Printing techniques to hide swath boundary banding

Information

  • Patent Grant
  • 6578943
  • Patent Number
    6,578,943
  • Date Filed
    Wednesday, October 31, 2001
    23 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
The present invention provides a dynamic adjustment for black ink volume to print a black object whose height is greater than one swath of the inkjet printer. The black ink volume is increased by using a greater number of nozzles compared to the number of nozzles used to print color or a second fluid for underprinting the black ink.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to inkjet printers and, in particular, to a printing technique for minimizing unequal swath boundary behavior across print regions produced by an inkjet printer.




2. Background




This application is related to U.S. patent application Ser. No. 09/329,974, entitled “DYNAMIC ADJUSTMENT OF UNDER AND OVERPRINTING LEVELS IN A PRINTER”, filed on Jun. 10, 1999, now U.S. Pat. No. 6,132,021 and assigned to the common assignee. This prior application is incorporated herein by reference. The prior application provides a dynamic adjustment of the fluid volume used for underprinting and/or overprinting pigment-based inks (or other inks) for speeding up the drying time of the pigment-based ink or improving its adherence to a medium. This technique works well, however, the present Applicants have discovered that white space swath boundary banding occurs in printed areas, which contain underprinted black ink, especially in printing a black object whose height is greater than the printer's swath height




A typical high quality color inkjet printer prints using at least four colors of ink: cyan, magenta, yellow, and black. A common black ink is a pigment-based ink where undissolved particles are suspended in a clear vehicle. Such pigment-based ink creates the darkest black with a minimum of bleed into the paper. Since the paper is typically white, any significant bleeding of the black ink into the paper will noticeably reduce the sharpness of the edges of black text or other black graphics.




For non-black color inks, dye-based inks are very popular. Dye-based inks do not have color particles suspended in solution and thus tend to bleed into the paper more than pigment-based inks. Since the dye-based ink wicks or bleeds into the paper, the dye-based inks dry faster than the pigment-based inks, which effectively pool on the paper surface. Non-black color inks may also be pigment-based.




Examples of such inks are described in U.S. Pat. Nos. 5,695,820 and 5,626,655 assigned to the present assignee and incorporated herein by reference.




The prior application provides dynamic adjustment of the fluid volume used for underprinting and/or overprinting pigment-based inks (or other inks) for speeding up the drying time of the pigment-based ink or improving its adherence to a medium. The invention identifies a characteristic in the printer that affects the optimum volume of under/overprinted fluid to be printed, such as pen temperature, pen operating frequency, pen operating life, ambient temperature, and ambient humidity, and varies the under/overprinted fluid accordingly.




However solid black with underprinted cyan and magenta can have white space swath boundary banding. In printing systems using underprinting, solid black, cyan and magenta fills are band-free, however the combination of these three colors in an underprinted black area exhibits swath boundary banding. One reason for the banding is that black pigments migrate away from swath boundaries of under printed black ink.

FIG. 1A

shows an example of white space swath boundary banding at underprinted black ink. Cyan and magenta are underprinted under solid black ink. The white space boundary occurs if the printed object is bigger than the print head height (in this illustration, the height is ½″). The white space boundary in

FIG. 1A

is between Swath


1


and Swath


2


for an object that is solid black and greater than ½″.




Therefore, what is needed is a technique that can reduce white space swath boundary banding while providing an optimum amount of underprinting fluid as characteristics within the printer change.




SUMMARY




The present invention provides a system to underprint a black object whose height is greater than one swath height of an inkjet printer. In the following examples, it will be assumed that the black ink is pigment-based, and it is desired to underprint the black ink with either a dye-based color ink or a fixer.




A method and apparatus in an inkjet printer for printing a black object whose height is greater than the swath height of the inkjet printer is provided. The printer includes one or more printheads that moves relative to a medium while the printheads are printing on the medium. The printheads include a first set of nozzles for printing dots of a first ink, and a second set of nozzles for printing dots of a second fluid. The process adjusts the volume of the first ink, wherein the first ink is black ink, which is printed over the second fluid. The black ink volume is greater than the volume of the second fluid. The volume of black! ink is increased by using a greater number of nozzles in the first set compared to the number of nozzles used in the second set.




One of the advantages of the present invention is that white space boundary banding is diminished by increasing the number of nozzles for printing a black object whose height is greater than one swath height.











This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof in connection with the attached drawings.




BRIEF DESCRIPTION OF THE DRAWINGS




The present invention may be better understood, and its numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings.





FIG. 1A

illustrates white space swath boundary banding that occurs in printing an underprinted black object whose height is greater than one swath.





FIG. 1B

illustrates one of many examples of an inkjet printer that incorporates the present invention.





FIG. 2

illustrates the scanning carriage in the printer of FIG.


1


B and one possible order of print cartridges in the carriage.





FIG. 3

is a perspective view of one of the print cartridges.





FIG. 4

is a flowchart illustrating the basic steps used in one embodiment of the invention.





FIG. 5

is a flowchart illustrating in greater detail the steps of dynamically adjusting the volume of the under/overprinted fluid.





FIG. 6

is a perspective view of a portion of a printhead illustrating a temperature sensor on the printhead.





FIG. 7

illustrates the effect of firing frequency on ink drop weight.





FIG. 8

illustrates one embodiment of the hardware used to carry out the process of FIG.


5


.





FIGS. 9A through 9F

illustrate the printing of a text character using bi-directional scanning and fixer pens.





FIG. 10

illustrates the electronics within the printer for generating the energization signals for the fluid ejection elements in the printheads.











The use of the same reference symbols in different drawings indicates similar or identical items.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1B

illustrates one embodiment of an inkjet printer


10


that carries out the invention. Numerous other designs of inkjet printers may also be used while carrying out this invention. More detail of an inkjet printer is found in U.S. Pat. No. 5,852,4591, to Norman Pawlowski et al., incorporated herein by reference.




Inkjet printer


10


includes an input tray


12


containing sheets of paper


14


which are forwarded through a print zone


15


, using rollers


17


, for being printed upon. The paper


14


is then forwarded to an output tray


16


. A moveable carriage


20


holds print cartridges


22


,


24


,


26


, and


28


, which respectively print cyan (C), black (K), magenta (M), and yellow (Y). In another embodiment, a fixer print cartridge is located at both ends of the carriage so a fixer can be underprinted or overprinted in both directions. In such an embodiment, all the inks are generally pigment-based or pigment/dye hybrids but can be dye-based.




In one embodiment, inks or fixers in replaceable ink cartridges


27


are supplied to their associated print cartridges via flexible ink tubes


29


. The print cartridges may also be the type that hold a substantial supply of fluid and may be refillable or non-refillable. In another embodiment, the ink/fixer supplies are separate from the printhead portions! and are removably mounted on the printheads in the carriage.




The carriage


20


is moved along a scan axis by a conventional belt and pulley system and slides along a slide rod


30


. In another embodiment, the carriage is stationery, and an array of stationary print cartridges print on a moving sheet of paper.




Printing signals from a conventional external computer (e.g., a PC) are processed by printer


10


to generate a bitmap of the dots to be printed. The bitmap is then converted into firing signals for the printheads. The position of the carriage


20


as it traverses back and forth along the scan axis while printing is determined from an optical encoder strip


32


, detected by a photoelectric element on carriage


20


, to cause the various ink ejection elements on each print cartridge to be selectively fired at the appropriate time during a carriage scan.





FIG. 2

illustrates one example of carriage


20


with print cartridges


22


,


24


,


26


, and


28


installed in the order of CKMY, as viewed from the front of printer


10


. Other orders and colors may also be used.





FIG. 3

is a perspective view of a print cartridge, which may serve as any of the print cartridges in carriage


20


, such as print cartridge


22


. Print cartridge


22


contains a reservoir of ink, or has an ink passage connected to an off-axis ink supply, which is connected to a printhead portion


34


. The printhead portion


34


basically consists of a printhead substrate containing ink channels leading to chambers surrounding ink ejection elements. A nozzle plate


36


is positioned over the substrate with each nozzle overlying an ink ejection chamber. In one embodiment, nozzles are formed in a flexible tape (a TAB circuit


37


). Contact pads


38


contact electrodes in carriage


20


and supply electrical signals to the printhead substrate via traces on the TAB circuit


37


. In another embodiment, nozzle plate


36


is an epoxy or metal.




The printhead may use resistive, piezoelectric, or other types of ink ejection elements. Generally, X number of nozzles are used to underprint color, for example cyan and magenta under solid black. In one aspect of the present invention, X number of nozzles are used to underprint color swaths and Y number of nozzles are used to print solid black, where Y is greater than X. The extra number of nozzles provide the extra swath height for underprinted black regions to compensate for the apparent migration of black pigment away from swath boundaries.




As the print cartridges in carriage


20


in

FIG. 2

scan across a sheet of paper, the swaths printed by the print cartridges overlap. After one or more scans, the sheet of paper


14


is shifted in a direction towards the output tray


16


(FIG.


1


), and the carriage


20


resumes scanning. It is important that the same color swaths printed during each scan not significantly vary in hue, otherwise noticeable banding results.




Typically, the drying time for black ink (or other pigment based inks) is typically longer than the drying time for the non-black color inks, if dye-based, due to the different types of inks used. Black ink is preferably pigment-based (although it may be dye-based) while primary color inks are dye-based, pigment-based, or pigment/dye-based. Since the black ink is specifically engineered not to bleed into the paper, the black ink typically has a longer drying time than the color inks. Thus, the black ink drying time frequently becomes the bottleneck for the drying time of a sheet of paper. The pigment-based ink drying time may be reduced, and adherence to the paper improved, by using clear underprinted fixers. Described below are various techniques for adjusting the volume of the ink or fixer to underprint a pigment-based ink or any other ink that uses underprinting.

FIG. 4

is a flowchart of the basic technique used in the invention.




In Step


1


, print signals are generated for printing a first ink pattern for which underprinting is desirable. This first ink may, as an example, be a black or other color pigment-based ink, and the underprinted ink may be either a dye-based ink or a fixer.




In Step


2


, a characteristic within the printer that affects the optimum volume of the underprinted ink/fixer is determined. Such characteristics may be obtained from: an algorithm for detecting high density fills or high ink fluxes (Step


2


A); a thermal sensor embedded in a printhead substrate (Step


2


B); a signal identifying the operating frequency of the printhead (Step


2


C); a signal indicating the operating life of the printhead (Step


2


D); or an ambient temperature/humidity sensor for indicating the characteristics of the media (Step


2


E). Any one or any combination of these characteristics may be used in Step


2


.




In Step


3


, the characteristics identified in Step


2


are used to adjust the volume of fluid (either an underprinted color ink or a fixer) for underprinting the first ink. In one embodiment, adjusting the volume of the fluid in Step


3


is accomplished by depositing more or less ink drops of the fluid. In another embodiment, the pulsewidths of the pulses applied to the ink ejection elements, such as resistors or piezoelectric elements, are adjusted to eject more or less ink from an ink chamber. If black ink is to be underprinted for an object that is greater than the printhead height, the number of nozzles is increased compared to !the number of nozzles required to print color, to adjust for white space swath boundary.





FIG. 5

is a flowchart showing in more detail the process of

FIG. 4

for adjusting the volume of a fluid underprinting a pigment-based ink, such as black ink, or any other ink for which underprinting is desired.




In Steps


1


and


2


of

FIG. 5

, black and non-black color data are generated for being reproduced by a color printer. In step


1


, the process also determines if a particular black object's height is greater than the printer's swath height and hence requires multiple swaths to print the object. If a particular object's height is greater than the swath height, then the black object is printed using Y number of nozzles to avoid the white swath boundary band phenomena, where Y is greater than the number of nozzles (“X”) used to print another color.




In Step


3


, the color data is matched to a color reproducible by the printer, and arrangements of ink dots (halftoning) are determined for reproducing the desired color with the specific inks used by the printer.




In Step


4


, the underprinting by certain ink(s) or a fixer is determined. In one embodiment, the underprinting of black ink is by a mixture of cyan and magenta inks. If two fixer print cartridges are used, Step


4


identifies the contribution by each of the fixer cartridges. In one embodiment, Step


4


identifies a nominal volume of the underprinting ink, and a later step varies this nominal volume based on the printer characteristics.




Steps


5


A-


5


E generate signals from detectors for indicating certain characteristics of the printer. Step


5


A of

FIG. 5

uses a raster-based algorithm to determine beforehand the amount of black ink to be deposited in one or more swaths. In one embodiment their amount of black ink will depend upon whether a black object whose height is greater than one swath height requires underprinting. If an object whose height is greater than one swath height is underprinted, for example, with cyan and magenta, then the number of nozzles are increased compared to the number of nozzles required to print a black object that is underprinted and where the objects height is less than one swath.




The amount (or ink density) of black ink to be deposited determines the temperature of the black printhead. By knowing the temperature of the black printhead, the black ink drop size is also known. One technique for detecting the amount of black ink to be deposited is to determine the fullness of the swath buffer and assign the fullness an index value. One way to determine the fullness of the swath buffer is to detect digital flags generated when fullness threshold values are exceeded in the swath buffer. Generating flags is common in buffered systems. Swath buffers are conventional and discussed in U.S. Pat. No. 5,805,174, entitled Display List Architecture Having Two Dimensional Array of Zones, by Padmanabhan Ramchandran, assigned to the present assignee and incorporated herein by reference. A swath buffer may store from one swath to a full page.




In Step


6


of

FIG. 5

, the value generated in Step


5


A, for example, is applied to a lookup table which associates the value to a fluid volume per unit area required for the underprinted ink or fixer. In another embodiment, the fullness value is used by a compensation algorithm to develop the desired fluid volume per unit area for underprinting.




The lookup table or algorithm also takes into account the anticipated increased temperature of the underprinting printhead. In one embodiment, where Step


4


identifies a nominal volume of the underprinting ink, Step


6


provides an adjustment of the nominal volume based on the printer characteristics.




In Step


7


of

FIG. 5

, the determination of firing an ink ejection element to deposit a dot or not deposit a dot in a certain pixel position is made in order to achieve the desired fluid volume per unit area for the underprinting. In one embodiment, the desired volume of fluid is printed by varying the dot density along the scan axis of the printer. Steps


6


and


7


may be combined, in one embodiment, if the table or algorithm in Step


6


directly identifies the number of underprinted dots for each image dot.




In Step


8


of

FIG. 5

, the printhead for the underprinting fluid is energized to deposit ink or fixer drops in accordance with Step


7


. By dynamically selecting this fluid volume, a more optimal underprinted fluid volume is achieved.




In Step


9


of

FIG. 5

, the image ink(s) for reproducing the data in Steps


1


and


2


is printed. This may be followed by an overprinting step to fix the ink or to prevent hue shifts. Steps


5


B through


5


E of

FIG. 5

provide other printer characteristics that are applied to suitable lookup tables or algorithms to adjust the underprinting fluid volume. Steps


5


A through


5


E may be employed individually or in any combination. Step


5


B detects the actual temperature of the black (or other color) printhead using any conventional thermal sensor. A thermal sensor could be incorporated directly into the printhead, such as into the printhead described in U.S. Pat. No. 5,648,806, entitled “Stable Substrate Structure for a Wide Swath Nozzle Array in a High Resolution Inkjet Printer,” assigned to the present assignee and incorporated herein by reference.





FIG. 6

is a perspective view of a printhead substrate


40


, typically formed of silicon, with heater resistors


42


formed on it for use as ink ejection elements. Also formed on substrate


40


is a thermal sensor


44


, which can simply be a PN junction whose conductivity is related to the temperature of the substrate


40


. Any other thermal sensor may be used.




Thermal sensor


44


is connected to one of the various electrodes


46


along the edges of substrate


40


which connect to contact pads on the print cartridge. These contact pads on the print cartridge are then coupled to various circuits in the printer itself for controlling the printhead and for receiving the thermal readings from the sensor


44


.




The temperature value is digitized and applied to either a lookup table (Step


6


of

FIG. 5

) or used in a compensation algorithm to ultimately control the density of underprinted ink drops so that the fluid volume per unit area meets the desired volume, as discussed previously with respect to Steps


6


,


7


, and


8


in FIG.


5


.




Ink drop volume is affected by the ink drop firing rate due to the fluid mechanics of the ink flowing in the printhead. The graph of

FIG. 7

illustrates the variation in drop weight versus firing frequency, with the drop weight changing by as much as 25% over the range of firing frequencies.




Step


5


C of

FIG. 5

detects the firing rate of the black (or other ink to be underprinted) printhead. Such a detector may include one or more counters for counting the pulses applied to the printhead over a period of time. The frequency value is applied to a lookup table or a compensation algorithm to ultimately control the density of fluid drops used to underprint a particular ink, as described with respect to Steps


6


-


8


in FIG.


5


.




The drop weight generally increases over the life of the pen due to wear on the pen. Step


5


D of

FIG. 5

generates a value corresponding to the accumulated operating time of the pen. This determination may, for example, be based upon the number of drops fired or based upon the total time of use of the pen. Such a value is applied to a lookup table or a compensation algorithm, as previously described, to control the amount of underprinted fluid.




The optimum volume of underprinted fluid is also determined by the characteristics of the medium. These characteristics are affected by the ambient relative humidity land ambient temperature. A conventional humidity detector is located within the printer, and its value is converted to an index for a lookup table or for use by a compensation algorithm, as previously described. The output of the lookup table or algorithm is then used to ultimately control the density of the underprinted ink droplets. Ambient temperature may also be used and the combination of humidity and temperature converted into a value for use by the lookup table or algorithm.




In the low relative humidity range (10% R.H.), the paper moisture content is low. More underprinting of fixer or color ink is required to pre-treat the page before the black or other color ink contacts the paper. With a humidity sensor, levels could be preset based on several humidity ranges using the lookup table or compensation algorithm. In a hot and wet condition, (e.g., 35° C., 80% R.H.), text print quality is compromised by the high moisture content in the paper, causing poor edge acuity (feathering). By using temperature and humidity measurements, the underprinting level can be decreased or increased to optimize print quality.




The techniques used in

FIG. 5

may be used to underprint, overprint, or interleave dots.





FIG. 8

illustrates a circuit that can be used for the various techniques described herein. One or more lookup tables or algorithms


48


perform color matching, halftoning, and the selection of the underprinting fluid. Detector


49


obtains characteristics about the printer affecting underprinting and/or overprinting. Detector


49


generates a digital value which is used as an index for a lookup table or in a compensation algorithm


50


, which then generates a value indicating the fluid volume per unit area to be printed. This value may identify the number of underprinted dots to be printed for a particular image dot. The print engine


51


then prints the actual dots on a medium, as described in

FIGS. 9 and 10

.





FIGS. 9A-9F

illustrate the underprinting of black ink by a fixer in a bidirectional print mode. In

FIG. 9A

, a scanning carriage


20


incorporating six print cartridges


53


-


58


, with a fixer print cartridge at both ends, is shown scanning from left to right. It is assumed that the letter “T” will be printed in two passes using black ink. If the letter “T” is greater than the printer's swath height, then Y number of nozzles are used to print in black, where Y is greater than the number of nozzles used to print another color or to print in black if “T”'s height is less than one swath height. In the first pass from left to right, the fixer fluid from print cartridge


58


is deposited and, in the same scan, the black ink from print cartridge


54


is deposited over the fixer, as shown in

FIG. 9B

, illustrating a cross-section of a sheet of paper


14


with the fixer and black ink printed thereon. Any other color can be underprinted by the fixer.

FIG. 9C

is a front view of the portion of the T printed on paper


14


. The volume of the fixer deposited is determined using any of the methods described in FIG.


5


.




In the scan from right to left, shown in

FIG. 9D

, the fixer fluid from print cartridge


53


is first printed on paper


14


followed by ink from the black ink cartridge


54


, as shown in

FIG. 9E

, to complete the letter T in FIG.


9


F.




In one embodiment, the black print cartridge


54


prints at a resolution of 600 dots per inch (dpi) along the paper shift axis, and prints at up to 3600 dpi along the scan axis. The fixer and other color print cartridges can print at the same resolution of the black print cartridge or less, such as 300 dpi. In one embodiment, the volume of the underprinted ink or fixer is about 25% of the volume of the black ink to be deposited. However, the relative volume is to be based on the particular inks and fixers used and, therefore, an optimal amount cannot be specified herein. The volume of the underprinted ink or fixer may range, for example, between 5 to 50% of the black ink volume. The resolution along the scan axis may be varied to achieve the desired volume of under/overprinted fluid for each image dot printed.





FIG. 10

illustrates the basic circuitry in the print cartridges, carriage


20


, and printer


10


for generating the firing signals for the heater resistors in the printheads. The main processor board


70


in the printer performs the well known steps of decoding the print signals from the personal computer connected to an input of the printer and creating a bitmap of the dots to be printed in a swath buffer forming part of the main processor board


70


. Additional details of one technique for creating the bitmap of the dots are found in U.S. Pat. No. 5,805,174, entitled Display List Architecture Having Two Dimensional Array of Zones, by Padmanabhan Ramchandran, assigned to the present assignee and incorporated herein by reference. The data is transferred to the carriage printed circuit board


72


, which uses timing signals from the optical encoder strip


32


(

FIG. 1

) to generate the addressing signals for firing selected heater resistors in a particular printhead. A carriage flex circuit


74


contains electrodes for being contacted by the contact pads on the print cartridge TAB circuit


76


. A control circuit


78


on the printhead distributes the signals to the various heater resistor circuits. The heater (or firing) resistors


80


vaporize a portion of the ink in their associated chambers to expel a droplet of ink through an associated nozzle in a nozzle array


82


. The carriage may also include fixer cartridges or other color cartridges.




The above description has focused on single pass type printers where the paper is shifted a swath width after a single pass. However, the underprinting can also be used in a multiple pass mode of printing where swaths in two consecutive scans either fully or partially overlap. In such a multipass printer, the black printhead (or set of nozzles) need not have other color printheads (or sets of nozzles) on both sides of it since the overprinting and underprinting can be done in two separate passes.




The present invention is equally applicable to alternative printing systems (not shown) that utilize alternative media and/or printhead moving mechanisms, such as those incorporating grit wheel, roll feed, or drum or vacuum belt technology to support and move the print media relative to the printhead assemblies. With a grit wheel design, a grit wheel and pinch roller move the media back and forth along one axis while a carriage carrying one or more printhead assemblies scans past the media along an orthogonal axis. With a drum printer design, the media is mounted to a rotating drum that is rotated along one axis while a carriage carrying one or more printhead assemblies scans past the media along an orthogonal axis. In either the drum or grit wheel designs, the scanning is typically not done in a back and forth manner as is the case for the system depicted in FIG.


1


.




Multiple printheads may be formed on a single substrate. Further, an array of printheads may extend across the entire width of a page so that no scanning of the printheads is needed; only the paper is shifted perpendicular to the array.




Heating of the paper by a heat source may be used in conjunction with the invention for speeding up dry time.




Additional print cartridges in the carriage may include orange, green, red, blue, or reduced dye/pigment level inks such as light cyan, light magenta, or light yellow.




While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from this invention in its broader aspects and, therefore the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of this invention.



Claims
  • 1. A method performed by an inkjet printer, for printing a black object having a height that is greater than a swath height of the inkjet printer, said printer moving one or more printheads relative to a medium while said one or more printheads are printing on said medium, said one or more printheads including a first set of nozzles for printing dots of a first fluid, and a second set of nozzles for printing dots of a second fluid, said second fluid for interacting with said first fluid on said medium; said method comprising:adjusting a volume of the first fluid, wherein the first fluid is black ink and is printed over the second fluid, and the black ink volume is greater than a volume of the second fluid, wherein the volume of black ink is increased by increasing a number of nozzles in the first set of nozzles compared to a number of nozzles in the second set of nozzles.
  • 2. The method of claim 1, wherein said second fluid is a fixer.
  • 3. The method of claim 1, wherein said second fluid is a dye-based ink.
  • 4. The method of claim 1, wherein said first fluid is a pigment-based ink.
  • 5. The method of claim 1, wherein said first fluid is printed over said second fluid.
  • 6. The method of claim 1, wherein said one or more printheads include at least a first printhead for printing cyan ink, a second printhead for printing black ink, a third printhead for printing magenta ink, and a fourth printhead for printing yellow ink.
  • 7. An apparatus in an inkjet printer comprising:one or more printheads including a first set of nozzles for printing a first fluid, and a second set of nozzles for printing a second fluid, said second fluid for interacting with said first fluid on a medium; wherein the first set of nozzles includes a greater number of nozzles than the second set of nozzles for printing a black object having a height that is greater than a swath height of the printer; a detector for detecting a characteristic within said printer; and a controller for varying a volume of said first fluid, wherein the first fluid is black ink used for printing the black object.
  • 8. The apparatus of claim 7, wherein said second fluid is a fixer.
  • 9. The apparatus of claim 7, wherein said second fluid is a dye-based ink.
  • 10. The apparatus of claim 7, wherein said first fluid is a pigment-based ink.
  • 11. The apparatus of claim 7, wherein said first fluid is printed over said second fluid.
  • 12. The apparatus of claim 7, wherein said one or more printheads include at least a first printhead for printing cyan ink, a second printhead for printing black ink, a third printhead for printing magenta ink, and a fourth printhead for printing yellow ink.
  • 13. In an image printing system that sequentially applies to print media adjacent first and second swaths having a common boundary, wherein each swath comprises a swath height of underprinted fluid and a swath height of black image fluid that is applied substantially over the underprinted fluid, a method of preventing swath boundary banding comprising the steps of:printing a swath height of underprinted fluid and a swath height of black image fluid in locations on the media where the image represented by the printed black image fluid does not extend across the common swath boundary; and increasing the printed swath height of black image fluid relative to the printed swath height of underprinted fluid in locations where the image represented by the printed black image fluid extends across the common swath boundary.
  • 14. The method of claim 13 wherein the underprinted fluid and the black Image fluid are applied as drops through a selectable number of nozzles of a printhead, the increasing step comprising the step of increasing the number of nozzles used to apply the black image fluid relative to the number of nozzles used to apply the underprinted fluid.
  • 15. The method of claim 13 wherein the swath height of the printed underprinted fluid is greater than the swath height of the printed black image fluid by a first amount in locations where the image represented by the printed black image fluid does not extend across the common swath boundary, and wherein the increasing step comprises printing the underprinted fluid and black image fluid to reduce the first amount in locations where the image represented by the printed black image fluid extends across the common swath boundary.
  • 16. The method of claim 13 wherein the printing step comprises printing the black image fluid as black pigment-based ink.
  • 17. The method of claim 13 wherein the printing step comprises printing the underprinted fluid as a dye-based color.
  • 18. The method of claim 13 wherein the printing step comprises printing the underprinted fluid as a clear fixer.
  • 19. The method of claim 13 further comprising the step of determining prior to printing the first and second swaths where the image represented by the printed black image fluid extends across the common swath boundary.
  • 20. The method of claim 13 wherein the increasing step includes adjusting the relative volume of applied underprinted fluid and black image fluid.
CROSS REFERENCE TO RELATED APPLICATION(S)

This is a continuation of application Ser. No. 09/559,796 filed on Apr. 27, 2000 which is hereby incorporated by reference herein.

US Referenced Citations (7)
Number Name Date Kind
5626655 Pawlowski et al. May 1997 A
5648806 Steinfeld et al. Jul 1997 A
5695820 Davis et al. Dec 1997 A
5805174 Ramchandran Sep 1998 A
5852459 Pawlowski, Jr. et al. Dec 1998 A
6132021 Smith et al. Oct 2000 A
6299285 Inui Oct 2001 B1
Foreign Referenced Citations (4)
Number Date Country
0 703 087 Mar 1996 EP
0 829 353 Mar 1998 EP
0 901 273 Mar 1999 EP
2 352 427 Jan 2001 GB
Continuations (1)
Number Date Country
Parent 09/559796 Apr 2000 US
Child 10/004147 US