Printing unit of a printing press, comprising at least two frame parts, the position of which relative to one another can be changed

Information

  • Patent Grant
  • 8127679
  • Patent Number
    8,127,679
  • Date Filed
    Tuesday, August 18, 2009
    15 years ago
  • Date Issued
    Tuesday, March 6, 2012
    12 years ago
Abstract
A printing unit of a printing press is comprised of at least two frame parts, the position of at least one of which, relative to the other, can be changed. Cooperating ones of these frame parts are placed against each other along a common joining surface, in a first operational position. These frame parts are separated from each other in a second operational position. An interstice, that is partly defined by these frame parts, is formed between the separated frame parts in the printing unit. At least one of the cooperating frame parts is supported so that it is movable along an adjustment path. At least one sensor is provided and is usable to monitor the interstice. The sensor has orientation characteristics or a sensory range along the joining surface. An aperture width of a first angular aperture of the orientation characteristics or of the sensory range is smaller than a respective aperture width of a second or third angular aperture of the orientation characteristic or sensory range. The aperture width of the first angular aperture of the orientation characteristic or the sensory range is oriented parallel to the adjustment path of the movable frame path. The aperture width of the second angular aperture of the orientation characteristic or the sensory range is oriented in an axial direction of at least one printing group cylinder which is mounted on the movable frame panel. An aperture width of the third angular aperture of the orientation characteristic or the sensory range is oriented in the direction of a height of the movable frame panel.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S. national phase, under 35 U.S.C. 371, of PCT/EP2009/060651, filed Aug. 18, 2009, published as WO 2010/026041 A1 on Mar. 11, 2010, and claiming priority to DE 10 2008 041 847.1, filed Sep. 5, 2008, the disclosures of which are expressly incorporated herein by reference.


FIELD OF THE INVENTION

The invention relates to a printing unit of a printing press comprising at least two frame parts, the position of which relative to one another can be changed. Interacting frame parts are placed against each other along a shared joining surface in a first operating position and are moved away from each other in a second operating position. Between the frame parts, that are moved away from each other in the printing unit, an intermediate space is formed. This intermediate space is delimited, in part, by the frame parts. At least one of the frame parts is movable along an adjustment path.


BACKGROUND OF THE INVENTION

WO 95/24314 A1 and WO 2005/037 553 A1 each describe a printing unit of a printing press comprising at least two frame parts, the position of which relative to one another can be changed, wherein interacting frame parts are placed against one another in a first operating position, and are moved away from one another in a second operating position, wherein between frame parts that have been moved away from one another, an intermediate space, delimited in part by said frame parts, is formed in the printing unit, wherein at least one printing couple cylinder is mounted in each of the respectively interacting frame parts.


EP 1 790 474 A1 describes a printing press comprising a printing unit with one stationary frame part and at least one frame part that is movable along a linear adjustment path, wherein the stationary frame part has at least one printing couple, wherein at least one inking unit is arranged in the movable frame part, wherein in a first operating position interacting frame parts are placed against one another and in a second operating position said parts are moved away from one another, wherein between frame parts that have been moved away from one another, an intermediate space, delimited in part by said frame parts, is formed, wherein a safety apparatus is provided, which uses a detection device disposed on the movable frame part to detect the presence of an obstacle in the adjustment path of said movable frame part.


EP 0 444 227 A1 describes a printing press comprising a printing unit having at least two frame parts, the position of which relative to one another can be changed, wherein printing couple cylinders are arranged in a stationary frame part, and at least one inking unit is arranged in the at least one movable frame part, wherein in a first operating position, interacting frame parts are placed against one another and in a second operating position said frame parts are moved away from one another, wherein between frame parts that have been moved away from one another, an intermediate space, delimited in part by said frame parts, is formed in the printing unit, wherein mat switches are provided, which prevent the printing couple cylinders from rotating, for example, when a person steps on one of said mat switches while the frame parts are in the operating position in which they are moved away from one another.


DE 102 24 031 B3 describes a device for monitoring a scanning zone of a working apparatus, said device comprising at least one redundant camera system consisting of two cameras and a beam splitter positioned upstream thereof, via which images of the scanning zone can be displayed on both cameras for detecting objects that may pose a safety risk within at least one safety zone, and comprising two computer units, wherein each computer unit is connected to one of the cameras for evaluating the image data acquired there, and wherein the two computer units are coupled to one another for the purpose of mutual verification, and comprising at least one switch output actuated by the computer units, via which output the working apparatus is placed in operation only if no object that may pose a safety risk is found within the safety zone.


DE 10 2004 037 888 A1 describes a printing unit of a web-fed rotary printing press, which comprises two frame sections, mounted so as to be movable in relation to one another, each having at least one printing couple with at least two interacting printing couple cylinders, wherein the printing couple cylinders are mounted with each cylinder end disposed in a bearing unit having at least one actuator, wherein each printing couple cylinder can be radially displaced in its respective bearing unit by means of the actuator, wherein the actuator is embodied as an adjustment means which is actuable via a pressurized medium, such as oil.


DE 200 11 699 U1 describes a printing press with an impression cylinder and at least one printing couple assigned to said cylinder, which printing couple comprises at least two bearings with socket-type supports for the interchangeable installation of tubular printing equipment parts, and an inking unit, wherein the bearing and the inking unit are supported so as to be displaceable with respect to their distance from the impression cylinder along at least one guide rail, and wherein the socket-type supports of the bearing can optionally be loaded with a selection of equipment parts on the basis of the printing technique and/or printing format, wherein the bearing and the inking unit are displaceable between an operational position, a switching position and an off-line position, wherein the bearing and the inking unit are displaceable on the guide rails, embodied as toothed racks, by means of an allocated servo motor, for displacement to the respective operational position, switching position and off-line position.


U.S. Pat. No. 5,025,726 A describes a printing unit of a rotary printing press having two frame sections, one of which is movable in relation to the other, wherein a locking system is provided.


FR 2 648 506 A1 describes a variable-width safety barrier for blocking off a hazardous area.


The documentation of the SICK AG company in D-79183 Waldkirch, Germany, describes safety laser scanners, product number 8010739, and the use thereof, wherein the publication date of said documentation is listed as 1 Apr. 2006.


SUMMARY OF THE INVENTION

The problem addressed by the invention is that of devising a printing unit for a printing press, comprising at least two frame parts, the position of which relative to one another can be changed, wherein a hazard posed by at least one moved frame part of said printing unit to a press operator working in the hazardous area of said printing unit is prevented.


The problem is solved according to the invention by a printing unit having at least one sensor that is usable for monitoring the intermediate space between the frame parts. This sensor has a directional characteristic effective along the joining surface or has a sensing zone effective along the joining surface. A field width of a first angular field of the directional characteristic or of the sensing zone, and which width is oriented parallel to the adjustment path of a movable frame part, is smaller than a respective field width of a second or third angular field of the directional characteristic or sensing zone. The field width of the second angular field of the directional characteristic or the sensing zone is oriented in the axial direction of at least one printed couple cylinder that is mounted in the movable frame part. The field width of the third angular field of the directional characteristic or the sensing zone is oriented in the direction of a height of the movable frame part.


The benefits to be achieved by the invention consist particularly in that the printing unit offers a high level of operational safety. In particular, the printing unit has a safety device which helps to prevent a hazard posed by at least one moved frame part of said printing unit to a press operator working in a hazardous area of said printing unit.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiment examples of the invention are illustrated in the drawings and are described in greater detail in what follows.


The drawings show:



FIG. 1 a printing unit comprising two frame parts, the position of which relative to one another can be changed, in a first operating position;



FIG. 2 the printing unit of FIG. 1, with its frame parts in a second operating position;



FIG. 3 a block diagram;



FIG. 4 variants for monitoring the intermediate space formed between frame parts of the printing unit, and variants of an access control device;



FIG. 5 another variant of the access control device.





DESCRIPTION OF THE PREFERRED EMBODIMENT


FIGS. 1 and 2 each illustrate, by way of example, a printing unit 01, embodied as a tower, particularly as an eight-couple tower, enclosed inside a frame 12 embodied, for example, as a structural framework, for a rotary printing press, which is preferably usable for color newspaper printing, wherein the printing unit 01 is highly compact in configuration, i.e., particularly having a low structural height. Two eight-couple towers of this type may also be placed one on top of the other to form a printing unit 01 embodied as a 16-couple tower. A preferably web-type print substrate 02, for example, a paper web 02, to be imprinted in the printing unit 01 is preferably guided substantially vertically through the printing unit 01. Preferably a plurality of printing couples 03 are arranged preferably on each side of the paper web 02, wherein each of said printing couples 03 has at least one printing couple cylinder 04, particularly transfer cylinder 04, and preferably one forme cylinder 06, which interacts with the transfer cylinder 04. Each printing couple 03 is also equipped with a preferably keyless inking unit 07 having multiple rollers, for example, an anilox inking unit 07 having a screen roller, wherein the rollers of the inking unit 07 draw ink from an ink reservoir 09 and form it into a thin ink film, evening out the thickness of said ink film, and transport said film to the respective forme cylinder 06 for the purpose of applying it to at least one printing forme arranged on the forme cylinder 06. The respective forme cylinder 06 of each of the printing couples 03 has an axial length of between 1,000 mm and 4,000 mm, for example, preferably between 1,200 mm and 2,600 mm, particularly between 1,600 mm and 2,100 mm, and preferably holds a plurality of printing formes, for example, four or six, side by side in its axial direction, wherein the respective subject of each printing forme is assigned to a specific page of the printed product to be produced by the rotary printing press, for example, a newspaper. The axial length of the transfer cylinder 04 is adapted to the respective forme cylinder 06 that interacts with it. The transfer cylinder 04 and the respective forme cylinder 06 can have the same circumference (FIGS. 1 and 2), or the circumferential length of the forme cylinder 06 is about one-half the size of the assigned transfer cylinder 04. The rotary printing press illustrated by way of example in FIGS. 1 and 2 prints, for example, in an offset printing process, preferably in a dry offset printing process, i.e., in an offset printing process that does not use a dampening agent, therefore the printing couples 03 depicted in FIGS. 1 and 2 do not have dampening units.


In the preferred embodiment, at least one, and particularly each, of the printing couples 03 of the printing unit 01 has a printing forme magazine 08, wherein each respective printing forme magazine 08 is assigned to the forme cylinder 06 of the respective printing couple 03. Each printing forme magazine 08 has at least one storage position for storing at least one printing forme, wherein each storage position is preferably embodied in a chute or as a chute, wherein said chute preferably has a transport device, for example, remotely actuable, for supplying at least one new printing forme to the forme cylinder 06. Each printing forme magazine 08 preferably also has a chute with an also preferably remotely actuable transport device for removing at least one used printing forme from the forme cylinder 06.


The printing formes are each fastened to the respective forme cylinder 06 by means of a retaining device, for example, a clamping device, preferably remotely actuable, arranged in the respective forme cylinder 06. The retaining device is embodied as pneumatically actuable, for example, and is arranged in a groove 11 in the respective forme cylinder 06, wherein said groove 11 extends in the axial direction of the relevant forme cylinder 06.


The frame 12 of the printing unit 01 consists, for example, of one lower and one upper support, each arranged horizontally, and, for example, two side frames, preferably arranged vertically between these two supports, wherein supports and side frames together form a frame, for example, which holds the printing unit 01, preferably encompassing it. The lower support can be embodied to act as the preferably substantially rectangular base plate of the printing unit 01, whereas the upper support forms a cover plate for the printing unit 01, for example. The printing unit 01 encompassed by said frame 12 has at least two frame parts 13; 14, the position of which relative to one another can be changed, wherein one of said frame parts 13 is preferably embodied as stationary in the shared frame 12 (in FIGS. 1 and 2, the left frame part 13, for example), whereas at least one other frame part 14 that interacts with the stationary frame part 13 (in FIGS. 1 and 2, the right frame part 14, for example) is arranged in the shared frame 12 so as to be movable, particularly positionable, bidirectionally, for example, parallel to the lower and upper supports, along a preferably linear adjustment path S between two end points that delimit the adjustment path. Because at least one of the interacting frame parts 13; 14, which have a substantially rectangular base surface, is movable, the frame parts 13; 14 have two different operating positions, wherein in a first operating position the frame parts 13; 14 are placed against one another along a shared joining surface 16 which extends across the height H and width B of the printing unit 01 (FIGS. 1, 2 and 4), and in a second operating position, the frame parts are moved away from one another (FIG. 2). The second operating position of the movable frame part 14 is indicated by dashed lines in FIG. 2. The shared joining surface 16 between the interacting frame parts 13; 14 is illustrated in FIG. 1 by way of example as two cut-outs. In a first operating position, the frame parts 13; 14, the position of which relative to one another can be changed, are placed directly against one another, with no intermediate space 17, wherein in this first operating position, the at least one movable frame part 14 can be locked in position, at least at the relevant end point of the adjustment path S, preferably via remote actuation, to prevent it from moving unintentionally. The joining surface 16 between frame parts 13; 14 placed against one another, formed in the first operating position, coincides, for example, with a transport plane of the paper web 02, which is preferably guided vertically through the printing unit 01. In the second operating position, the interacting frame parts 13; 14, the position of which relative to one another can be changed, are moved away from one another such that their respective sides that face the paper web 02 being guided through the printing unit 01 are opposite one another in parallel. During the changeover from the first operating position to the second operating position, the width of the preferably rectangular-shaped intermediate space 17 present between the interacting frame parts 13; 14 can be changed between a minimal value, preferably zero, and a maximum value of 1 m to 2 m, for example.


At least one printing couple cylinder 04, particularly embodied as transfer cylinder 04, is mounted in each of the interacting frame parts 13; 14, wherein when the interacting frame parts 13; 14 are in the first operating position, the at least one printing couple cylinder 04, mounted in the frame part 13 which is stationarily positioned in the frame 12, for example, can be placed against the at least one printing couple cylinder 04 mounted in the other frame part 14 which is movably positioned in the frame 12, for example, thereby forming a shared print position that imprints the paper web 02 particularly on both sides. In the second operating position, in which the two frame parts 13; 14, the position of which relative to one another can be changed, are moved away from one another, an intermediate space 17, delimited in part by the frame parts 13; 14, is formed between these two frame parts 13; 14 in the printing unit 01, particularly within the structural frame thereof, wherein said intermediate space 17 is then freely accessible and passable to press operators of the printing unit 01, at least when the frame part 14 which is movably arranged in the frame 12 has reached the end point at which it is the maximum distance from the joining surface 16 formed with the stationary frame part 13 (FIG. 2). The at least one movable frame part 14 can also be locked in place in its second operating position, particularly at the relevant end point of the adjustment path S, to prevent it from moving unintentionally. In the preferred embodiment, a plurality of printing couples 03, particularly four, are arranged in each of the interacting frame parts 13; 14. Each of the interacting frame parts 13; 14, particularly movable frame part 14, has a mass of 30 tons or more, for example.


On one operating side 21 of at least one of the frame parts 13; 14, a height-adjustable operator's platform 22 is arranged, for example, to facilitate access by press operators working on the printing unit 01 to the upper printing couples 03 of the printing unit 01. The operating side 21 of the respective frame part 13; 14 is located on the side thereof that faces away from the transport plane of the paper web 02 being guided through the printing unit 01. Additionally or alternatively, a height-adjustable operator's platform 22 that can also be lowered into the base plate is also arranged, for example, in the intermediate space 17 which is delimited in part by the interacting frame parts 13; 14.


To allow the movable frame part 14 to be moved, said part is mounted, for example, in a linear bearing and/or is guided in such a bearing as it is being moved. For implementing the movement of the frame parts 13; 14, the position of which relative to one another can be changed, at least one drive unit 23 is provided, which is assigned to at least one of the interacting frame parts 13; 14 to change it from one operating position to the other operating position. As was described above, at least one printing couple cylinder 04 is mounted in each of the interacting frame parts 13; 14, wherein at least a second drive unit 24 is provided for implementing a radial movement of the respective printing couple cylinder 04, wherein the radial movement of the respective printing couple cylinder 04 particularly has an orthogonal component relative to the joining surface 16 of the frame parts 13; 14. The printing couple cylinders 04 arranged in the same frame part 13; 14 can be moved radially by the respective second drive unit 24, all together, or each selected individually.


Each of the drive units 23; 24 has, for example, at least one operating cylinder that can be acted on by a pressurized medium, wherein to reduce energy costs, both drive units 23; 24 and preferably also a locking system 26 for latching or locking the relevant movable frame parts 13; 14 in place in their respective operating positions, i.e., particularly at the respective end points of the relevant adjustment path S, are preferably supplied with power, for example pressurized hydraulic fluid, from a shared energy storage device 27, particularly from the same hydraulic unit 27, so that only a single conduit system 19 is required for supplying power to the two drive units 23; 24, and if applicable to the locking system 26, in the printing unit 01 (FIG. 3). The hydraulic unit 27 has, for example, a compressor or a pump. The supply of power to at least one of the two drive units 23; 24 and to the locking system 26 can preferably be remotely actuated, for example, from a preferably electronic control unit 28, particularly from a control center 28 belonging to the printing unit 01, wherein the two drive units 23; 24 and the locking system 26 can each be actuated individually and independently of one another. The hydraulic unit 27 pressurizes the operating cylinder of the drive units 23; 24 with a pressure of, for example, 100 bar to 500 bar. The functional units connected to the same hydraulic unit 27 as the two drive units 23; 24 and the locking system 26 are switched to pressureless or pressurized, for example, by means of the same controllable control element 34, for example, valve 34, which is particularly controlled by the control unit 28, wherein said valve 34 is assigned directly to the output of the hydraulic unit 27 and is arranged upstream of a branch of the conduit system 19 that distributes the pressure to connected functional units, so that the respective functional position of the control element 34 affects all elements supplied with pressure from the hydraulic unit 27 (FIG. 3).


Because the intermediate space 17 that is formed between the frame parts 13; 14, the position of which relative to one another can be changed, in the second operating position thereof allows access, preferably even full-body access, to press operators working with the printing unit 01, in order to protect a press operator who might enter the intermediate space 17 or might reach into the intermediate space 17 with one of his body parts, a safety device 18 is provided in or on the printing unit 01 (FIG. 3), to prevent bodily injury, particularly crushing injuries, that could occur when the movable frame part 14 is placed in motion by the first drive unit 23, which is activated by the control unit 28, for example, particularly automatically, i.e., in a program-controlled system. The safety device 18 has, for example, at least one additional control element 29, for example, valve 29, also arranged in the system for supplying power for actuating the first drive unit 23, and controlled separately by the control unit 28, for example, with said valve having a functional position that can be selected by the control unit 28, in which position, for example, in the event of a malfunction occurring in the conduit system 19 for supplying power, for example, in the case of a circuit malfunction, relative movement between the frame parts 13; 14 is prevented, i.e., the movable frame part 14 is prevented from moving, for example, toward the stationary frame part 13, which could endanger a press operator working in the intermediate space 17 between the frame parts 13; 14, the position of which relative to one another can be changed. The selected functional position of this control element 29, which is particularly controlled by the control unit 28 separately and independently from the control of the first drive unit 23, affects only the operability of the first drive unit 23. In order for the first drive unit 23 to be operable, the supply of pressurized medium to it must be enabled by the control element 29, which is preferably controlled directly by the control unit 28. If this supply of pressurized medium is prevented or withdrawn by the control element 29, the first drive unit 23 is not operable, irrespective of the commands from its selection.


The safety device 18 preferably also has at least one detection device 31, particularly a sensor 31, for example, attached to the movable frame part 14, which sensor detects and monitors, in a contactless manner, the presence and/or movement of a body that does not belong to the printing unit 01, i.e., particularly the presence and/or movement of a person, in the intermediate space 17, preferably embodied as rectangular-shaped and having a variable width, between the frame parts 13; 14, the position of which relative to one another can be changed. The sensor 31 preferably works with electromagnetic waves, for example, with light or microwaves (radar system), or ultrasonic waves, and is embodied, for example, as a video camera suitable for monitoring a room, or as a motion detector, wherein the motion detector is embodied, for example, as a passive infrared detector. The sensor 31, embodied as a camera or as a motion detector, can be attached, for example, in or on the upper support of the frame 12, which is embodied as a cover plate. Another variant provides that particularly the sensor 31, embodied as a camera or as a motion detector, is preferably permanently affixed to the movable frame part 14, for example, by means of a support arm 36 that is attached to said frame part 14 and supports the sensor 31, wherein the sensing zone 37 of the sensor 31 is directed into the intermediate space 17 (FIG. 2). The sensor 31 is connected to the control unit 28, particularly to the control center 28 belonging to the printing unit 01, at least for purposes of data transfer. As soon as the sensor 31 detects the presence and/or movement of a person in the intermediate space 17, while the first drive unit 23 that drives the movable frame part 14 is actuated, the movement of the first drive unit 23 is immediately halted via the control element 29 acting on said drive unit 23, and the direction of movement of the frame part is optionally reversed. When a person is detected in the hazardous area, for example, the movable frame part 14 can be brought to a halt almost instantaneously, within an adjustment path S of fewer than 5 mm, for example, by an actuation of at least one of the control elements 29; 34 by switching off the first drive unit 23, i.e., switching it to pressureless, and/or by activating a brake device actuated by the control unit 28.



FIG. 3 illustrates, by way of example in a block diagram, the interaction of the at least one sensor 31, the control unit 28, the control elements 29; 34, the energy storage device 27, the drive units 23; 24 and the locking system 26, wherein the respective direction of action is indicated in each case by an arrow, wherein particularly the sensor 31 and the control element 29 arranged in the conduit system 19 to the first drive unit 23 are assigned to the safety device 18. The control unit 28 verifies the functional readiness and/or functionality of the sensor 31, preferably on a continuous basis. If the sensor 31 is not functionally ready and/or functional, the control unit 28 will prevent a release for initiating a movement of the movable frame part 14, or the control unit 28 will stop the first drive unit 23 that drives the movable frame part 14 by issuing a corresponding control command, for example, to the valve 34 assigned to the energy storage unit 27 and/or to the energy storage unit 27 itself, wherein the latter variant is indicated in FIG. 3 by a dashed directional arrow. If the sensor 31 is not functionally ready and/or functional, alternatively or in addition to controlling the first drive unit 23 and/or at least one of the control elements 29; 34, the control unit 28 can then actuate the locking system 26 that locks the movable frame part 14 in place.



FIGS. 4 and 5 each show, in a simplified illustration, a plan view of the printing unit 01 depicted in FIGS. 1 and 2, with the frame parts 13; 14, the position of which relative to one another can be changed within the frame 12.


In one advantageous embodiment, the at least one sensor 31, which monitors the intermediate space 17 between the frame parts 13; 14, the position of which relative to one another can be changed, has a directional characteristic 32 along the joining surface 16 of said frame parts, for example, which characteristic extends like a curtain within the intermediate space 17, preferably a very short distance a, in the range of a few millimeters to at most a few centimeters, for example, particularly in front of the movable frame part 14, wherein a field width w of a first angular field of the directional characteristic 32 or of the sensing zone 37 of the sensor 31, said width being directed parallel to the adjustment path S of the movable frame part 14, is preferably much smaller than a field width u; v, orthogonal thereto, of a second and/or third angular field of said directional characteristic 32 or said sensing zone 37, wherein the field width u of the second angular field of the directional characteristic 32 is oriented in the axial direction of the at least one printing couple cylinder 04 mounted in the movable frame part 14 (FIG. 4), and the field width v of the third angular field of the directional characteristic 32 or the sensing zone 37 is oriented in the direction of a height H of the movable frame part 14 (FIG. 2). The directional characteristic 32 or the sensing zone 37 are therefore heavily concentrated at least in a direction in space which is opposite at least one of the two other orthogonal directions in space, and therefore the directional characteristic 32 or the sensing zone 37 preferably extends flat along the joining surface 16 of the movable frame part 14. The field width u of the second angular field of the directional characteristic 32 or the sensing zone 37, which width is oriented in the axial direction of the at least one printing couple cylinder 04, and/or the field width v of the third angular field of the directional characteristic 32 or the sensing zone 37, which width is oriented in the direction of the height H of the movable frame part 14, can each be widened using an optical system, for example, particularly a system of lenses. The second angular field of the directional characteristic 32 or of the sensing zone 37, which angle is oriented in the axial direction of the at least one printing couple cylinder 04 mounted in the movable frame part 14, can be opened up to the height H of said frame part 14, and the third angular field of the directional characteristic 32 or of the sensing zone 37, oriented in the direction of the height H of the movable frame part 14, can be opened over an entire width B of the movable frame part 14, said width extending in the axial direction of the printing couple cylinder 04 mounted in the movable frame part 14 (FIG. 4). In FIG. 4, which provides a plan view of the printing unit 01, in the interest of clarity, the at least one printing couple cylinder 04 with its rotational axis indicated is shown in only one frame part, namely the stationary frame part 13, even though at least one printing couple cylinder 04 is also mounted in the movable frame part 14 (see FIG. 2).


In another variant, the at least one sensor 31 that monitors the intermediate space 17 is arranged so as to pivot, so that the sensing zone 37 of the sensor 31, which in this variant is preferably embodied as beam-shaped and therefore narrow, extends along the joining surface 16 formed between the frame parts 13; 14, the position of which relative to one another can be changed, as a result of a preferably periodic pivoting movement of said sensor 31, wherein in this variant, the sensor 31 is preferably embodied as at least one laser, wherein the laser emits a beam having a narrow diameter of, for example, fewer than 2 mm, and scans a scanning zone defined by the pivoting movement of said sensor 31. Therefore, irrespective of the practical embodiment of the sensor 31, the sensing zone 37 of said sensor 31 can execute a pivoting movement, wherein the sensing zone 37 extends along the joining surface 16 formed between the frame parts 13; 14, the position of which relative to one another can be changed.


It is also advantageous to provide that the control unit 28 which is connected to the sensor 31 activates and/or evaluates the signals from the at least one sensor 31 that monitors the intermediate space 17, which is preferably embodied as rectangular in shape and particularly having a variable width, on the basis of the operating positions of the interacting frame parts 13; 14. In this case it is particularly provided that, when the frame parts 13; 14, the position of which relative to one another can be changed, are moving toward one another, the control unit 28 switches the sensor 31 to mute once a predefined distance x between said frame parts 13; 14 is reached, i.e., that the control unit 28 does not evaluate the sensor's signal elicited by the detection of a frame part 13; 14 as a malfunction, and therefore also does not halt the movement of the frame parts 13; 14, the position of which relative to one another can be changed. The distance x at which the control unit 28 switches the sensor 31 to mute is selected to be greater than a field width w of the directional characteristic 32 or of the sensing zone 37 of the sensor 31, wherein said field width w is oriented parallel to the adjustment path S of the frame parts 13; 14, the position of which relative to one another can be changed. Switching the sensor 31 to mute can alternatively or additionally be time-dependent, particularly dependent on a duration of the movement carried out by at least one of the frame parts 13; 14, the position of which relative to one another can be changed. In its active time, during which it is switched on, the sensor 31 monitors the intermediate space 17 preferably continuously, with its directional characteristic 32 or its sensing zone 37.


Because once the sensor 31 has been switched to mute there is a danger that the movement of the frame parts 13; 14, the position of which relative to one another can be changed, toward one another in the intermediate space 17 might cause injury to a press operator, for example, to his limbs if these are reaching into the intermediate space 17, the safety device 18 is preferably expanded to include additional components, wherein the control device 28 activates these additional components either no earlier than the start of movement of the frame parts 13; 14, the position of which relative to one another can be changed, and/or no later than simultaneously with the switching of the sensor 31 to mute. These additional components connected to the control unit 28 consist preferably of an access control device 33 (FIG. 3), which controls at least one access point, for example, formed on a longitudinal side of the printing unit 01, to the intermediate space 17 that remains once the sensor 31 has been switched to mute.


The access control device 33 can have one or more photoelectric beam detectors or one or more infrared beam barriers, for example, wherein the respective beam paths of the photoelectric beam detectors or infrared beam barriers are oriented horizontally or vertically, for example. The access control device 33 can perform a control function, for example, over the entire height H of at least the movable frame part 14, or over only one or more portions of this height H.


The access control device 33 can have a scanner 38, arranged, for example, near the base plate, for example, at a height h of up to 200 mm, preferably about 100 mm, which therefore acts in the floor area of the intermediate space 17, wherein the sensing zone 37 of said scanner 38 is oriented substantially parallel to the longitudinal side of the printing unit 01, wherein at least one length l of said sensing zone 37, oriented parallel to the longitudinal side of the printing unit 01, can preferably be adjusted to variable lengths in the control unit 28, wherein said variable length l is adjustable and adjusted particularly on the basis of the distance x formed between the frame parts 13; 14, the position of which relative to one another can be changed (FIG. 2). The distance x ranges, for example, up to 2,000 mm. The base plate of the intermediate space 17 formed between the frame parts 13; 14, the position of which relative to one another can be changed, can also be covered by a pressure sensor mat (not shown), which sends a signal to the control unit 28 when the pressure sensor mat detects the presence of a person in the intermediate space 17 on the basis of the contact of that person with the base.


An additional or alternative embodiment of the access control device 33 can consist, for example, of at least one sensor strip 39, consisting of multiple sensors 41 arranged in a row, and particularly attached to the upper support of the frame 12, with each such strip monitoring one of the access points, formed on a longitudinal side of the printing unit 01, to the intermediate space 17 that is formed between the frame parts 13; 14, the position of which relative to one another can be changed, with said monitoring involving sensing by means of a barrier, for example, a multiple infrared beam barrier, preferably of narrow mesh, and generated, for example, by the sensors 41 in the respective sensor strip 39. The individual sensors 41 of the respective sensor strip 39 can preferably be activated and/or deactivated on the basis of the distance x that is formed between the frame parts 13; 14, the position of which relative to one another can be changed, such that the control unit 28 will evaluate only the signal of those sensors 41 of the sensor strip 39 which are active at a given point in time for the variable-width access point to the intermediate space 17. All the sensors 41 of the respective sensor strip 39 are switched off, for example, only when the printing unit 01 is in a printing process. As described above, each of the sensors 41 can be embodied as a camera or as a motion detector or as a laser or as a radar system.


As shown in FIG. 5, additionally or alternatively to one of the aforementioned variants, the access control device 33 can also have a mechanical safety barrier 42 on at least one of the longitudinal sides of the printing unit 01, wherein said safety barrier 42 is embodied, for example, in the form of a sliding door, wherein said sliding door, attached to one of the frame parts 13; 14, for example, mounted in a rail, can be displaced lengthwise along the longitudinal side of the printing unit 01, at least on the basis of the movement of the frame parts 13; 14, the position of which relative to one another can be changed, wherein the direction of movement of the safety barrier is indicated in FIG. 5 by a double arrow. Thus the safety barrier 42, in its operating state in which it blocks access to the intermediate space 17, is embodied as having a variable width between the frame parts 13; 14, the position of which relative to one another can be changed. When access to the intermediate space 17 between the frame parts 13; 14, the position of which relative to one another can be changed, and which have been moved away from one another is to be blocked, the sliding door attached to one of the frame parts 13; 14 is connected to the respectively other frame part 13; 14, in that the sliding door is suspended from said part in a lock 43. The lock 43 has an electrical contact switch, for example, which sends a signal to the control unit 28 reporting the blocking of the relevant access to the intermediate space 17 between the frame parts 13; 14, the position of which relative to one another can be changed, and which have been moved away from one another. Then, a probing device 44, for example, a sliding element 44, which can preferably be lowered into and raised out of the base plate of the printing unit 01, can be erected at least in the floor area of the intermediate space 17 and moved through the intermediate space 17 along the width B of the printing unit 01, as indicated in FIG. 5 by a motion arrow, in order to verify that no person or other object, such as a tool or similar object that may have been left behind, is still present in the intermediate space 17 after the safety barrier 42 has been activated. On the side of the sliding element 44 that is directed into the intermediate space 17 at least one contact switch 46 is provided, for example, which is capable of detecting contact with a person or with an object still present in the intermediate space 17. Alternatively, this verification can also be performed in a contactless manner, for example, using optical means, for example, with the sensor 31 embodied as a camera. Once it has been verified that no persons or objects are present in the intermediate space 17, a release signal is sent to the control unit 28, whereupon the control unit 28 actuates the first drive unit 23, whereby the frame parts 13; 14, the position of which relative to one another can be changed, and which have been moved away from one another, are moved toward one another along their adjustment path S, thereby reducing the width of the intermediate space 17 to its minimal value, preferably to zero. The control element 29 arranged in the conduit system 19 for supplying power to the first drive unit 23 can also be controlled by the control unit 28 on the basis of the signal from the probing device 44 that monitors the intermediate space 17 and/or from the safety barrier 42.


The access control device 33 can be permanently or only temporarily present at the respective access point to the intermediate space 17. At least a part of the access control device 33 can have an off-line position and an operational position, wherein in the off-line position, the corresponding part of the access control device 33 is mechanically covered or moved into a protected position, in order to protect it against soiling or damage. The at least one sensor 31 for monitoring the intermediate space 17 and the access control device 33 are activated by the control unit 28, for example, alternatingly, on the basis of the respective operating position of at least the movable frame part 14. As was described above, the control unit 28 immediately halts the movement of the movable frame part 14 when the sensor 31 and/or the access control device 33 detect the presence and/or movement of a body not belonging to the printing unit 01, particularly a press operator, present in a hazardous area of the printing unit 01 which has been created by a movement of the movable frame part 14.


A further improvement of the safety device 18 consists in locating a warning area 47 in front of the intermediate space 17 formed between the frame parts 13; 14, the position of which relative to one another can be changed, which space is monitored by the at least one sensor 31, wherein the warning area 47, which extends particularly along the longitudinal side of the printing unit 01, is scanned either by a sensor 48 provided especially for this purpose (FIG. 4) and/or by the sensor 31 that monitors the intermediate space 17, wherein in this case the scanning zone 37 of the sensor 31 that monitors the intermediate space 17 overlaps with the intermediate space 17. On the basis of the presence and/or movement within the warning area 47 of a body not belonging to the printing unit 01 while the frame parts 13; 14 are interacting, the control unit 28, which is connected to at least one of the sensors 31; 48, will activate a switchover from one operating position of the frame parts to the other, or will halt a movement that has already begun, in the event of a potential hazard. Monitoring the warning area 47 allows the control unit 28 to cause the safety device 18 and/or the drive units 23; 24 and/or the locking system 26 to react quickly when a person approaches the printing unit 01 or at least one of the moving frame parts 13; 14 in a manner that could cause harm to that person. Like the sensor 31 that monitors the intermediate space 17, the sensor 48 specifically for monitoring the warning area 47 is embodied, for example, as a camera or as a motion detector or as a laser or as a radar system, and works, for example, with electromagnetic waves, for example, light or radar, or ultrasonic waves. The sensor 48 that monitors the warning area 47 can have a directional characteristic 32 or a sensing zone 37 having a substantially oval or elliptical cross-section, with which it monitors the warning area 47 in front of the intermediate space 17 formed between the frame parts 13; 14, the position of which relative to one another can be changed.


A further embodiment of the sensor 48 that monitors the warning area 47 can consist of an arrangement of at least one of the sensors 48 that projects into the warning area 47, wherein preferably a plurality of said sensors 48 are arranged particularly close to one another in a row. The sensor 48 is preferably arranged on the movable frame part 14, for example, in the area of the cover plate belonging to said frame part 14, wherein the directional characteristic 32 or the sensing zone 37 of this sensor 48 is oriented particularly vertically downward, such that said sensor 48 will detect a person or an object moving on the side of the movable frame part 14 that faces the intermediate space 17, through the access point to said intermediate space 17 that extends longitudinally along the printing unit 01, and into said space (FIG. 4). A mesh width m between the respective directional characteristic 32 or the respective sensing zone 37 of sensors 48 that monitor the same warning area 47 is only a few millimeters, for example, particularly fewer than 20 mm, preferably from 8 mm to 15 mm. The sensor 48 for monitoring a warning area 47 is positioned at a distance y of fewer than 20 mm, for example, preferably from 8 mm to 15 mm, from an edge 49 of the movable frame part 14, which edge extends vertically, for example, and is formed on the joining surface 16. The depth t of the warning area 47, referred to the longitudinal side of the printing unit 01, and extending in the direction of its width B, is 500 mm to 1,000 mm, for example.


The aforementioned embodiments for monitoring the intermediate space 17 and/or the warning area 47 can also be combined with one another. For example, at least on one side of one of the interacting frame parts 13; 14, a barrier 51 (indicated by dashed lines in FIG. 4) can be permanently or temporarily attached, extending widthwise from said frame part, to which barrier, in turn, a mechanical or contactless safety barrier 42, according to the above-described examples, is arranged, at a lateral distance z from the relevant longitudinal side of the printing unit 01. The distance z corresponds, for example, to the depth t of the warning area 47.


While a preferred embodiment of a printing unit of a printing press comprising at least two frame parts, the position of which relative to one another can be changed, has been described fully and completely hereinabove, it will be apparent to one of skill in the art that various changes, for example, in the specific structure of the printing unit components, the types of materials being printed on, the drives for the printing unit components, and the like could be made without deviating from the spirit and scope of the present invention which is accordingly to be limited only by the appended claims.

Claims
  • 1. A printing unit of a printing press comprising: first and second interacting frame parts, the positions of which, relative to one another, can be changed, and wherein the first and second interacting frame parts can be placed contacting one another along a shared joining surface in a first operating position and can be moved away from one another along an adjustment path to a second operating position;an intermediate space, having an intermediate space distance, formed between the first and second interacting frame parts, when the first and second frame parts are moved away from one another in the printing unit and along the adjustment path to the second operating position, and which intermediate space is delimited in part by the first and second frame parts;means for moving at least one frame part with respect to the other frame part along the adjustment pathat least one sensor adapted to monitor the intermediate space between the first and second frame part, the at least one sensor having at least one of a directional characteristic effective along the joining surface and a sensing zone effective along the joining surface, a first field width of a first angular field of the at least one of the directional characteristic and of the sensing zone, which first field width is oriented parallel to the adjustment path of the movable frame part, being smaller than a respective field width of a second angular field or of a third angular field of the at least one of the directional characteristic and the sensing zone, the second field width of the second angular field of the at least one of the directional characteristic and the sensing zone being oriented in an axial direction of at least one printing couple cylinder mounted in the movable frame part and the third field width of the third angular field of the at least one of the directional characteristic and the sensing zone, being oriented in a direction of a height of the movable frame part; anda control unit connected to the at least one sensor to control the means for moving the at least one frame part, which control unit does not evaluate a signal received from the at least one sensor, when a predefined distance, over which the first and second frame parts have been moved toward one another, is reached, the predefined distance at which the control unit does not evaluate a signal received from the at least one sensor being greater than the first field width and less than the intermediate space.
  • 2. The printing unit according to claim 1, wherein the adjustment path is linear.
  • 3. The printing unit according to claim 1, wherein the sensor detects at least one of electromagnetic waves and ultrasonic waves.
  • 4. The printing unit according to claim 1, wherein the sensor monitors the intermediate space for at least one of the presence and movement of a body not belonging to the printing unit.
  • 5. The printing unit according to claim 1, wherein the sensor is embodied as at least one of a camera, a motion detector, a laser, a scanner and a radar system.
  • 6. The printing unit according to claim 1, wherein the sensing zone of the sensor carries out a pivoting movement, and further wherein the sensing zone extends along the joining surface formed between the frame parts, the position of which relative to one another can be changed.
  • 7. The printing unit according to claim 1, wherein the control unit connected to the sensor activates the sensor on the basis of the operating positions of the first and second interacting frame parts.
  • 8. The printing unit according to claim 1, wherein the control unit does not evaluate a signal from the sensor when the first and second frame parts, the position of which relative to one another can be changed, are being moved toward one another, on the basis of the duration of this movement carried out by at least one of the first and second frame parts, the position of which relative to one another can be changed.
  • 9. The printing unit according to claim 1, further including an access control device connected to the control unit and, wherein the access control device controls at least one access point to the intermediate space, which access control device remains on one or more sides after the control unit does not evaluate a signal received from the sensor.
  • 10. The printing unit according to claim 9, wherein the control unit activates the access control device at least one of no earlier than the start of movement of the first and second frame parts, the positions of which, relative to one another, can be changed, and no later than simultaneously with the control unit not evaluating a signal receiving from the sensor.
  • 11. The printing unit according to claim 9, wherein the access control device has at least one of one or more photoelectric beam detectors and one or more infrared beam barriers, and further wherein the respective beam path of the photoelectric beam detectors or infrared beam barriers is oriented at least one of horizontally and vertically.
  • 12. The printing unit according to claim 9, wherein the access control device exerts a controlling function over at least one of an entire height of at least the movable frame part and over only at least one portion of this height.
  • 13. The printing unit according to claim 9, wherein the access control device is one of permanently and temporarily present at the respective access point to the intermediate space.
  • 14. The printing unit according to claim 9, wherein at least a part of the access control device has an off-line position and a functional position, and wherein in the off-line position, the corresponding part of the access control device is mechanically at least one of covered and moved to a protected position.
  • 15. The printing unit according to claim 9, wherein the control unit alternatingly activates the at least one sensor that monitors the intermediate space and the access control device.
  • 16. The printing unit according to claim 9, wherein, when at least one of the sensor and the access control device detects at least one of a presence and a movement of a body not belonging to the printing unit, the control unit will stop the movement of the movable frame part.
  • 17. The printing unit according to claim 1 wherein a remotely actuable locking system locks the movable frame part in place at least at one of its end points that delimits the adjustment path.
  • 18. The printing unit according to claim 1 wherein at least one first drive unit is provided, and wherein the at least one first drive unit is assigned to at least one of the first and second interacting frame parts in order to move that movable frame part from one operating position to the other.
  • 19. The printing unit according to claim 18, wherein the control unit stops the movement of the first drive unit as soon as the sensor detects one of the presence and/or movement of a person in the intermediate space.
  • 20. The printing unit according to claim 18, wherein, if the sensor is not at least one of functionally ready and functional, the control unit will at least one of prevent a release that would initiate movement of the movable frame part, and will stop the first drive unit that drives the movable frame part.
  • 21. The printing unit according to claim 1 wherein at least one second drive unit is provided, and wherein the at least one second drive unit is provided for implementing a radial movement of the at least one printing couple cylinder mounted in one of the first and second frame parts.
  • 22. The printing unit according to claim 21, wherein at least the first drive unit and the second drive unit are supplied with power from a common energy storage device.
  • 23. The printing unit according to claim 22, wherein the common energy storage device is embodied as a hydraulic unit.
  • 24. The printing unit according to claim 22, further including a remotely actuable locking system which locks the movable frame part in place at least at one of its end points that delimit the adjustment path, and wherein that the locking system is supplied with power from the same common energy storage device as the drive units.
  • 25. The printing unit according to claim 22, wherein the first and second drive units are supplied with power by connection to a common conduit system that is supplied with power from the common energy storage device.
  • 26. The printing unit according to claim 25, further including a control element arranged in the common conduit system, and which is usable for supplying power to the first drive unit, is controlled by the control unit on the basis of a signal from the sensor that monitors the intermediate space.
  • 27. The printing unit according to claim 26, wherein the control element is additionally arranged for actuating the first drive unit and is controlled separately from the actuation of the first drive unit.
  • 28. The printing unit according to claim 26, wherein a functional position of the control element, which can be selected by the control unit, prevents one of the first and second frame parts from moving toward the other of the first and second frame part.
  • 29. The printing unit according to claim 26, wherein, if the sensor is not at least one of functionally ready and functional, the control unit will actuate the control element arranged in the common conduit system for supplying power to the first drive unit and will one of prevent and stop the movement of the movable frame part.
  • 30. The printing unit according to claim 25, wherein a control element which is assigned to the output of the energy storage device, is provided, and with which control element, the common conduit system, that is fed with power from the common energy storage device, can be switched to one of pressureless and pressurized by the control unit.
  • 31. The printing unit according to claim 21, wherein the first and second drive units are each actuable individually and independently of one another.
  • 32. The printing unit according to claim 1, wherein the control unit verifies at least one of the functional readiness and the functionality of the sensor.
  • 33. The printing unit according to claim 32, further including a remotely actuable locking system which locks the movable frame part in place at least at one of its end points that delimit the adjustment path, and wherein if the sensor is not at least one of functionally ready and functional, the control unit will actuate the locking system for locking the movable frame part in place.
  • 34. The printing unit according to claim 1, wherein, one of the first and second interacting frame parts is stationary and the other is movable.
  • 35. The printing unit according to claim 34, wherein, the sensor is attached to the movable frame part.
  • 36. The printing unit according to claim 1, wherein the control unit is embodied as a control center belonging to the printing unit.
  • 37. The printing unit according to claim 1, the printing unit imprints a print substrate fed through it in an offset printing process.
Priority Claims (1)
Number Date Country Kind
10 2008 041 847 Sep 2008 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/060651 8/18/2009 WO 00 3/4/2011
Publishing Document Publishing Date Country Kind
WO2010/026041 3/11/2010 WO A
US Referenced Citations (16)
Number Name Date Kind
4000693 Kaiser et al. Jan 1977 A
4973837 Bradbeer Nov 1990 A
5025726 Funabashi et al. Jun 1991 A
5142152 Boiucaner Aug 1992 A
5142979 Funada et al. Sep 1992 A
5178069 Rodi Jan 1993 A
5574437 Schwinn et al. Nov 1996 A
5782182 Ruckmann et al. Jul 1998 A
6304178 Hayashida Oct 2001 B1
6598528 Nakano et al. Jul 2003 B2
6784800 Orzechowski Aug 2004 B2
7707936 Schneider et al. May 2010 B2
7779757 Schafer et al. Aug 2010 B2
7908969 Caulier Mar 2011 B2
20030121709 Lyshaug Jul 2003 A1
20090095178 Schwitzky et al. Apr 2009 A1
Foreign Referenced Citations (10)
Number Date Country
200 11 699 Jan 2002 DE
102 24 031 Jan 2004 DE
10 2004 037 888 Oct 2005 DE
0 444 227 Sep 1991 EP
1 155 849 Nov 2001 EP
1 524 115 Apr 2005 EP
1 790 474 May 2007 EP
2 648 506 Dec 1990 FR
9524314 Sep 1995 WO
2005037553 Apr 2005 WO
Related Publications (1)
Number Date Country
20110197776 A1 Aug 2011 US