The present invention relates to computer systems, and more particularly, to data security in a computer system.
In a typical computer system, a memory controller or a memory controller hub (MCH) routes data in between various devices within the computer system, such as, a processor, a main memory, a graphics chip, a peripheral device, etc. Some of the devices of the computer system are referred to as trusted agents because it is safe to send secured data to these devices. For example, the Central Processing Unit (CPU) is a trusted agent in one computer system. The remaining devices are referred to as non-trusted agents.
The MCH in the computer system allows software to allocate memory space in a memory map for various devices in the computer system. When the computer system is initialized, the basic input/output software (BIOS) programs a set of configuration registers in the MCH to define a memory map for the computer system.
An existing address decoder in a MCH is shown in
Some software may be used to exploit the fact that data is sent to multiple locations when address ranges overlap in order to steal secured data from the computer system. For example, the software reprograms the address range of a non-trusted agent, e.g., a peripheral device, to overlap with the address range of a trusted agent. When the trusted agent accesses the secured data, the non-trusted agent receives the secured data as well if the destination address of the secured data falls into the address range shared by both the trusted agent and the non-trusted agent. However, it is impractical to bar reprogramming of the address ranges of peripheral devices because other legitimately operating software applications may reprogram the address ranges from time to time.
The present invention will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the appended claims to the specific embodiments shown, but are for explanation and understanding only.
In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures, and techniques have not been shown in detail in order not to obscure the understanding of this description.
Referring to
In one embodiment, if the input address 401 does not fall within the address range of device A, the output of the comparator 410, DestinationA 493, goes low to prevent the data from going to device A and enables the comparator 420. When the comparator 420 is enabled, the comparator 420 compares the input address 401 with cfg_bitsB 405 and determines whether the input address 401 is within the address range of device B. If the input address 401 is within the address range of device B, the output of the comparator 420, DestinationB 495, goes high to allow the data to go to device B. DestinationB 495 also goes to the comparator 430 via the OR gate 440 to disable the comparator 430.
In one embodiment, the outputs of the comparators 410 and 420 are coupled to inputs of the OR gate 440. If the input address is not within the address range of device A or the address range of device B, then the outputs of the comparators 410 and 420 go low, i.e., both DestinationA 493 and DestinationB 495 go low. DestinationA 493 and DestinationB 495 are input to the OR gate 440, and therefore, the output of the OR gate 440 goes low to enable the comparator 430. The comparator 430 compares the input address 401 with cfg_bitsC 407 to determine whether the input address 401 is within the address range of device C. If so, the output of the comparator 430, DestinationC 497, goes high to allow the data to go to device C.
In an alternate embodiment, the prioritized address decoder includes a different number of comparators, such as, for example, 2, 4, 5, etc., that may depend on the number of devices in the system that have associated address ranges. In one embodiment, there is one comparator for each device in the computer system.
In one embodiment, the comparators are arranged in a sequence such that the comparators assigned to the trusted agents are enabled before the comparators assigned to the non-trusted agents. Such arrangement prevents the non-trusted agents with an address range overlapping the address range of a trusted agent from accessing secured data that is to be sent to the trusted agent. It is because the comparator assigned to the trusted agent disables the comparator assigned to the non-trusted agent when the destination address of the data falls within the address range of the trusted agent. For example, referring back to
In one embodiment, a comparator outputs a signal at high level and allows data to be sent to the device associated with the address range when the input address 401 falls within the associated address range of a comparator. For example, if input address 401 falls within the address range associated with cfg_bitsA 403, comparator 412 outputs a signal at high level to allow the data to be sent to the device associated with cfg_bitsA 403. The output of comparator 412 is input via the inverter 451 to the AND gates 453 and 457. The inverter 451 inverts the output of comparator 412 from a high level to a low level, and therefore, forcing the outputs of both AND gates 453 and 457, i.e., DestinationB 495 and DestinationC 497, respectively, to be at low level, regardless of the other inputs to the AND gates 453 and 457. Therefore, the data would be sent to only the device associated with cfg_bitsA 403, not the devices associated with cfg_bitsB 405 and cfg_bitsC 407. One should appreciate that the embodiments described above are merely for illustrating the concept. Other embodiments may include different logic circuitries or configuration without going beyond the scope and boundary of the appended claims.
For a non-trusted agent, processing logic determines whether the destination address is within the address range of the non-trusted agent (processing block 530). If the destination address is within the address range of the non-trusted agent, processing logic sends the data to the non-trusted agent and the process ends (processing block 539). Otherwise, processing logic determines whether there is any non-trusted agent not checked yet (processing block 535). If there is a non-trusted agent not checked yet, processing logic repeats processing block 530 on the non-trusted agent until all non-trusted agents have been checked. If the destination address does not fall within the address range of any trusted or non-trusted agent, then processing logic flags an error (processing block 540).
Since processing logic checks all trusted agents before checking any non-trusted agent and stops looking for another agent when processing logic finds a trusted agent having an address range encompassing the destination address of the data, the data is not sent to a non-trusted agent even if the destination address is also within the address range of the non-trusted agent. Such address decoding mechanism prevents the non-trusted agent with an address range overlapping the address range of a trusted agent from accessing secured data going to the trusted agent.
In one embodiment, MCH 620 includes a priority address decoder 622 and a set of configuration registers 624 to route data between the devices of computer system 600. Some of the devices are referred to as trusted agents because it is safe to send secured data to these devices. The remaining devices are referred to as non-trusted agents. For example, in one embodiment, main memory 630, processor 610, and device A are trusted agents, while device B and device C are non-trusted agents.
To prevent routing secured data to non-trusted agents, MCH 620 checks the destination address of the secured data with the priority address decoder 622. In one embodiment, the address ranges of both the trusted and non-trusted agents are stored in the configuration registers 624. In one embodiment, the configuration registers 624 are set during configuration of various devices of the computer system 600. The contents of the configuration registers 624 may be modified during execution of certain software applications. In one embodiment, the configuration registers 624 are locked during a trusted mode to prevent unauthorized modification of the contents of the registers 624.
In one embodiment, the priority address decoder 622 checks the address ranges of the trusted agents one by one. In one embodiment, the priority address decoder 622 includes one comparator for each device in the computer system to determine whether the destination address of the data falls within the address range of the device. The comparators may be arranged in a sequence such that all comparators corresponding to trusted agents are before the comparators for non-trusted agents. In one embodiment, when the priority address decoder 622 identifies the trusted agent with an address range encompassing the destination address, the corresponding comparator outputs a signal to disable the other comparators such that the secured data is allowed to go to only the trusted agent. When the decoder 622 determines that the destination address is not within the address range of any of the trusted agents, the decoder 622 checks the non-trusted agents. Hence, the decoder 622 prevents the secured data from going to a non-trusted agent with an address range overlapping the address range of a trusted agent.
Note that any or all of the devices of computer system 600 and associated hardware may be used in various embodiments of the present invention. However, it can be appreciated that other configurations of the computer system may include some or all of the devices.
The foregoing discussion merely describes some exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, the accompanying drawings and the claims that various modifications can be made without departing from the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
Number | Name | Date | Kind |
---|---|---|---|
3699532 | Schaffer et al. | Oct 1972 | A |
3996449 | Attanasio et al. | Dec 1976 | A |
4037214 | Birney et al. | Jul 1977 | A |
4162536 | Morley | Jul 1979 | A |
4207609 | Luiz et al. | Jun 1980 | A |
4247905 | Yoshida et al. | Jan 1981 | A |
4276594 | Morley | Jun 1981 | A |
4278837 | Best | Jul 1981 | A |
4307447 | Provanzano et al. | Dec 1981 | A |
4319233 | Matsuoka et al. | Mar 1982 | A |
4319323 | Ermolovich et al. | Mar 1982 | A |
4347565 | Kaneda et al. | Aug 1982 | A |
4366537 | Heller et al. | Dec 1982 | A |
4403283 | Myntti et al. | Sep 1983 | A |
4419724 | Branigin et al. | Dec 1983 | A |
4430709 | Schleupen et al. | Feb 1984 | A |
4521852 | Guttag | Jun 1985 | A |
4571672 | Hatada et al. | Feb 1986 | A |
4621318 | Maeda | Nov 1986 | A |
4759064 | Chaum | Jul 1988 | A |
4795893 | Ugon | Jan 1989 | A |
4802084 | Ikegaya et al. | Jan 1989 | A |
4825052 | Chemin et al. | Apr 1989 | A |
4907270 | Hazard | Mar 1990 | A |
4907272 | Hazard | Mar 1990 | A |
4910774 | Barakat | Mar 1990 | A |
4975836 | Hirosawa et al. | Dec 1990 | A |
5007082 | Cummins | Apr 1991 | A |
5022077 | Bealkowski et al. | Jun 1991 | A |
5075842 | Lai | Dec 1991 | A |
5079737 | Hackbarth | Jan 1992 | A |
5155829 | Koo | Oct 1992 | A |
5187802 | Inoue et al. | Feb 1993 | A |
5230069 | Brelsford et al. | Jul 1993 | A |
5237616 | Abraham et al. | Aug 1993 | A |
5255379 | Melo | Oct 1993 | A |
5287363 | Wolf et al. | Feb 1994 | A |
5293424 | Holtey et al. | Mar 1994 | A |
5295251 | Wakui et al. | Mar 1994 | A |
5317705 | Gannon et al. | May 1994 | A |
5319760 | Mason et al. | Jun 1994 | A |
5361375 | Ogi | Nov 1994 | A |
5386552 | Garney | Jan 1995 | A |
5421006 | Jablon et al. | May 1995 | A |
5434999 | Goire et al. | Jul 1995 | A |
5437033 | Inoue et al. | Jul 1995 | A |
5442645 | Ugon et al. | Aug 1995 | A |
5455909 | Blomgren et al. | Oct 1995 | A |
5459867 | Adams et al. | Oct 1995 | A |
5459869 | Spilo | Oct 1995 | A |
5469557 | Salt et al. | Nov 1995 | A |
5473692 | Davis | Dec 1995 | A |
5479509 | Ugon | Dec 1995 | A |
5504922 | Seki et al. | Apr 1996 | A |
5506975 | Onodera | Apr 1996 | A |
5511217 | Nakajima et al. | Apr 1996 | A |
5522075 | Robinson et al. | May 1996 | A |
5528231 | Patarin | Jun 1996 | A |
5533126 | Hazard et al. | Jul 1996 | A |
5555385 | Osisek | Sep 1996 | A |
5555414 | Hough et al. | Sep 1996 | A |
5560013 | Scalzi et al. | Sep 1996 | A |
5564040 | Kubala | Oct 1996 | A |
5566323 | Ugon | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574936 | Ryba et al. | Nov 1996 | A |
5582717 | Di Santo | Dec 1996 | A |
5604805 | Brands | Feb 1997 | A |
5606617 | Brands | Feb 1997 | A |
5615263 | Takahashi | Mar 1997 | A |
5628022 | Ueno et al. | May 1997 | A |
5633929 | Kaliski, Jr. | May 1997 | A |
5657445 | Pearce | Aug 1997 | A |
5668971 | Neufeld | Sep 1997 | A |
5684948 | Johnson et al. | Nov 1997 | A |
5706469 | Kobayashi | Jan 1998 | A |
5717903 | Bonola | Feb 1998 | A |
5720609 | Pfefferle | Feb 1998 | A |
5721222 | Bernstein et al. | Feb 1998 | A |
5729760 | Poisner | Mar 1998 | A |
5737604 | Miller et al. | Apr 1998 | A |
5737760 | Grimmer, Jr. et al. | Apr 1998 | A |
5740178 | Jacks et al. | Apr 1998 | A |
5752046 | Oprescu et al. | May 1998 | A |
5757919 | Herbert et al. | May 1998 | A |
5764969 | Kahle | Jun 1998 | A |
5796835 | Saada | Aug 1998 | A |
5796845 | Serikawa et al. | Aug 1998 | A |
5805712 | Davis | Sep 1998 | A |
5809546 | Greenstein et al. | Sep 1998 | A |
5825875 | Ugon | Oct 1998 | A |
5825880 | Sudia et al. | Oct 1998 | A |
5835594 | Albrecht et al. | Nov 1998 | A |
5844986 | Davis | Dec 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5854913 | Goetz et al. | Dec 1998 | A |
5867577 | Patarin | Feb 1999 | A |
5872994 | Akiyama et al. | Feb 1999 | A |
5890189 | Nozue et al. | Mar 1999 | A |
5900606 | Rigal | May 1999 | A |
5901225 | Ireton et al. | May 1999 | A |
5903752 | Dingwall et al. | May 1999 | A |
5919257 | Trostle | Jul 1999 | A |
5935242 | Madany et al. | Aug 1999 | A |
5935247 | Pai et al. | Aug 1999 | A |
5937063 | Davis | Aug 1999 | A |
5940342 | Yamazaki et al. | Aug 1999 | A |
5944821 | Angelo | Aug 1999 | A |
5953502 | Helbig, Sr. | Sep 1999 | A |
5956408 | Arnold | Sep 1999 | A |
5970147 | Davis et al. | Oct 1999 | A |
5978475 | Schneier et al. | Nov 1999 | A |
5978481 | Ganesan et al. | Nov 1999 | A |
5987557 | Ebrahim | Nov 1999 | A |
6014745 | Ashe | Jan 2000 | A |
6035374 | Panwar et al. | Mar 2000 | A |
6044478 | Green | Mar 2000 | A |
6055637 | Hudson et al. | Apr 2000 | A |
6058478 | Davis | May 2000 | A |
6061794 | Angelo | May 2000 | A |
6075938 | Bugnion et al. | Jun 2000 | A |
6085296 | Karkhanis et al. | Jul 2000 | A |
6088262 | Nasu | Jul 2000 | A |
6092095 | Maytal | Jul 2000 | A |
6093213 | Favor et al. | Jul 2000 | A |
6101584 | Satou et al. | Aug 2000 | A |
6108644 | Goldschlag et al. | Aug 2000 | A |
6115816 | Davis | Sep 2000 | A |
6125430 | Noel et al. | Sep 2000 | A |
6131166 | Wong-Isley | Oct 2000 | A |
6148379 | Schimmel | Nov 2000 | A |
6158546 | Hanson et al. | Dec 2000 | A |
6173417 | Merrill | Jan 2001 | B1 |
6175924 | Arnold | Jan 2001 | B1 |
6175925 | Nardone et al. | Jan 2001 | B1 |
6178509 | Nardone | Jan 2001 | B1 |
6182089 | Ganapathy et al. | Jan 2001 | B1 |
6188257 | Buer | Feb 2001 | B1 |
6192455 | Bogin et al. | Feb 2001 | B1 |
6199152 | Kelly et al. | Mar 2001 | B1 |
6205550 | Nardone et al. | Mar 2001 | B1 |
6212635 | Reardon | Apr 2001 | B1 |
6222923 | Schwenk | Apr 2001 | B1 |
6249872 | Wildgrube et al. | Jun 2001 | B1 |
6252650 | Nakaumra | Jun 2001 | B1 |
6269392 | Cotichini et al. | Jul 2001 | B1 |
6272533 | Browne et al. | Aug 2001 | B1 |
6272637 | Little et al. | Aug 2001 | B1 |
6275933 | Fine et al. | Aug 2001 | B1 |
6282650 | Davis | Aug 2001 | B1 |
6282651 | Ashe | Aug 2001 | B1 |
6282657 | Kaplan et al. | Aug 2001 | B1 |
6292874 | Barnett | Sep 2001 | B1 |
6301646 | Hostetter | Oct 2001 | B1 |
6308270 | Guthery et al. | Oct 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B2 |
6321314 | Van Dyke | Nov 2001 | B1 |
6327652 | England et al. | Dec 2001 | B1 |
6330670 | England et al. | Dec 2001 | B1 |
6339815 | Feng | Jan 2002 | B1 |
6339816 | Bausch | Jan 2002 | B1 |
6357004 | Davis | Mar 2002 | B1 |
6363485 | Adams | Mar 2002 | B1 |
6374286 | Gee et al. | Apr 2002 | B1 |
6374317 | Ajanovic et al. | Apr 2002 | B1 |
6378068 | Foster | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6397242 | Devine et al. | May 2002 | B1 |
6397379 | Yates, Jr. et al. | May 2002 | B1 |
6412035 | Webber | Jun 2002 | B1 |
6421702 | Gulick | Jul 2002 | B1 |
6435416 | Slassi | Aug 2002 | B1 |
6445797 | McGough et al. | Sep 2002 | B1 |
6463535 | Drews et al. | Oct 2002 | B1 |
6463537 | Tello | Oct 2002 | B1 |
6499123 | McFarland et al. | Dec 2002 | B1 |
6505279 | Phillips et al. | Jan 2003 | B1 |
6507904 | Ellison et al. | Jan 2003 | B1 |
6529909 | Bowman-Amuah | Mar 2003 | B1 |
6535988 | Poisner | Mar 2003 | B1 |
6557104 | Vu et al. | Apr 2003 | B2 |
6560627 | McDonald et al. | May 2003 | B1 |
6609199 | DeTreville | Aug 2003 | B1 |
6615278 | Curtis | Sep 2003 | B1 |
6633963 | Ellison et al. | Oct 2003 | B1 |
6633981 | Davis | Oct 2003 | B1 |
6651171 | England et al. | Nov 2003 | B1 |
6678825 | Ellison et al. | Jan 2004 | B1 |
6684326 | Cromer et al. | Jan 2004 | B1 |
20010021969 | Burger et al. | Sep 2001 | A1 |
20010027511 | Wakabayashi et al. | Oct 2001 | A1 |
20010027527 | Khidekel et al. | Oct 2001 | A1 |
20010037450 | Metlitski et al. | Nov 2001 | A1 |
20020007456 | Peinado et al. | Jan 2002 | A1 |
20020023032 | Pearson et al. | Feb 2002 | A1 |
20020147916 | Strongin et al. | Oct 2002 | A1 |
20020166061 | Falik et al. | Nov 2002 | A1 |
20020169717 | Challener | Nov 2002 | A1 |
20030018892 | Tello | Jan 2003 | A1 |
20030074548 | Cromer et al. | Apr 2003 | A1 |
20030115453 | Grawrock | Jun 2003 | A1 |
20030126442 | Glew et al. | Jul 2003 | A1 |
20030126453 | Glew et al. | Jul 2003 | A1 |
20030159056 | Cromer et al. | Aug 2003 | A1 |
20030188179 | Challener et al. | Oct 2003 | A1 |
20030196085 | Lampson et al. | Oct 2003 | A1 |
20040117539 | Bennett et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
42 17 444 | Mar 1992 | DE |
0 473 913 | Mar 1992 | EP |
0 600 112 | Jun 1994 | EP |
0 602 867 | Jun 1994 | EP |
0 892 521 | Jan 1999 | EP |
0 930 567 | Jul 1999 | EP |
0 961 193 | Dec 1999 | EP |
0 965 902 | Dec 1999 | EP |
1 030 237 | Aug 2000 | EP |
1 055 989 | Nov 2000 | EP |
1 056 014 | Nov 2000 | EP |
1 085 396 | Mar 2001 | EP |
1 146 715 | Oct 2001 | EP |
1 209 563 | May 2002 | EP |
1 271 277 | Jan 2003 | EP |
2000-076139 | Mar 2000 | JP |
WO 9524696 | Sep 1995 | WO |
WO 9729567 | Aug 1997 | WO |
WO 9812620 | Mar 1998 | WO |
WO 9834365 | Aug 1998 | WO |
WO 9844402 | Oct 1998 | WO |
WO 9905600 | Feb 1999 | WO |
WO 9909482 | Feb 1999 | WO |
WO 9918511 | Apr 1999 | WO |
WO 9957863 | Nov 1999 | WO |
WO 9965579 | Dec 1999 | WO |
WO 0021238 | Apr 2000 | WO |
WO 0062232 | Oct 2000 | WO |
WO 0127723 | Apr 2001 | WO |
WO 0127821 | Apr 2001 | WO |
WO 0163994 | Aug 2001 | WO |
WO 0175564 | Oct 2001 | WO |
WO 0175565 | Oct 2001 | WO |
WO 0175595 | Oct 2001 | WO |
WO 0201794 | Jan 2002 | WO |
WO 0217555 | Feb 2002 | WO |
WO 02060121 | Aug 2002 | WO |
WO 02086684 | Oct 2002 | WO |
WO 03058412 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050086508 A1 | Apr 2005 | US |