas on the main form roller. This problem may be addressed by use of a subtractive system.
The difference in surface speeds is achieved by employing somewhat different radii for the form roller 110 and plate cylinder 102. These radii are represented in
The keyless subtractive inking system 104 of
The ink application system 126 may include an applicator roller 130 and a doctor blade 132. Ink on the applicator roller 130 is deposited on the form roller at nip 134. In preferred embodiments, the applicator roller 130 may be ceramic anilox roll of a type conventionally used in printing applications. The surface may be formed with ink carrying cells. Different application results may be produced by judicious selection of cell counts and cell depths. An example of a surface usable in the present invention has a cell count of 200 and cell depth of 35.64 μm.
In use, ink 142 maintained in the ink reservoir flows downward to ink fountain 144. The wiper blade 132 meters ink from the reservoir onto the applicator roller 130. Ink at the fountain is picked up by the applicator roller 130 and deposited onto the form roller 110.
The applicator roller 130 may be driven to rotate by a variable speed driver. The driver may be a variable speed motor, variable gear or belt drive or the equivalent. Varying the rotational speed of the applicator roller may be used to vary the amount of ink applied to the form roller, and ultimately the amount of ink applied to the printed media.
With continued reference again to
The subtractive roller 152 may be driven to rotate by a variable speed driver. The driver may be a variable speed motor, variable gear or belt drive or the equivalent. Varying the rotational speed of the subtractive roller may be used to vary the amount of ink removed from roller after printing.
The system of
The apparatus of
With continued reference to
The wash-up process proceeds essentially automatically and harnesses the ink subtraction system to remove and collect the mixture. The wash-up procedure may be performed using a smaller amount of wash-up fluid relative to conventional wash-up processes, with consequential material savings and environmental benefits. Because the inking system is disengaged from the press drive and plate cylinder during wash-up, maintenance can be simultaneously performed on the press, plates may be cleaned and replaced, etc.
In preferred embodiments, the form roller 202 and plate cylinder 204 are rotated at the same rotational speed (rpm) but at different surface speeds to facilitate elimination of repeats or ghostings caused by a lack of registration between surfaces of the printing plate and the form roller. The difference in surface speeds is achieved by employing somewhat different radii to the form roller 202 and plate cylinder 204. These radii are represented in
The system of
The ink subtractive system 210 may include a resilient-surfaced transfer roller 218 which engages the form roller 202 and removes excess ink therefrom. The transfer roller 218 transfers the removed ink to a smooth ceramic subtractive roller 220. Ink is removed from the subtractive roller 220 by blade 222 which may form part of an ink reservoir. In this way, removed ink and dampening fluid emulsion is returned to the ink fountain for reuse. Alternatively, ink or ink and washup solution mixture may be removed by the subtractive system and pumped to a remote application system or discarded.
The ink application system 212 may include an application roller 224 driven to rotate in contact with the form roller 202. In one embodiment the application roller is an Anilox roller with a surface formed with non-interconnected, ink carrying cells. In another embodiment the application roller is formed with a continuous helical groove on its outer surface for carrying ink. Such a roller with groove 225 is shown in perspective in the detail of FIG. 3(a). The pitch of the groove (dimension d) may be, for example, 200 line CBM.
The driver for the application roller may be a variable speed motor, variable gear or belt drive or the equivalent. A wiper blade 226 may be used to meter the ink from the reservoir 214 onto the applicator roller 224. A vibrator roller 228 may be used to enhance the quality of the ink film applied by the application roller.
The printing system of
In operation, ink from the application system 212 is supplied to form an ink film on the form roller 202. Ink is deposited on the image areas of the printing plate. The clean-up roller may have an ink film initially supplied by the large form roller 202 through vibrator roller 208, which has approximately the same ink film thickness as the ink film carried by the image areas of the plate cylinder after the plate has contacted the form roller. Under the known rules of ink transfer, little or no ink will be transferred from the clean-up roller to the image areas of the plate. However, if residual ink is present in the non-image areas of the printing plate in the form of tinting, the residual ink will be attracted to the thicker film on the clean-up roller 206 and removed from such non-image areas.
Following the clean-up roller nip, the ink film is deposited on the blanket cylinder 234 and, subsequently, to the sheet or web being printed. Following inking of the plate, ink film on the large form roller is again subjected, first, to the action of the subtractive roller system 210 and then receives a further application of ink by the ink application system 212.
b illustrates a detail of a preferred embodiment of the system of FIG. 3. In
In operation it has been noted that the rotational motion of the applicator roller 224 can cause the ink at the wiper blade 226 to form a rotating cylindrical volume which backs away from the applicator roller 224 causing ink starvation, particularly when the ink level in the reservoir is low. To overcome this problem, a baffle 254 may be provided. The baffle extends the length of the applicator roller (i.e., in a direction perpendicular to the plane of
As shown by comparing
As shown in
As shown in
A fourth air cylinder 246 may be used to disengage the chrome roller 230 of the dampening system from the form roller during clean-up or during printing operations not using dampening.
The inking system in
Ink is applied to the form roller 308 by an applicator roller 313 through a vibrating transfer roller 314. The applicator roller may be an anilox roller with ink carrying cells or a roller with ink-carrying helical grooves. The speed of the applicator roller 313 may be controlled by the variable speed controller 319 to vary the speed of the roller with respect to press speed. The ink on the applicator roller is metered by a scraper blade 316. An automatic ink supply tube 317 provides fresh ink to the inker.
Ink is removed from the form roller 308 by a vibrating, variable drive subtractive roller 318 which, advantageously, has a smooth ceramic surface. The speed of the subtractive roller may be controlled by variable speed controller 321 to vary the speed of the roller with respect to press speed. Ink and dampening fluid may be removed from the subtractive roller by a scraper blade 320 and recirculated to the applicator roller. Together the blades 316 and 320 form a blade assembly which is readily adjusted or replaced.
Dampening is provided by chrome (hydrophilic) transfer roller 322 and metering roller 324. A dampener solution spray tube 328 provides fresh dampening fluid (solution) to the dampening system. A catch pan 330 catches excess dampening fluid.
The relative sizes and speeds of the plate cylinder 302, main form roller 308 and clean-up roller 310 are similar to that discussed above in connection with the embodiment of FIG. 3. In operation a uniform film of ink and dampening fluid are applied to the printing plate by the main form roller 308 and residual ink and dampening fluid are removed from non-image areas by the clean-up roller 310.
An alternative blade assembly is shown in
It will be understood that in the system of
In operation the system of
Applicants believe that the dampening fluid (e.g., water) should form a controlled emulsion with the ink film on the form roller. The ink by chemical composition will accept a certain fixed amount of water, for example, 40% (this is the working water volume for this ink). Additional water will cause uncontrollable emulsification and reduce print quality. The keyless inker systems disclosed here with their subtractive subsystems work well in combination with continuous duty dampeners to obviate this problem.
The uniform ink film required for quality printing is provided each revolution of the form roller by the processes of addition and subtraction. The dampener applicator roller (the chrome roll) is in pressural contact with the desired ink film on the form roller and supplies to the film the amount of dampening fluid (e.g., water) which the film will accept. Water is not stacked on the surface of the ink. Excess dampening fluid, with ink feedback, is returned to the dampener pan applicator (the chrome roll) and metering roll nip.
The ink removed from the form roller during each revolution by the subtractive system contains dampening fluid. When fresh ink is added the proportion of dampening fluid drops. The ink film on the form roller as it approaches the dampener applicator roller may have a dampener fluid content less than optimum, e.g., 25%. The continuous duty dampener then supplies the additional amount of dampening fluid to bring the proportion of dampening fluid in the ink film back to the optimum level. Excess dampening fluid returns to the dampener pan applicator (the chrome roll) and metering roll nip. In this way the printing plate(s) are effectively inked and dampened for each printing cycle.
Aspects and features of embodiments of the present invention have been discussed with reference to certain illustrated examples and embodiments. The invention to be protected is, however, defined by the following claims and is not to be regarded as limited by aspects or features not recited in the claims. It will be obvious to those skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.
The patent application is a continuation in part of U.S. application Ser. No. 10/617,017 filed Jul. 11, 2003, and a continuation in part of U.S. application Ser. No. 10/720,254 filed Nov. 25, 2003 now U.S. Pat. No. 6,883,427, which is a divisional of U.S. application Ser. No. 09/813,887 filed Mar. 22, 2001, now U.S. Pat. No. 6,672,211, which is a continuation in part of U.S. application Ser. No. 09/507,549 filed Feb. 18, 2000, now U.S. Pat. No. 6,571,710, issued on Jun. 3, 2003, and claims the benefit of U.S. Provisional Application No. 60/122,765 filed. Mar. 3, 1999, all of which prior applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2285052 | Roesen | Jun 1942 | A |
2613600 | McWhorter | Oct 1952 | A |
2821133 | Brodie | Jan 1958 | A |
2986088 | Chase et al. | May 1961 | A |
3504626 | Worthington | Apr 1970 | A |
3587463 | Granger | Jun 1971 | A |
3611924 | Harrison | Oct 1971 | A |
3701316 | Sylvester et al. | Oct 1972 | A |
3800702 | Roberts | Apr 1974 | A |
3842735 | Southam et al. | Oct 1974 | A |
4040348 | Gertsch et al. | Aug 1977 | A |
4041864 | Dahlgren et al. | Aug 1977 | A |
4066017 | Garcowaki et al. | Jan 1978 | A |
4158333 | Navi | Jun 1979 | A |
4223603 | Faddis et al. | Sep 1980 | A |
4254709 | Arnolds | Mar 1981 | A |
4263848 | Matalia et al. | Apr 1981 | A |
4308796 | Satterwhite | Jan 1982 | A |
4373442 | Dahlgren et al. | Feb 1983 | A |
4373443 | Matalia et al. | Feb 1983 | A |
4397235 | Fischer | Aug 1983 | A |
4404908 | Simeth | Sep 1983 | A |
4428288 | Harper et al. | Jan 1984 | A |
4428291 | Dorow | Jan 1984 | A |
4432282 | Jurinak | Feb 1984 | A |
4453463 | Dahlgren et al. | Jun 1984 | A |
4493257 | Kubert et al. | Jan 1985 | A |
4497250 | Dressler | Feb 1985 | A |
4527471 | Dahlgren et al. | Jul 1985 | A |
4527479 | Dahlgren et al. | Jul 1985 | A |
4542693 | Mourrellone | Sep 1985 | A |
4621574 | Faddis et al. | Nov 1986 | A |
4685414 | DiRico | Aug 1987 | A |
4690055 | Fadner et al. | Sep 1987 | A |
4864925 | Van Kanegan et al. | Sep 1989 | A |
4967657 | Popkin | Nov 1990 | A |
5033380 | Sonobe et al. | Jul 1991 | A |
5046416 | Freyer et al. | Sep 1991 | A |
5178065 | Reder et al. | Jan 1993 | A |
5178678 | Koehler et al. | Jan 1993 | A |
5205216 | Okamura et al. | Apr 1993 | A |
5213044 | Elia et al. | May 1993 | A |
5218903 | MacConnell et al. | Jun 1993 | A |
5218905 | Bolte et al. | Jun 1993 | A |
5243910 | Burch | Sep 1993 | A |
5259313 | Gibson et al. | Nov 1993 | A |
5277112 | Ohta et al. | Jan 1994 | A |
5297488 | Bunch, Jr. | Mar 1994 | A |
5315930 | Niemiro | May 1994 | A |
5355796 | Köbler et al. | Oct 1994 | A |
5355799 | Lutz | Oct 1994 | A |
5388511 | Iijima | Feb 1995 | A |
5425809 | Person | Jun 1995 | A |
5447102 | Pfeiffer et al. | Sep 1995 | A |
5452660 | Stein | Sep 1995 | A |
5540149 | Hoge | Jul 1996 | A |
5603262 | Vera et al. | Feb 1997 | A |
5709147 | Uera et al. | Jan 1998 | A |
5865116 | Keller | Feb 1999 | A |
5870954 | Lovenstein et al. | Feb 1999 | A |
5908505 | Bargenquest et al. | Jun 1999 | A |
5915302 | Baba et al. | Jun 1999 | A |
5983799 | Lane, III et al. | Nov 1999 | A |
6006664 | Hummel et al. | Dec 1999 | A |
6006665 | Stuchlik et al. | Dec 1999 | A |
6041706 | Murray | Mar 2000 | A |
6055907 | Endisch et al. | May 2000 | A |
6065402 | Feller et al. | May 2000 | A |
6116161 | Voge et al. | Sep 2000 | A |
6382098 | Inoue et al. | May 2002 | B2 |
6401618 | Cheung et al. | Jun 2002 | B1 |
6409645 | Paasonen et al. | Jun 2002 | B1 |
6588337 | Kreckel et al. | Jul 2003 | B1 |
20010032559 | Price et al. | Oct 2001 | A1 |
Number | Date | Country |
---|---|---|
11 30 453 | May 1962 | DE |
44 24 581 | Oct 1995 | DE |
61 106254 | May 1986 | JP |
8304003 | Nov 1983 | WO |
00 51817 | Sep 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050028696 A1 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
60122765 | Mar 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09813887 | Mar 2001 | US |
Child | 10720254 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10617017 | Jul 2003 | US |
Child | 10824599 | US | |
Parent | 10720254 | Nov 2003 | US |
Child | 10617017 | US | |
Parent | 09507549 | Feb 2000 | US |
Child | 09813887 | US |