Prioritizing network traffic

Information

  • Patent Grant
  • 8589503
  • Patent Number
    8,589,503
  • Date Filed
    Thursday, April 2, 2009
    15 years ago
  • Date Issued
    Tuesday, November 19, 2013
    11 years ago
Abstract
Methods and systems for operation upon one or more data processors for prioritizing transmission of communications associated with an entity based upon reputation information associated with the entity.
Description
TECHNICAL FIELD

This document relates generally to systems and methods for processing communications and more particularly to systems and methods for prioritizing network traffic.


BACKGROUND

Internet connectivity has become central to many daily activities. For example, millions of people worldwide use the internet for various bill pay and banking functionalities. Countless more people use the internet for shopping, entertainment, to obtain news, and for myriad other purposes. Moreover, many businesses rely on the internet for communicating with suppliers and customers, as well as providing a resource library for their employees.


However, a large amount of traffic that is communicated by the internet is relatively unimportant or not time critical. For example, electronic mail is typically not time sensitive. Thus, whether electronic mail is delivered instantaneously or delayed by an hour often does not make a difference. Such unimportant communication traffic has the potential to delay and/or disrupt more important traffic.


SUMMARY

In one aspect, systems, methods, apparatuses and computer program products are provided. In one implementation, reputation based prioritization of network traffic is provided to routers for use in routing network traffic. Methods for prioritizing network traffic can include: receiving communications, the communications comprising data being communicated from a sending device to a destination device through a network; parsing the communications based upon one or more transmission protocol associated with the communications, the parsing being operable to identify one or more originating entities and one or more destination entities; determining whether the network is in a bandwidth limited situation; if the network is in a bandwidth limited situation, identifying a reputation associated with the one or more originating entities and the one or more destination entities; applying a prioritization policy to the communications, the prioritization policy being operable to prioritize transmissions based upon the reputation associated with the one or more originating entities and the reputation associated with the one or more destination entities; and transmitting the communications based upon the applied prioritization policy. Other embodiments of this disclosure include corresponding systems, apparatus, and computer program products.


The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter will become apparent from the description, the drawings, and the claims.





DESCRIPTION OF DRAWINGS


FIG. 1A is a block diagram illustrating an example network topology including reputation based routing systems.



FIG. 1B is a block diagram illustrating an example network topology for distribution of reputation information.



FIG. 2 is a block diagram illustrating an example reputation based routing system receiving reputation information from a reputation system.



FIG. 3 is a block diagram illustrating an example of a reputation based routing system including a local cache of reputation information.



FIG. 4 is a block diagram illustrating another example of a reputation based routing system including a delay module.



FIG. 5 is a block diagram illustrating another example of a reputation based routing system including a classification module.



FIG. 6 is a block diagram illustrating another example of a reputation based routing system including classification retrieval.



FIG. 7 is a flow diagram illustrating an example reputation based prioritization of network traffic.



FIG. 8 is a flow diagram illustrating an example prioritization of network traffic based upon reputation and classification information.





DETAILED DESCRIPTION

Reputation based prioritization of network traffic can include providing reputation based policy to routing devices (e.g., routers). Routers typically inspect packets to extract destinations associated with the data packets and retrieve routing information associated with the destinations before communicating the data packets to the recipient (or to another router). During the retrieval of routing information, reputation information associated with an originating entity and/or a destination entity can be retrieved. The reputation information can provide an indication of whether the traffic associated with the data packets is non-reputable (e.g., malicious, unsolicited, etc.). The reputation based prioritization system can then prioritize the traffic based upon reputation information associated with the device.



FIG. 1 is a block diagram illustrating an example network topology including reputation based routing systems 100a-c. The reputation based routing systems 100a-c can be modules of network 110. The reputation based routing systems can communicate with a reputation system 120, which can be operable to distribute reputation information from a reputation store 130. The reputation based routing systems 100a-c can provide backbone communications facilities for the network 110 to communicate data packets between entities 140a-o.


In various implementations, the entities 140a-o can include any of internet protocol addresses, domain names, universal resource locators, devices (e.g., as identified by a media access control (MAC) address), or user identity, company identity, among many others. Thus, many different entities can be associated with a single device. For example, a device can perform as a web server for many different URLs and/or domain names, or the device might have several different users resulting in several different user identities. Moreover, the device might be dynamically addressed resulting in the use of several different IP addresses. Thus, in various implementations, the manifestations of a device can be tracked separately from each other (or in combination).


The entities 140a-o can access the network 110 in a variety of different manners. In some examples, the entities 140a-o can be any type of local area networks (LANs) or wide area networks (WANs). In other examples, the networks can be networks operated by a company, or a school or university to enable workers/students to access the internet for research, communications, acquisition, etc. In still further examples, some entities 140c, 140e, 140h, 140k, 140o can be internet service providers providing internet service to still more entities (not shown).


The reputation based routing systems 100a-c can include route processing information facilitating routing a communications from one entity to another. For example, Entity A 140a can communicate with Entity I 140i by sending data packets to an associated router (e.g., reputation based routing system 100a). The reputation based routing system 100a can parse the data packets to identify a destination associated with the data packets. The reputation based routing system can identify a second router (e.g., reputation based routing system 100c) based upon routing tables associated with the reputation based routing system 100a. The reputation based routing system 100a can communicate the data packets to the other reputation based routing system 100c based on the reputation associated with the originating entity or destination entity associated with the data packets.


The reputation of the originating and/or receiving entities can be retrieved from a reputation system 120. In some implementations the reputation system 120 can include a reputation server that can serve reputation information to other reputation based devices (e.g., reputation based routing systems 100a-c). In other implementations, the reputation system 120 can include a distributed reputation system. For example, a distributed reputation system can include a global reputation server and a number of local reputation devices. In various implementations, the reputation server can periodically push reputation updates to other reputation based devices (e.g., reputation based routing systems 100a-c).


In some implementations, communication of updated reputation information can be relayed from one reputation based routing system (e.g., reputation based routing system 100a) to another reputation based routing system (e.g., reputation based routing system 100c) where there is no direct connection between the reputation system 120 and the reputation based routing system 100c. In such implementations, the updated reputation information can be communicated securely to the reputation based routing system 100c to prevent tampering. In other implementations, updated reputation information can include credentials authenticating the reputation update. For example, the reputation system 120 can generate a CRC checksum of the reputation update which must match a CRC checksum of the reputation update generated by the receiving reputation device before a reputation update is applied.


In some implementations, the reputation of various entities that are tracked can be derived based upon activities in which those entities take part. For example, if an entity consistently originates spam communications, the entity can be classified with a reputation as a spammer. Alternatively, if the entity consistently originates reputable communications, the entity can be classified with a reputation as a reputable sender.


In additional implementations, the reputation of the originating and/or receiving devices can be derived based upon relationships derived between the entities. The relationship can be derived based upon any of communications between the entities, traffic patterns (e.g., similar increases and/or decreases in traffic volume) associated with the entities, similar communications originating from the entities independently, sporadic communication patterns, or use of commonly spoofed address (e.g., IP, MAC, URL, domain, etc.), among many others. For example, a first entity that has an indeterminate classification might be identified as communicating consistently with a second entity that has a reputation for originating botnet traffic (e.g., a network of malware infected computers that surreptitiously originate, e.g., spam traffic). Thus, while the reputation of the first entity might be indeterminate, a portion of the reputation of the second entity can be applied to the first entity based upon a relationship identified between the first and second entities. Alternatively, if a first entity with an indeterminate reputation consistently communicates with a second entity having a reputation for originating/receiving reputable traffic the reputation of the first entity can be biased towards classification as a reputable entity.


In some implementations, the reputation for certain activities can be time or location based. For example, an entity associated with a business might consistently show activity between a period of 6:00 AM and 7:00 PM. Thus, if the entity shows uncommon activity outside of that time period the reputation of the entity might be classified differently during business hours than it is overnight. Similarly, an entity might show consistent origination of traffic from a given geolocation (e.g., based upon a registered location or a first router that receives communications from the entity). Communications received from a different geolocation that claim to be associated with the same entity can be treated as suspect and/or the reputation of an entity can be identified as non-reputable based upon the geolocation associated with the entity. In other implementations, the fact that an entity is being used for non-reputable activities can lead to the determination that the entity is not being properly secured and/or policed by an owner. In such implementations, the reputation of the entity can be biased towards a non-reputable category, even if an owner of the entity acts reputably with regard to the entity.


In further implementations, the reputation can be based upon multiple entity attributes. For example, a domain might have a reputation for phishing when the domain is associated with a particular IP address. Thus, the correlation of the domain and the IP address can be assigned a reputation for spoofing while the domain separate from the IP address might retain a reputation for reputable traffic. In other implementations, the fact that an entity is being used for non-reputable (e.g., phishing) activities can lead to the determination that an otherwise reputable entity (e.g., the reputable domain) is not being properly secured and/or policed. In such implementations, the reputation of the domain can be biased towards a non-reputable category based upon such activity, even if an otherwise reputable entity takes no part in the non-reputable activity exhibited by someone disguising themselves with the entity.


A complete description of the reputation derivation processes can be found, for example, in U.S. patent application Ser. No. 11/142,943, entitled “Systems and Methods for Classification of Messaging Entities,” filed on Jun. 2, 2005, which application is hereby incorporated by reference in its entirety. Other descriptions of reputation systems can be found in: U.S. patent application Ser. No. 11/626,462, entitled “Correlation and Analysis of Entity Attributes,” filed on Jan. 24, 2007, which application is hereby incorporated by reference in its entirety; U.S. patent application Ser. No. 11/626,470, entitled “Web Reputation Scoring,” filed on Jan. 24, 2007, which application is hereby incorporated by reference in its entirety; U.S. patent application Ser. No. 11/626,479, entitled “Aggregation of Reputation Data,” filed on Jan. 24, 2007, which application is hereby incorporated by reference in its entirety; U.S. patent application Ser. No. 11/626,603, entitled “Multi-Dimensional Reputation Scoring,” filed on Jan. 24, 2007, which application is hereby incorporated by reference in its entirety; and, U.S. patent application Ser. No. 12/020,370, entitled “Reputation based Message Processing,” filed on Jan. 25, 2008, which application is hereby incorporated by reference in its entirety. The reputation retrieval module 220, in some examples, can retrieve reputation information provided by a TrustedSource™ database, available from Secure Computing Corporation of San Jose, Calif.


In some implementations, the analysis of the activities in which an entity participates can take place separately from the reputation based routing system(s) 100a-c. Such separate analysis of the activities associated with the entities can help to facilitate efficient routing of communications by the routing systems 100a-c. The reputation information derived thereby can be pushed to the reputation based device (e.g., including reputation based routing systems 100a-c).


In other implementations, analysis of the activities in which an entity participates can be provided by the reputation based routing systems 100a-c, or can be distributed to other reputation devices based upon processor utilization by a respective reputation based routing system 100a-c.



FIG. 1B is a block diagram illustrating an example network topology for distribution of reputation information. The network topology of FIG. 1B illustrates a larger network of reputation based routing systems 100d-n than depicted in FIG. 1A, along with a distributed reputation system 120a-d. In the example of FIG. 1B, the reputation based routing systems 100d-n provide communications paths for network entities (not shown). In some examples, communication between two entities might include several hops (e.g., handling by multiple routers between an originating entity and a destination entity).


In some implementations, when more than one hop is defined in the path of a communication from originating entity to destination entity, a reputation determination might occur only once between source and destination. Reputation based routing systems 100d-n can notify subsequent reputation based routing systems 100d-n that policy has already been applied to the data packet. In such implementations, a secure notification can be used to communicate the previous application of policy to other reputation based routing systems 100d-n in a path from originating entity to destination entity. In further implementations, notification of the application of policy to a stream can include a temporal limitation. For example, if a new policy or updated reputation is received after a notification that policy has already been applied to the communication, the application of policy to the communication stream is no longer current. Thus, the new policy and/or reputation can be used to determine whether the data is to be communicated to a next hop or destination entity or the data is to be dropped entirely or merely delayed. Such implementations as described above can facilitate the efficient handling of data such that a particular communication is not queried multiple times in the path from originating entity to destination entity.


In other implementations, when more than one hop is defined in the path of a communication from originating entity to destination entity, each reputation based routing system 100d-n in the path from originating entity to destination entity can retrieve reputation information associated with the originating and/or destination entities and apply policy to the communication. Such implementations can reduce the amount of analysis the reputation based routing systems 100d-n perform on the data to determine whether to apply policy and avoid problems with fraudulent generation of notification of previous application of reputation based policy to the data.


In some implementations, a distributed reputation system 120a-d can be used to distribute reputation information to reputation based routing systems 100d-n. A distributed reputation system 120a-d can reduce propagation delays in applying reputation updates to reputation based routing systems 100d-n, especially where it eliminates multiple hops between the reputation system 120a-d and the reputation based routing systems 100d-e.


Local reputation servers 120b-d can be placed throughout the network to provide reputation updates to reputation based routing systems 100d-n. As described previously, the reputation updates can be securely communicated to the reputation based routing systems 100d-n, or provided with a CRC checksum to be independently verified prior to application of the reputation update by the reputation based routing system 100d-n. In those instances when a potentially fraudulent reputation update is received, a notification of the failed reputation update can be communicated to a central reputation server (e.g., global reputation server 120a). In some implementations, the global reputation server 120a can provide a fresh reputation updated to a notifying reputation based routing system 100d-n (e.g., securely, along with credentials, etc.).


In some implementations, a global reputation server 120a can also provide certain reputation based routing systems (e.g., reputation based routing systems 100a, 100h, 100k) with reputation updates. In some examples, the reputation updates provided by the global reputation system can be provided to nearby reputation based routing systems 100a, 100h, 100k. In other examples, the global reputation server 120a can provide reputation updates to logically important (e.g., high volume) reputation based routing devices.


The global reputation server 120a can aggregate reputation information received from local reputation servers 120b-d. Aggregation of reputation information is described in detail in U.S. patent application Ser. No. 11/626,479, entitled “Aggregation of Reputation Data,” filed on Jan. 24, 2107, incorporated by reference above.


Distributed reputation systems 120a-d can provide for more frequent updates of reputation information. Moreover, because local reputation servers 120b-d update reputation information based upon data observed by the local reputation server 120b-d, the update is likely to be more relevant to the particular data being routed by the reputation based routing system 100d-n. For example, a local reputation server 120b is more likely to see data from entities that communicate often over the reputation based routing systems 100e, 100f, 100i. This is because the reputation based routing systems 100e, 100f, 100i to whom the local reputation server 120b provides reputation updates also provide the local reputation server 120b with data being communicated across the network. Moreover, the local reputation servers 120b can be distributed in a similar logical space or nearby physical space to the reputation based routing systems 100e, 100f, 100i that they serve.



FIG. 2 is a block diagram illustrating an example reputation based routing system 200 receiving reputation information from a reputation system 120. The reputation based routing system 200 can receive incoming communications from an originating entity 140a, e.g., directly from the originating entity 140a or indirectly through another reputation based routing system or through another device (e.g., gateway, internet service provider, legacy router, etc.).


The reputation based routing system 200 can include route processing 210, reputation retrieval 220 and a prioritization module 230. The route processing module 210 can parse incoming data to identify an originating entity associated with the data and a destination entity associated with the data. In some implementations, the route processing module 210 can provide basic functionalities traditionally associated with a router device. The route processing module 210 can also receive a prioritization signal from the prioritization module 230. The prioritization signal can facilitate the prioritization of routing of certain data packets (e.g., those with specified reputation(s)) over other data packets (e.g., those data packets with other reputation(s)).


In some implementations, the reputation retrieval module 220 can retrieve reputation information from reputation system 120. As discussed above, the reputation system 120, in various implementations, can be provided centrally from a single server or distributed across numerous servers. Reputation can be derived based upon attributes (e.g., observed actions, relationships, etc.) associated with an entity. Actions that occur in recognizable patterns can be abstracted into behaviors. A specified set of behaviors can be associated with reputation classifications. The attributes, behaviors and classifications associated with the various entities can be stored in a reputation store 130 by the reputation system 120. The reputation system 120 can retrieve the reputation information associated with a specified entity from the reputation store 130. In some implementations, the reputation system 120 can provide the reputation information to a reputation retrieval module 220 upon receiving a retrieval request from the reputation retrieval module 220.


The reputation retrieval module 220, upon receiving reputation information associate with the originating entity and/or receiving entity can forward the reputation information to a prioritization module 230. The prioritization module 230 can prioritize the transmission of data by the route processing module 210 through a prioritization signal provided to the route processing module 210.


In some implementations, prioritization of the data can be based upon a prioritization policy provided by an administrator 240. The prioritization policy provided by the administrator 240 can specify that data originating from specified classes of reputations are to be transmitted, for example, with low priority (e.g., after other traffic), dropped, quarantined for further testing or information gathering, etc., and/or that specified classes of reputations are to be transmitted, for example, with high priority (e.g., before other traffic). In some implementations, if a network is bandwidth limited, a connection for traffic with low priority can be dropped in order to provide a connection for traffic with high priority.


In some implementations, a special entity can be generated that can be recognized by the reputation based routing system and can route traffic associated with the special entity prior to routing other traffic. For example, in states of emergency internet traffic often drastically increases in volume leading to a bandwidth limited situation. Such a rise in traffic can often lead to slower throughput for all traffic. Alternatively, when a network is being clogged by a distributed denial of service attack it can be difficult for an administrator to get the bandwidth necessary in such a bandwidth limited situation to shut the attack down remotely. In such examples, it can often be difficult for those individuals with the means to solve the problem to adequately communicate the solution (e.g., a system administrator might have difficulty remotely communicating with a server/firewall to shut down a distributed denial of service attack because network routers are jammed with denial of service requests). Thus, as described above, a special entity can be generated to provide unimpeded access to the network by those special entities, whereby other users will be dropped in order to provide any requested bandwidth to the special entity.


In some implementations, the route processing module 210 can operate in parallel to the reputation processing, thereby increasing the efficiency of the reputation lookup and prioritization decision.



FIG. 3 is a block diagram illustrating an example of a reputation based routing system 300 including a local cache 310 of reputation information. In the example of FIG. 3, a reputation based routing system 200 can use a local reputation store 310 to locally cache reputation information from the reputation system 120. Such caching with a local reputation store 310 can reduce delays associated with retrieving reputation information from remotely located reputation systems, and provide reputation information locally to reputation based routing systems.


Routers often have limited resources for additional processing. Thus, the resources within the router can be conserved by limiting the amount of reputation information locally cached at the local reputation store 310 by the reputation based routing system 300. In some implementations, the local cache can include a least recently used (LRU) algorithm operable to push a least recently used reputation information entry out of the cache upon receipt of a new reputation information entry. In some examples, entries that are retrieved from the LRU stack can be re-entered at the top of the stack, thereby preserving their existence in the stack until the stack has been cycled without receipt of data specifying the reputation information associated with the entry. Thus, data which is most commonly requested by the retrieval module remains in the local cache the longest, while data which is not regularly requested by the retrieval module is not stored in the local cache 310. Other stacking algorithms, e.g., including least frequently used stacking algorithms, can be implemented.


In other implementations, the local reputation store 310 can comprise at least a partial mirror of the reputation data store 130. In those implementations in which only a portion of the reputation data store 130 is mirrored at the local reputation store 310 it can be difficult to accurately determine which portion of the reputation data store 130 should be mirrored by the local reputation store 310.


In some implementations, the reputation system 120 can use a Bloom filter to provide a probabilistic determination of the particular reputation information which is to be included in the local reputation store 310. Use of a Bloom filter on the reputation dataset can reduce the size of the dataset stored on the reputation based routing system 300 and reduce access time for retrieving the data.


In some implementations, the reputation system 120 can identify the particular reputation information which is most likely to be used by the reputation based routing system 300. The reputation system 120 can also allow the reputation retrieval module 210 to query the reputation system 120 if a communication associated with an entity not in the local reputation store 310 is received. For example, if reputation information for entities A, C, E, F, and G are stored in the local reputation store 310, and the reputation based routing system receives data originating from entity D, the reputation retrieval module can query the reputation system 120 for reputation information associated with entity D.


In some implementations, updates to the local reputation store 310 can be performed periodically. Reputation information migrates over time based upon additional data collected by the reputation system 120. Thus, the reputation information stored by the local reputation store 310 can become stale. In some implementations, the reputation system 120 can keep track of the reputation information stored by the local reputation store 310 and can compare the version of the reputation information stored by the local reputation store 310 to the current version and provide a reputation update that includes only reputation information that has changed since a previous update.


In some implementations, the reputation system 120 can push reputation updates to the local reputation store 310, e.g., during periods of forecasted low activity. The forecasted low activity can be based upon historical usage of the network. In other implementations, the reputation based routing system 300 can signal periods of low activity to the reputation system 120. The reputation system 120 can handle such signals as requests to apply a reputation update. Other reputation update procedures can be used.


In additional implementations, the reputation system 120 can receive feedback from the reputation retrieval module (e.g., reputation retrieval module 210a). The feedback can indicate how often reputation for various entities is being retrieved. Such feedback can be used to modify the reputation system to provide reputation updates for the most often requested entities. In some implementations, the feedback can be generalized by physical proximity (e.g., region, location, etc.) of the reputation based routing systems. For example, if feedback from a reputation based routing system indicates that entity A is being requested often, the reputation system can provide the reputation for entity A to all reputation based routing systems in the same region or location. In other implementations, the feedback can be generalized by logical proximity of the reputation based routing systems. For example, a reputation based routing system serving a certain type of traffic might identify that a reputation for entity B is being requested frequently. The reputation based routing system can provide a reputation update including entity B to all other reputation based routing systems routing the same type of traffic. In additional implementations, the reputation system can receive information from external sources indicating a rise in activity by specified entities. In still further implementations, the reputation system can analyze the feedback to identify a temporal component/dependency to the activity of certain entities. The reputation system can provide reputation updates that account for the temporal component to the activity of certain entities by providing reputation updates that include those entities only between certain hours of the day, based upon the temporal component associated with the entities' activities.



FIG. 4 is a block diagram illustrating another example of a reputation based routing system 400 including a delay module 410. In some implementations, the reputation based routing system 400 can include a delay module 410 to delay routing of communications based upon a reputation of one or more entities 140a, 140b associated with the communications. The routing of communications can be delayed based upon application of a prioritization policy associated with a reputation based routing system 400 to the reputation of an entity 140a, 140b associated with the communications.


In some implementations the prioritization policy can delay routing of communications based on an indeterminate reputation associated with one or more of the entities 140a, 140b associated with the communications. When a reputation is identified as indeterminate by the reputation retrieval module 210a, a prioritization module 220a can apply a prioritization policy to the packet based upon the reputation. In some examples, the prioritization policy can specify that a packet with an indeterminate reputation is sent to a delay module 410.


The delay module 410 can hold the packet for a period of time before resubmitting the packet to the reputation retrieval module 210a. In some implementations, routing of the packet can be delayed by the prioritization module 220a in conjunction with the delay module 410 until a reputation is determinate. In other implementations, communications can be dropped after a predefined period or number of cycles during which the reputation of one or more entities 140a, 140b associated with the communications remain indeterminate. In still further implementations, communications that are associated with an entity 140a, 140b with a reputation that remains indeterminate after a predefined period of time or number of cycles is communicated to a destination entity 140b.



FIG. 5 is a block diagram illustrating another example of a reputation based routing system 500 including a classification module 510. In some implementations, the reputation based routing system 500 can include route processing 200, reputation retrieval 520, a classification module 510 and a prioritization module 530. The route processing module 200 can receive incoming communications from an originating entity 140a or some other entity (e.g., including another reputation based route processing system of any of the implementations described herein). The route processing module can extract originating entity 140a and destination entity 140b information associated with the incoming communications and process a route associated with the communications based upon the application of a routing table to the destination entity 140b.


The route processing module can also forward the packet and identification of the extracted originating entity 140a and destination entity 140b information to a reputation retrieval module 520. The reputation retrieval module 520 can identify reputation information associated with the originating entity 140a and or destination entity 140b.


In some implementations, if the reputation of an entity 140a, 140b associated with the communications is indeterminate, the reputation retrieval module can notify the prioritization module 530 and send the communications to a classification module 510. The classification module can perform a variety of tests on the communications to identify a class associated with the communication. In various implementations, the classification module can extract features from the communications to derive feature vectors and compare the feature vectors to respective linear classifiers that use those feature vectors to determine whether the feature vector derived from the communications shares features that define the communication as being classified with a classification associated with the respective feature vector. Examples of feature vector classification are described in U.S. patent application Ser. No. 12/020,253, entitled “Granular Support Vector Machine with Random Granularity,” filed on Jan. 25, 2008, which is hereby incorporated by reference in its entirety. Additional classification processes and system are described in detail by: U.S. patent application Ser. No. 11/173,941, entitled “Message Profiling Systems and Methods,” filed on Jul. 1, 2005, which is hereby incorporated by reference in its entirety; and, U.S. patent application Ser. No. 11/383,347, entitled “Content-based Policy Compliance Systems and Methods, filed on May 15, 2006, which is hereby incorporated by reference in its entirety. The classification module 510, in some implementations, can query by a TrustedSource™ database, available from Secure Computing Corporation of San Jose, Calif., which can operate to provide classification definitions against which communications can be compared for classification. Other machine learning classification systems (including other Support Vector Machine (SVM) or Random Forest processes) can be used to classify messages.


The classification module 510 can communicate the derived classification to the prioritization module 530. The prioritization module 530 can apply a prioritization policy received from an administrator 230 to the reputation and/or classification associated with the communications to identify a priority to provide to the communications. In further implementations, the prioritization policy can instruct the prioritization module 530 to drop communications based upon the classification associated with the communications and/or the reputation of one or more entities associated with the communications.


The prioritization module 530 can communicate the prioritization of the communications to the route processing module 200. The route processing module 200 can process the communications based on the received prioritization.



FIG. 6 is a block diagram illustrating another example of a reputation based routing system 600 including classification retrieval 610. In some implementations, the reputation based routing system 500 can include route processing 200, reputation retrieval 210, classification retrieval 610, a prioritization module 620 and an undelivered communications module 630. The route processing module 200 can receive incoming communications from an originating entity 140a or some other entity (e.g., including another reputation based route processing system of any of the implementations described herein). The route processing module can extract originating entity 140a and destination entity 140b information associated with the incoming communications and process a route associated with the communications based upon the application of a routing table to the destination entity 140b.


The route processing module can also forward the packet and identification of the extracted originating entity 140a and destination entity 140b information to a reputation retrieval module 210. The reputation retrieval module 210 can identify reputation information associated with the originating entity 140a and or destination entity 140b, for example, based upon retrieval of the reputation from a reputation system 120. In other examples, the retrieval of the reputation information can be based upon retrieval of reputation information from a local reputation store (e.g., local reputation store 310 of FIG. 3) providing at least a partial mirror of the reputation data store 130.


The prioritization module 530 can send the communications to the prioritization module 620 along with reputation information for one or more of the entities associated with the communication. The prioritization module 620 can apply a prioritization policy to the communication based upon the reputation information received from the reputation retrieval module 210.


In some implementations, application of the prioritization policy can determine that the communication(s) should be sent to a classification retrieval module 610. The classification retrieval module 610 can forward the communications to a classification system 640. The classification system 640 can perform a variety of tests on the communications to identify a class associated with the communication. In various implementations, the classification module can extract features from the communications to derive feature vectors and compare the feature vectors to respective linear classifiers that use those feature vectors to determine whether the feature vector derived from the communications shares features that define the communication as being classified with a classification associated with the respective feature vector. Other classification systems and processes can be used to classify messages.


The classification system 640 can return the identified classification associated with the communication(s) to the classification retrieval module 610. The classification retrieval module 610 can communicate the derived classification to the prioritization module 620. The prioritization module 620 can apply a prioritization policy received from an administrator 230 to the reputation and/or classification associated with the communications to identify a priority for the communications. In further implementations, the prioritization policy can instruct the prioritization module 620 to send the communications to an undelivered communications module 630.


The prioritization module 620 can communicate the prioritization of the communications to the route processing module 200. The route processing module 200 can process the communications based on the received prioritization.



FIG. 7 is a flow diagram illustrating an example reputation based prioritization of network traffic. At stage 700, communications can be received. The communications can be received, for example, by a route processing module (e.g., route processing 210 of FIG. 2). The communication can include one or more data packets, and each of the one or more data packets can identify a communication stream it belongs to as well as source and destination address for routing purposes.


In some implementations, the receipt of communications can cause a reputation based routing system to determine whether the routing system is in a bandwidth limited situation. In a bandwidth limited situation, the reputation based routing system can route the communications based upon reputation associated with the communications.


At stage 710, an originating entity and destination entity of the communications can be identified. The originating entity and destination entity can be identified, for example, by a route processing module (e.g., route processing 200 of FIG. 2). In various implementations, data packets associated with the communication can be parsed to identify an originating entity and a destination entity addresses from the data packet headers. The data packet headers can also identify a data stream to which the data packet belongs. In various implementations, the route processing module can use the originating entity and destination entity addresses to identify a routing of the data packets.


At stage 720, reputation of source entity and destination entity can be retrieved. The source entity and destination entity reputation can be retrieved, for example, by a reputation retrieval module (e.g., reputation retrieval 210 of FIG. 2) in conjunction with a local reputation store (e.g., local reputation store 310 of FIG. 3) and/or a reputation system (e.g., reputation system 120 of FIG. 2). The reputation can be derived remotely from a reputation based routing system using the reputation information. In various implementations, the derived reputation information can be pushed to the reputation based routing system by a reputation system or retrieved from the reputation system directly and locally cached. In those implementations where the reputation information is pushed to the reputation based routing system, a Bloom filter can be used to select the particular dataset of reputation information which is to be pushed to a local reputation store.


At stage 730 a prioritization policy can be applied. The prioritization policy can be applied, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2). In some implementations, the prioritization policy is applied to all communications. In such implementations, the prioritization policy can be based on identifying a bandwidth limited situation and based upon reputation of the entities associated with the communication. In other implementations, the prioritization policy can be applied to communications when route processing has determined that the network is in a bandwidth limited situation. In further implementations, the prioritization policy can be applied to communications when the communications exceed a threshold usage associated with the reputation based routing system.


At stage 740 routing of communication is be prioritized based on reputation. The routing of the communication can be prioritized, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2). In some implementations, the prioritization module can be provided with prioritization policy from an administrator (e.g., admin 240 of FIG. 2). The prioritization policy can define the handling of communications based upon the reputation of one or more of the entities associated with the communications.



FIG. 8 is a flow diagram illustrating an example prioritization of network traffic based upon reputation and classification information. At stage 800 network communications are received. The communications can be received, for example, by a route processing module (e.g., route processing 210 of FIG. 2). The communication can include one or more data packets, and each of the one or more data packets can identify a communication stream it belongs to as well as source and destination address for routing purposes. In some implementations, receipt of communications can cause a reputation based routing system to determine whether the route processing is in a bandwidth limited situation.


At stage 810, the network communications can be parsed to identify an originating entity and destination entity. The originating entity and destination entity can be parsed, for example, by a route processing module (e.g., route processing 200 of FIG. 2). In various implementations, data packets associated with the communication can be parsed to identify an originating entity and a destination entity addresses from the data packet headers. The data packet headers can also identify a data stream to which the data packet belongs. In various implementations, the route processing module can use the originating entity and destination entity addresses to identify a routing of the data packets.


At stage 820, reputation of source entity and destination entity can be retrieved. The source entity and destination entity reputation can be retrieved, for example, by a reputation retrieval module (e.g., reputation retrieval 210 of FIG. 2) in conjunction with a local reputation store (e.g., local reputation store 310 of FIG. 3) and/or a reputation system (e.g., reputation system 120 of FIG. 2). The reputation can be derived remotely from a reputation based routing system using the reputation information. In various implementations, the derived reputation information can be pushed to the reputation based routing system by a reputation system or retrieved from the reputation system directly and locally cached. In those implementations where the reputation information is pushed to the reputation based routing system, a Bloom filter can be used to select the particular dataset of reputation information which is to be pushed to a local reputation store.


At stage 830 it is determined whether the entities are reputable. The determination of whether the entities are reputable can be made, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2).


If the entities are reputable, a prioritization policy can be applied to the communications at stage 840. The prioritization policy can be applied, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2). In some implementations, the prioritization module can be provided with prioritization policy from an administrator (e.g., admin 240 of FIG. 2). The prioritization policy can define the handling of communications based upon the reputation of one or more of the entities associated with the communications.


At stage 850, the data packets can be routed based on priority. The routing of the communication can be routed, for example, by a route processing module (e.g., route processing 200 of FIG. 2). In some implementations, the route processing module can retrieve a routing table and identify routing based on the routing table. In further implementations, the route processing module can prioritize routing of communications with higher priority over those with lower priority. For example, if a communication with high priority is identified, a connection associated with a low priority communication can be dropped. In other examples, communications with lower priorities can be delayed until higher priority communications have been routed.


Returning to the reputable entity determination stage (830), if it is determined that the communication is associated with a non-reputable entity, classification of the communication can be retrieved at stage 860. Classification of communications can be retrieved, for example, by a classification retrieval module (e.g., classification retrieval module 610 of FIG. 6). In some implementations, the classification retrieval module can retrieve classification information based upon querying a classification system. In other implementations, the classification retrieval module can retrieve classification definitions (e.g., SVM linear classification vectors), derive feature vectors from the communication, and compare the feature vector to the linear classification vector to determine whether the communication belongs to a classification associated with the linear classification vector. Other classification methods can be used.


At stage 870 it is determined whether the communication is legitimate. The determination of whether the communication is legitimate can be made, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2).


If the communication is legitimate, a prioritization policy can be applied to the communications at stage 880. The prioritization policy can be applied, for example, by a prioritization module (e.g., prioritization module 230 of FIG. 2). In some implementations, the prioritization module can be provided with prioritization policy from an administrator (e.g., admin 240 of FIG. 2). The prioritization policy can define the handling of communications based upon the classification of the communication in lieu of the reputation of the entities associated with the communications.


At stage 850, the data packets can be routed based on priority. The routing of the communication can be routed, for example, by a route processing module (e.g., route processing 200 of FIG. 2). In some implementations, the route processing module can retrieve a routing table and identify routing based on the routing table. In further implementations, the route processing module can prioritize routing of communications with higher priority over those with lower priority. For example, if a communication with high priority is identified, a connection associated with a low priority communication can be dropped. In other examples, communications with lower priorities can be delayed until higher priority communications have been routed.


Returning to the legitimate communication determination stage (870), if the communication is determined not to be legitimate, the communication can be dropped, quarantined, delayed, etc. at stage 890. The communication can be dropped, quarantined, delayed, etc., for example, by an undelivered message module (e.g., undelivered message module 630 of FIG. 6). In some implementations, the particular handling (e.g., drop, quarantine, delay, etc.) can be specified by the prioritization policy applied to the communication. Other communication handling mechanisms can be specified based upon the prioritization policy.


Use of reputation in prioritization of network traffic as it relates to network routing is also disclosed in U.S. patent application Ser. No. 11/937,274, entitled “Prioritizing Network Traffic,” filed on Nov. 8, 2007, which is hereby incorporated by reference in its entirety.


The systems and methods disclosed herein may use data signals conveyed using networks (e.g., local area network, wide area network, internet, etc.), fiber optic medium, carrier waves, wireless networks (e.g., wireless local area networks, wireless metropolitan area networks, cellular networks, etc.), etc. for communication with one or more data processing devices (e.g., mobile devices). The data signals can carry any or all of the data disclosed herein that is provided to or from a device.


The methods and systems described herein may be implemented on many different types of processing devices by program code comprising program instructions that are executable by one or more processors. The software program instructions may include source code, object code, machine code, or any other stored data that is operable to cause a processing system to perform methods described herein.


The systems and methods may be provided on many different types of computer-readable media including computer storage mechanisms (e.g., CD-ROM, diskette, RAM, flash memory, computer's hard drive, etc.) that contain instructions for use in execution by a processor to perform the methods' operations and implement the systems described herein.


The computer components, software modules, functions and data structures described herein may be connected directly or indirectly to each other in order to allow the flow of data needed for their operations. It is also noted that software instructions or a module can be implemented for example as a subroutine unit of code, or as a software function unit of code, or as an object (as in an object-oriented paradigm), or as an applet, or in a computer script language, or as another type of computer code or firmware. The software components and/or functionality may be located on a single device or distributed across multiple devices depending upon the situation at hand.


This written description sets forth the best mode of the invention and provides examples to describe the invention and to enable a person of ordinary skill in the art to make and use the invention. This written description does not limit the invention to the precise terms set forth. Thus, while the invention has been described in detail with reference to the examples set forth above, those of ordinary skill in the art may effect alterations, modifications and variations to the examples without departing from the scope of the invention.


As used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meanings of “and” and “or” include both the conjunctive and disjunctive and may be used interchangeably unless the context clearly dictates otherwise.


Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


These and other implementations are within the scope of the following claims.

Claims
  • 1. A computer implemented network traffic prioritization method comprising: receiving communications, the communications comprising data being communicated from a sending device to a destination device through a network;parsing the communications based upon one or more transmission protocol associated with the communications, the parsing being operable to identify one or more originating entities and one or more destination entities;identifying a reputation associated with at least one of the one or more originating entities and a reputation associated with at least one of the one or more destination entities, wherein the identification comprises: requesting the reputation associated with the at least one of the one or more originating entities from a local reputation store, wherein in response to determining that the request for the reputation associated with the at least one of one or more originating entities from the local reputation store is unsuccessful, querying a reputation system for the reputation associated with the at least one of the one or more originating entities;requesting the reputation associated with the at least one of the one or more destination entities from the local reputation store, wherein in response to determining that the request for the reputation associated with the at least one of the of the one or more destination entities from the local reputation store is unsuccessful, querying the reputation system for the reputation associated with the at least one of the one or more destination entities;applying a prioritization policy to the communications, the prioritization policy being operable to prioritize transmissions based upon the reputation associated with the at least one of the one or more originating entities and the reputation associated with the at least one of the one or more destination entities; andtransmitting the communications based upon the applied prioritization policy.
  • 2. The computer-implemented method of claim 1, wherein applying the prioritization policy comprises prioritizing communications associated with entities having a specified reputation.
  • 3. The computer-implemented method of claim 1, wherein the prioritization policy is operable to prioritize communications associated with reputable entities over communications associated with non-reputable entities.
  • 4. The computer-implemented method of claim 3, wherein the non-reputable entities comprise spamming entities, phishing entities, spyware entities or malware entities.
  • 5. The computer-implemented method of claim 1, further comprising: determining whether the network is in a bandwidth limited situation; andwherein identifying reputations and applying the prioritization policy to the communications is based upon a determination that the network is in a bandwidth limited situation.
  • 6. A computer-implemented method, comprising: managing a plurality of existing network connections, the plurality of connections being associated with assigned priorities;receiving a new connection request;determining that the new connection request cannot be processed because of a bandwidth limitation based on the plurality of existing network connections;identifying reputations for entities associated with the new connection request, wherein the identification comprises: requesting reputation information associated with at least one of the entities associated with the new connection request from a local reputation store, wherein in response to determining that the request for the reputation information from the local reputation store failed, querying a reputation system for the reputation information;identifying a new connection priority for the new connection request based upon application of a prioritization policy to the identified reputations;identifying an existing connection having a lowest assigned priority;if the lowest assigned priority is lower than the new connection priority, dropping the existing connection having the lowest assigned priority; andif a connection is dropped, connecting the new connection request.
  • 7. The computer-implemented method of claim 6, wherein identifying reputations for entities associated with the new connection request comprises parsing the connection request to identify entities associated with the new connection request, the entities comprising one or more originating entities and one or more destination entities associated with the new connection request.
  • 8. The computer-implemented method of claim 6, wherein the lowest assigned reputation is one or more of a spamming reputation, a malware reputation, a spyware reputation, or a phishing reputation.
  • 9. The computer-implemented method of claim 6, wherein connections associated with entities identified as non-reputable are disconnected in favor of new connections associated with entities identified as reputable.
  • 10. A system, comprising: a route processing module operable to receive communications from an originating entity and to route communications to a destination entity based on a prioritization associated with the communications;a reputation retrieval module operable to request reputation information associated with the originating entity and the destination entity from a local reputation data store and, in response to determining that the request for the reputation information is unsuccessful, operable to retrieve the reputation information from an external reputation system; anda prioritization module operable to receive a prioritization policy from an administrator and identify the prioritization of the communications based upon the prioritization policy, the prioritization policy specifying policy based upon identifying a bandwidth limited network situation and based upon the retrieved reputation information associated with the originating entity or the destination entity.
  • 11. The system of claim 10, wherein the reputation retrieval module is operable to send a query to the external reputation system for retrieval of reputation information.
  • 12. The system of claim 10, wherein the route processing module is operable to manage a plurality of existing network connections and to receive a new connection request, and the prioritization module is operable to determine whether the new connection request is associated with a high priority communication based upon reputation information associated with the new connection request, the prioritization module being operable to instruct the route processing module to drop any low priority connections from among the existing network connections and to connect the new connection request.
  • 13. The system of claim 12, wherein the low priority connections comprise those connections associated with an entity having a reputation for spamming, phishing, spyware or malware.
  • 14. A system comprising: one or more processors; anda computer-readable medium coupled to the one or more processors having instructions stored thereon which, when executed by the one or more processors, cause the one or more processors to perform operations comprising:managing a plurality of existing network connections, the plurality of connections being associated with assigned priorities;receiving a new connection request;determining that the new connection request cannot be processed because of a bandwidth limitation based on the plurality of existing network connections;identifying reputations for entities associated with the new connection request, wherein the identification comprises: requesting reputation information associated with at least one of the entities associated with the new connection request from a local reputation store, wherein in response to determining that the request for the reputation information from the local reputation store failed, querying a reputation system for the reputation information;identifying a new connection priority for the new connection request based upon application of a prioritization policy to the identified reputations;identifying an existing connection having a lowest assigned priority;if the lowest assigned priority is lower than the new connection priority, dropping the existing connection having the lowest assigned priority; andif a connection is dropped, connecting the new connection request.
  • 15. At least one machine accessible storage medium having instructions stored thereon, the instructions when executed on a machine, cause the machine to: manage a plurality of existing network connections, the plurality of connections being associated with assigned priorities;receive a new connection request;determine that the new connection request cannot be processed because of a bandwidth limitation based on the plurality of existing network connections;identify reputations for entities associated with the new connection request, wherein the identification comprises: requesting reputation information associated with at least one of the entities associated with the new connection request from a local reputation store, wherein in response to determining that the request for the reputation information from the local reputation store failed, querying a reputation system for the reputation information;identify a new connection priority for the new connection request based upon application of a prioritization policy to the identified reputations;identify an existing connection having a lowest assigned priority;if the lowest assigned priority is lower than the new connection priority, drop the existing connection having the lowest assigned priority; andif a connection is dropped, connect the new connection request.
  • 16. The method of claim 1, further comprising: receiving from the reputation system the reputation associated with the one or more originating entities.
  • 17. The method of claim 1, further comprising: receiving from the reputation system updated reputation information associated with the at least one of the one or more originating entities.
  • 18. The method of claim 17, wherein the updated reputation information includes an updated reputation associated with the at least one of the one or more originating entities and credentials authenticating the updated reputation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 61/042,547, titled “Prioritizing Network Traffic” filed Apr. 4, 2008, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (650)
Number Name Date Kind
4289930 Connolly et al. Sep 1981 A
4384325 Slechta et al. May 1983 A
4386416 Giltner et al. May 1983 A
4532588 Foster Jul 1985 A
4713780 Schultz et al. Dec 1987 A
4754428 Schultz et al. Jun 1988 A
4837798 Cohen et al. Jun 1989 A
4853961 Pastor Aug 1989 A
4864573 Horsten Sep 1989 A
4951196 Jackson Aug 1990 A
4975950 Lentz Dec 1990 A
4979210 Nagata et al. Dec 1990 A
5008814 Mathur Apr 1991 A
5020059 Gorin et al. May 1991 A
5051886 Kawaguchi et al. Sep 1991 A
5054096 Beizer Oct 1991 A
5105184 Pirani et al. Apr 1992 A
5119465 Jack et al. Jun 1992 A
5136690 Becker et al. Aug 1992 A
5144557 Wang Sep 1992 A
5144659 Jones Sep 1992 A
5144660 Rose Sep 1992 A
5167011 Priest Nov 1992 A
5210824 Putz et al. May 1993 A
5210825 Kavaler May 1993 A
5235642 Wobber et al. Aug 1993 A
5239466 Morgan et al. Aug 1993 A
5247661 Hager et al. Sep 1993 A
5276869 Forrest et al. Jan 1994 A
5278901 Shieh et al. Jan 1994 A
5283887 Zachery Feb 1994 A
5293250 Okumura et al. Mar 1994 A
5313521 Torii et al. May 1994 A
5319776 Hile et al. Jun 1994 A
5355472 Lewis Oct 1994 A
5367621 Cohen et al. Nov 1994 A
5377354 Scannell et al. Dec 1994 A
5379340 Overend et al. Jan 1995 A
5379374 Ishizaki et al. Jan 1995 A
5384848 Kikuchi Jan 1995 A
5404231 Bloomfield Apr 1995 A
5406557 Baudoin Apr 1995 A
5414833 Hershey et al. May 1995 A
5416842 Aziz May 1995 A
5418908 Keller et al. May 1995 A
5424724 Williams et al. Jun 1995 A
5479411 Klein Dec 1995 A
5481312 Cash et al. Jan 1996 A
5483466 Kawahara et al. Jan 1996 A
5485409 Gupta et al. Jan 1996 A
5495610 Shing et al. Feb 1996 A
5509074 Choudhury et al. Apr 1996 A
5511122 Atkinson Apr 1996 A
5513126 Harkins et al. Apr 1996 A
5513323 Williams et al. Apr 1996 A
5530852 Meske, Jr. et al. Jun 1996 A
5535276 Ganesan Jul 1996 A
5541993 Fan et al. Jul 1996 A
5544320 Ålrad Aug 1996 A
5550984 Gelb Aug 1996 A
5550994 Tashiro et al. Aug 1996 A
5557742 Smaha et al. Sep 1996 A
5572643 Judson Nov 1996 A
5577209 Boyle et al. Nov 1996 A
5586254 Kondo et al. Dec 1996 A
5602918 Chen et al. Feb 1997 A
5606668 Shwed Feb 1997 A
5608819 Ikeuchi Mar 1997 A
5608874 Ogawa et al. Mar 1997 A
5619648 Canale et al. Apr 1997 A
5621889 Lermuzeaux et al. Apr 1997 A
5632011 Landfield et al. May 1997 A
5638487 Chigier Jun 1997 A
5644404 Hashimoto et al. Jul 1997 A
5657461 Harkins et al. Aug 1997 A
5673322 Pepe et al. Sep 1997 A
5675507 Bobo, II Oct 1997 A
5675733 Williams Oct 1997 A
5677955 Doggett et al. Oct 1997 A
5694616 Johnson et al. Dec 1997 A
5696822 Nachenberg Dec 1997 A
5706442 Anderson et al. Jan 1998 A
5708780 Levergood et al. Jan 1998 A
5708826 Ikeda et al. Jan 1998 A
5710883 Hong et al. Jan 1998 A
5727156 Herr-Hoyman et al. Mar 1998 A
5740231 Cohn et al. Apr 1998 A
5742759 Nessett et al. Apr 1998 A
5742769 Lee et al. Apr 1998 A
5745574 Muftic Apr 1998 A
5751956 Kirsch May 1998 A
5758343 Vigil et al. May 1998 A
5764906 Edelstein et al. Jun 1998 A
5768528 Stumm Jun 1998 A
5768552 Jacoby Jun 1998 A
5771348 Kubatzki et al. Jun 1998 A
5778372 Cordell et al. Jul 1998 A
5781857 Hwang et al. Jul 1998 A
5781901 Kuzma Jul 1998 A
5790789 Suarez Aug 1998 A
5790790 Smith et al. Aug 1998 A
5790793 Higley Aug 1998 A
5793763 Mayes et al. Aug 1998 A
5793972 Shane Aug 1998 A
5796942 Esbensen Aug 1998 A
5796948 Cohen Aug 1998 A
5801700 Ferguson Sep 1998 A
5805719 Pare, Jr. et al. Sep 1998 A
5812398 Nielsen Sep 1998 A
5812776 Gifford Sep 1998 A
5822526 Waskiewicz Oct 1998 A
5822527 Post Oct 1998 A
5826013 Nachenberg Oct 1998 A
5826014 Coley et al. Oct 1998 A
5826022 Nielsen Oct 1998 A
5826029 Gore, Jr. et al. Oct 1998 A
5835087 Herz et al. Nov 1998 A
5845084 Cordell et al. Dec 1998 A
5850442 Muftic Dec 1998 A
5855020 Kirsch Dec 1998 A
5860068 Cook Jan 1999 A
5862325 Reed et al. Jan 1999 A
5864852 Luotonen Jan 1999 A
5878230 Weber et al. Mar 1999 A
5884033 Duvall et al. Mar 1999 A
5892825 Mages et al. Apr 1999 A
5893114 Hashimoto et al. Apr 1999 A
5896499 McKelvey Apr 1999 A
5898830 Wesinger et al. Apr 1999 A
5898836 Freivald et al. Apr 1999 A
5903723 Beck et al. May 1999 A
5911776 Guck Jun 1999 A
5923846 Gage et al. Jul 1999 A
5930479 Hall Jul 1999 A
5933478 Ozaki et al. Aug 1999 A
5933498 Schneck et al. Aug 1999 A
5937164 Mages et al. Aug 1999 A
5940591 Boyle et al. Aug 1999 A
5948062 Tzelnic et al. Sep 1999 A
5958005 Thorne et al. Sep 1999 A
5963915 Kirsch Oct 1999 A
5978799 Hirsch Nov 1999 A
5987609 Hasebe Nov 1999 A
5987610 Franczek et al. Nov 1999 A
5991881 Conklin et al. Nov 1999 A
5999932 Paul Dec 1999 A
6003027 Prager Dec 1999 A
6006329 Chi Dec 1999 A
6012144 Pickett Jan 2000 A
6014651 Crawford Jan 2000 A
6023723 McCormick et al. Feb 2000 A
6029256 Kouznetsov Feb 2000 A
6035423 Hodges et al. Mar 2000 A
6052709 Paul Apr 2000 A
6052784 Day Apr 2000 A
6058381 Nelson May 2000 A
6058482 Liu May 2000 A
6061448 Smith et al. May 2000 A
6061722 Lipa et al. May 2000 A
6072942 Stockwell et al. Jun 2000 A
6073142 Geiger et al. Jun 2000 A
6088804 Hill et al. Jul 2000 A
6092114 Shaffer et al. Jul 2000 A
6092194 Touboul Jul 2000 A
6094277 Toyoda Jul 2000 A
6094731 Waldin et al. Jul 2000 A
6104500 Alam et al. Aug 2000 A
6108688 Nielsen Aug 2000 A
6108691 Lee et al. Aug 2000 A
6108786 Knowlson Aug 2000 A
6118856 Paarsmarkt et al. Sep 2000 A
6118886 Baumgart et al. Sep 2000 A
6119137 Smith et al. Sep 2000 A
6119142 Kosaka Sep 2000 A
6119230 Carter Sep 2000 A
6119236 Shipley Sep 2000 A
6122661 Stedman et al. Sep 2000 A
6141695 Sekiguchi et al. Oct 2000 A
6141778 Kane et al. Oct 2000 A
6145083 Shaffer et al. Nov 2000 A
6151675 Smith Nov 2000 A
6161130 Horvitz et al. Dec 2000 A
6165314 Gardner et al. Dec 2000 A
6185314 Crabtree et al. Feb 2001 B1
6185680 Shimbo et al. Feb 2001 B1
6185689 Todd, Sr. et al. Feb 2001 B1
6192360 Dumais et al. Feb 2001 B1
6192407 Smith et al. Feb 2001 B1
6199102 Cobb Mar 2001 B1
6202157 Brownlie et al. Mar 2001 B1
6219714 Inhwan et al. Apr 2001 B1
6223213 Cleron et al. Apr 2001 B1
6247045 Shaw et al. Jun 2001 B1
6249575 Heilmann et al. Jun 2001 B1
6249807 Shaw et al. Jun 2001 B1
6260043 Puri et al. Jul 2001 B1
6266668 Vanderveldt et al. Jul 2001 B1
6269447 Maloney et al. Jul 2001 B1
6269456 Hodges et al. Jul 2001 B1
6272532 Feinleib Aug 2001 B1
6275942 Bernhard et al. Aug 2001 B1
6279113 Vaidya Aug 2001 B1
6279133 Vafai et al. Aug 2001 B1
6282565 Shaw et al. Aug 2001 B1
6285991 Powar Sep 2001 B1
6289214 Backstrom Sep 2001 B1
6298445 Shostack et al. Oct 2001 B1
6301668 Gleichauf et al. Oct 2001 B1
6304898 Shiigi Oct 2001 B1
6304973 Williams Oct 2001 B1
6311207 Mighdoll et al. Oct 2001 B1
6317829 Van Oorschot Nov 2001 B1
6320948 Heilmann et al. Nov 2001 B1
6321267 Donaldson Nov 2001 B1
6324569 Ogilvie et al. Nov 2001 B1
6324647 Bowman-Amuah Nov 2001 B1
6324656 Gleichauf et al. Nov 2001 B1
6330589 Kennedy Dec 2001 B1
6347374 Drake et al. Feb 2002 B1
6353886 Howard et al. Mar 2002 B1
6363489 Comay et al. Mar 2002 B1
6370648 Diep Apr 2002 B1
6373950 Rowney Apr 2002 B1
6385655 Smith et al. May 2002 B1
6393465 Leeds May 2002 B2
6393568 Ranger et al. May 2002 B1
6405318 Rowland Jun 2002 B1
6434624 Gai et al. Aug 2002 B1
6442588 Clark et al. Aug 2002 B1
6442686 McArdle et al. Aug 2002 B1
6453345 Trcka et al. Sep 2002 B2
6460050 Pace et al. Oct 2002 B1
6460141 Olden Oct 2002 B1
6470086 Smith Oct 2002 B1
6487599 Smith et al. Nov 2002 B1
6487666 Shanklin et al. Nov 2002 B1
6502191 Smith et al. Dec 2002 B1
6516411 Smith Feb 2003 B2
6519703 Joyce Feb 2003 B1
6539430 Humes Mar 2003 B1
6546416 Kirsch Apr 2003 B1
6546493 Magdych et al. Apr 2003 B1
6550012 Villa et al. Apr 2003 B1
6574737 Kingsford et al. Jun 2003 B1
6578025 Pollack et al. Jun 2003 B1
6609196 Dickinson, III et al. Aug 2003 B1
6636946 Jeddelch Oct 2003 B2
6650890 Irlam et al. Nov 2003 B1
6654787 Aronson et al. Nov 2003 B1
6661353 Gopen Dec 2003 B1
6662170 Dom et al. Dec 2003 B1
6675153 Cook et al. Jan 2004 B1
6681331 Munson et al. Jan 2004 B1
6687687 Smadja Feb 2004 B1
6697950 Ko Feb 2004 B1
6701440 Kim et al. Mar 2004 B1
6704874 Porras et al. Mar 2004 B1
6711127 Gorman et al. Mar 2004 B1
6711687 Sekiguchi Mar 2004 B1
6725377 Kouznetsov Apr 2004 B1
6732101 Cook May 2004 B1
6732157 Gordon et al. May 2004 B1
6735703 Kilpatrick et al. May 2004 B1
6738462 Brunson May 2004 B1
6742116 Matsui et al. May 2004 B1
6742124 Kilpatrick et al. May 2004 B1
6742128 Joiner May 2004 B1
6754705 Joiner et al. Jun 2004 B2
6757830 Tarbotton et al. Jun 2004 B1
6760309 Rochberger et al. Jul 2004 B1
6768991 Hearnden Jul 2004 B2
6769016 Rothwell et al. Jul 2004 B2
6772196 Kirsch et al. Aug 2004 B1
6775657 Baker Aug 2004 B1
6792546 Shanklin et al. Sep 2004 B1
6880156 Landherr et al. Apr 2005 B1
6892178 Zacharia May 2005 B1
6892179 Zacharia May 2005 B1
6892237 Gai et al. May 2005 B1
6895385 Zacharia et al. May 2005 B1
6895438 Ulrich May 2005 B1
6907430 Chong et al. Jun 2005 B2
6910135 Grainger Jun 2005 B1
6928556 Black et al. Aug 2005 B2
6941348 Petry et al. Sep 2005 B2
6941467 Judge et al. Sep 2005 B2
6968461 Lucas et al. Nov 2005 B1
6981143 Mullen et al. Dec 2005 B2
7051077 Lin May 2006 B2
7076527 Bellegarda et al. Jul 2006 B2
7089428 Farley et al. Aug 2006 B2
7089590 Judge et al. Aug 2006 B2
7092992 Yu Aug 2006 B1
7093129 Gavagni et al. Aug 2006 B1
7096498 Judge Aug 2006 B2
7117358 Bandini et al. Oct 2006 B2
7124372 Brin Oct 2006 B2
7124438 Judge et al. Oct 2006 B2
7131003 Lord et al. Oct 2006 B2
7143213 Need et al. Nov 2006 B2
7152105 McClure et al. Dec 2006 B2
7155243 Baldwin et al. Dec 2006 B2
7164678 Connor Jan 2007 B2
7206814 Kirsch Apr 2007 B2
7209954 Rothwell et al. Apr 2007 B1
7213260 Judge May 2007 B2
7219131 Banister et al. May 2007 B2
7225466 Judge May 2007 B2
7254608 Yeager et al. Aug 2007 B2
7254712 Godfrey et al. Aug 2007 B2
7260840 Swander et al. Aug 2007 B2
7272149 Bly et al. Sep 2007 B2
7272853 Goodman et al. Sep 2007 B2
7278159 Kaashoek et al. Oct 2007 B2
7349332 Srinivasan et al. Mar 2008 B1
7376731 Khan et al. May 2008 B2
7379900 Wren May 2008 B1
7385924 Riddle Jun 2008 B1
7458098 Judge et al. Nov 2008 B2
7460476 Morris et al. Dec 2008 B1
7461339 Liao et al. Dec 2008 B2
7496634 Cooley Feb 2009 B1
7502829 Radatti et al. Mar 2009 B2
7506155 Stewart et al. Mar 2009 B1
7519563 Urmanov et al. Apr 2009 B1
7519994 Judge et al. Apr 2009 B2
7522516 Parker Apr 2009 B1
7523092 Andreev et al. Apr 2009 B2
7543053 Goodman et al. Jun 2009 B2
7543056 McClure et al. Jun 2009 B2
7545748 Riddle Jun 2009 B1
7610344 Mehr et al. Oct 2009 B2
7617160 Grove et al. Nov 2009 B1
7620986 Jagannathan et al. Nov 2009 B1
7624448 Coffman Nov 2009 B2
7644127 Yu Jan 2010 B2
7647411 Shiavone et al. Jan 2010 B1
7668951 Lund et al. Feb 2010 B2
7693947 Judge et al. Apr 2010 B2
7694128 Judge et al. Apr 2010 B2
7711684 Sundaresan et al. May 2010 B2
7716310 Foti May 2010 B2
7731316 Baccash Jun 2010 B2
7739253 Yanovsky et al. Jun 2010 B1
7748038 Olivier et al. Jun 2010 B2
7779156 Alperovitch et al. Aug 2010 B2
7779466 Judge et al. Aug 2010 B2
7870203 Judge et al. Jan 2011 B2
7899866 Buckingham et al. Mar 2011 B1
7903549 Judge et al. Mar 2011 B2
7917627 Andriantsiferana et al. Mar 2011 B1
7937480 Alperovitch et al. May 2011 B2
7941523 Andreev et al. May 2011 B2
7949716 Alperovitch et al. May 2011 B2
7949992 Andreev et al. May 2011 B2
7966335 Slater et al. Jun 2011 B2
8042149 Judge Oct 2011 B2
8042181 Judge Oct 2011 B2
8045458 Alperovitch et al. Oct 2011 B2
8051134 Begeja et al. Nov 2011 B1
8069481 Judge Nov 2011 B2
8079087 Spies et al. Dec 2011 B1
8095876 Verstak et al. Jan 2012 B1
8132250 Judge et al. Mar 2012 B2
8160975 Tang et al. Apr 2012 B2
8179798 Alperovitch et al. May 2012 B2
8185930 Alperovitch et al. May 2012 B2
8214497 Alperovitch et al. Jul 2012 B2
20010037311 McCoy et al. Nov 2001 A1
20010049793 Sugimoto Dec 2001 A1
20020004902 Toh et al. Jan 2002 A1
20020009079 Jugck et al. Jan 2002 A1
20020013692 Chandhok et al. Jan 2002 A1
20020016824 Leeds Feb 2002 A1
20020016910 Wright et al. Feb 2002 A1
20020023089 Woo Feb 2002 A1
20020023140 Hile et al. Feb 2002 A1
20020026591 Hartley et al. Feb 2002 A1
20020032871 Malan et al. Mar 2002 A1
20020035683 Kaashoek et al. Mar 2002 A1
20020042876 Smith Apr 2002 A1
20020046041 Lang Apr 2002 A1
20020049853 Chu et al. Apr 2002 A1
20020051575 Myers et al. May 2002 A1
20020059454 Barrett et al. May 2002 A1
20020062368 Holtzman et al. May 2002 A1
20020078382 Sheikh et al. Jun 2002 A1
20020087882 Schneier et al. Jul 2002 A1
20020095492 Kaashoek et al. Jul 2002 A1
20020112013 Walsh Aug 2002 A1
20020112185 Hodges Aug 2002 A1
20020116627 Tarbotton et al. Aug 2002 A1
20020120853 Tyree Aug 2002 A1
20020133365 Grey et al. Sep 2002 A1
20020138416 Lovejoy et al. Sep 2002 A1
20020138755 Ko Sep 2002 A1
20020138759 Dutta Sep 2002 A1
20020138762 Horne Sep 2002 A1
20020143963 Converse et al. Oct 2002 A1
20020147734 Shoup et al. Oct 2002 A1
20020152399 Smith Oct 2002 A1
20020165971 Baron Nov 2002 A1
20020169954 Bandini et al. Nov 2002 A1
20020172367 Mulder et al. Nov 2002 A1
20020178227 Matsa et al. Nov 2002 A1
20020178383 Hrabik et al. Nov 2002 A1
20020178410 Haitsma et al. Nov 2002 A1
20020188732 Buckman et al. Dec 2002 A1
20020188864 Jackson Dec 2002 A1
20020194469 Dominique et al. Dec 2002 A1
20020199095 Bandini et al. Dec 2002 A1
20030005326 Flemming Jan 2003 A1
20030005331 Williams Jan 2003 A1
20030009554 Burch et al. Jan 2003 A1
20030009693 Brock et al. Jan 2003 A1
20030009696 Bunker et al. Jan 2003 A1
20030009699 Gupta et al. Jan 2003 A1
20030014664 Hentunen Jan 2003 A1
20030023692 Moroo Jan 2003 A1
20030023695 Kobata et al. Jan 2003 A1
20030023736 Abkemeier Jan 2003 A1
20030023873 Ben-Itzhak Jan 2003 A1
20030023874 Prokupets et al. Jan 2003 A1
20030023875 Hursey et al. Jan 2003 A1
20030028406 Herz et al. Feb 2003 A1
20030028803 Bunker et al. Feb 2003 A1
20030033516 Howard et al. Feb 2003 A1
20030033542 Goseva-Popstojanova et al. Feb 2003 A1
20030041264 Black et al. Feb 2003 A1
20030046253 Shetty et al. Mar 2003 A1
20030051026 Carter et al. Mar 2003 A1
20030051163 Bidaud Mar 2003 A1
20030051168 King et al. Mar 2003 A1
20030055931 Cravo De Almeida et al. Mar 2003 A1
20030061506 Cooper et al. Mar 2003 A1
20030065943 Geis et al. Apr 2003 A1
20030084280 Bryan et al. May 2003 A1
20030084320 Tarquini et al. May 2003 A1
20030084323 Gales May 2003 A1
20030084347 Luzzatto May 2003 A1
20030088792 Card et al. May 2003 A1
20030093518 Hiraga May 2003 A1
20030093667 Dutta et al. May 2003 A1
20030093695 Dutta May 2003 A1
20030093696 Sugimoto May 2003 A1
20030095555 McNamara et al. May 2003 A1
20030097439 Strayer et al. May 2003 A1
20030097564 Tewari et al. May 2003 A1
20030105976 Copeland, III Jun 2003 A1
20030110392 Aucsmith et al. Jun 2003 A1
20030110396 Lewis et al. Jun 2003 A1
20030115485 Milliken Jun 2003 A1
20030115486 Choi et al. Jun 2003 A1
20030123665 Dunstan et al. Jul 2003 A1
20030126464 McDaniel et al. Jul 2003 A1
20030126472 Banzhof Jul 2003 A1
20030135749 Gales et al. Jul 2003 A1
20030140137 Joiner et al. Jul 2003 A1
20030140250 Taninaka et al. Jul 2003 A1
20030145212 Crumly Jul 2003 A1
20030145225 Bruton, III et al. Jul 2003 A1
20030145226 Bruton, III et al. Jul 2003 A1
20030149887 Yadav Aug 2003 A1
20030149888 Yadav Aug 2003 A1
20030152076 Lee et al. Aug 2003 A1
20030152096 Chapman Aug 2003 A1
20030154393 Young Aug 2003 A1
20030154399 Zuk et al. Aug 2003 A1
20030154402 Pandit et al. Aug 2003 A1
20030158905 Petry et al. Aug 2003 A1
20030159069 Choi et al. Aug 2003 A1
20030159070 Mayer et al. Aug 2003 A1
20030167308 Schran Sep 2003 A1
20030167402 Stolfo et al. Sep 2003 A1
20030172166 Judge et al. Sep 2003 A1
20030172167 Judge et al. Sep 2003 A1
20030172289 Soppera Sep 2003 A1
20030172291 Judge et al. Sep 2003 A1
20030172292 Judge Sep 2003 A1
20030172294 Judge Sep 2003 A1
20030172301 Judge et al. Sep 2003 A1
20030172302 Judge et al. Sep 2003 A1
20030182421 Faybishenko et al. Sep 2003 A1
20030187936 Bodin et al. Oct 2003 A1
20030187996 Cardina et al. Oct 2003 A1
20030204596 Yadav Oct 2003 A1
20030204719 Ben Oct 2003 A1
20030204741 Schoen et al. Oct 2003 A1
20030212791 Pickup Nov 2003 A1
20030233328 Scott et al. Dec 2003 A1
20040015554 Wilson Jan 2004 A1
20040025044 Day Feb 2004 A1
20040034794 Mayer et al. Feb 2004 A1
20040054886 Dickinson et al. Mar 2004 A1
20040058673 Irlam et al. Mar 2004 A1
20040059811 Sugauchi et al. Mar 2004 A1
20040088570 Roberts et al. May 2004 A1
20040098464 Koch et al. May 2004 A1
20040111519 Fu et al. Jun 2004 A1
20040111531 Staniford et al. Jun 2004 A1
20040122926 Moore et al. Jun 2004 A1
20040122967 Bressler et al. Jun 2004 A1
20040123157 Alagna et al. Jun 2004 A1
20040128355 Chao et al. Jul 2004 A1
20040139160 Wallace et al. Jul 2004 A1
20040139334 Wiseman Jul 2004 A1
20040165727 Moreh et al. Aug 2004 A1
20040167968 Wilson et al. Aug 2004 A1
20040177120 Kirsch Sep 2004 A1
20040203589 Wang et al. Oct 2004 A1
20040205135 Hallam-Baker et al. Oct 2004 A1
20040221062 Starbuck et al. Nov 2004 A1
20040236884 Beetz Nov 2004 A1
20040249895 Way Dec 2004 A1
20040255122 Ingerman et al. Dec 2004 A1
20040267893 Lin Dec 2004 A1
20050021738 Goeller et al. Jan 2005 A1
20050021997 Beynon et al. Jan 2005 A1
20050033742 Kamvar et al. Feb 2005 A1
20050052998 Oliver et al. Mar 2005 A1
20050060295 Gould et al. Mar 2005 A1
20050060643 Glass et al. Mar 2005 A1
20050065810 Bouron Mar 2005 A1
20050086300 Yeager et al. Apr 2005 A1
20050091319 Kirsch Apr 2005 A1
20050091320 Kirsch et al. Apr 2005 A1
20050102366 Kirsch May 2005 A1
20050120019 Rigoutsos et al. Jun 2005 A1
20050141427 Bartky Jun 2005 A1
20050149383 Zacharia et al. Jul 2005 A1
20050159998 Buyukkokten et al. Jul 2005 A1
20050160148 Yu Jul 2005 A1
20050192958 Widjojo et al. Sep 2005 A1
20050193076 Flury et al. Sep 2005 A1
20050198159 Kirsch Sep 2005 A1
20050204001 Stein et al. Sep 2005 A1
20050216564 Myers et al. Sep 2005 A1
20050256866 Lu et al. Nov 2005 A1
20050262209 Yu Nov 2005 A1
20050262210 Yu Nov 2005 A1
20050262556 Waisman et al. Nov 2005 A1
20060007936 Shrum et al. Jan 2006 A1
20060009994 Hogg et al. Jan 2006 A1
20060015563 Judge et al. Jan 2006 A1
20060015942 Judge et al. Jan 2006 A1
20060021055 Judge et al. Jan 2006 A1
20060023940 Katsuyama Feb 2006 A1
20060031314 Brahms et al. Feb 2006 A1
20060031483 Lund et al. Feb 2006 A1
20060036693 Hulten et al. Feb 2006 A1
20060036727 Kurapati et al. Feb 2006 A1
20060041508 Pham et al. Feb 2006 A1
20060042483 Work et al. Mar 2006 A1
20060047794 Jezierski Mar 2006 A1
20060059238 Slater et al. Mar 2006 A1
20060095404 Adelman et al. May 2006 A1
20060095586 Adelman et al. May 2006 A1
20060112026 Graf et al. May 2006 A1
20060123083 Goutte et al. Jun 2006 A1
20060129810 Jeong et al. Jun 2006 A1
20060149821 Rajan et al. Jul 2006 A1
20060155553 Brohman et al. Jul 2006 A1
20060168024 Mehr et al. Jul 2006 A1
20060174337 Bernoth Aug 2006 A1
20060174341 Judge Aug 2006 A1
20060179113 Buckingham et al. Aug 2006 A1
20060184632 Marino et al. Aug 2006 A1
20060191002 Lee et al. Aug 2006 A1
20060212925 Shull et al. Sep 2006 A1
20060212930 Shull et al. Sep 2006 A1
20060212931 Shull et al. Sep 2006 A1
20060225136 Rounthwaite et al. Oct 2006 A1
20060230039 Shull et al. Oct 2006 A1
20060230134 Qian et al. Oct 2006 A1
20060248156 Judge et al. Nov 2006 A1
20060251068 Judge et al. Nov 2006 A1
20060253447 Judge Nov 2006 A1
20060253458 Dixon et al. Nov 2006 A1
20060253578 Dixon et al. Nov 2006 A1
20060253579 Dixon et al. Nov 2006 A1
20060253582 Dixon et al. Nov 2006 A1
20060253584 Dixon et al. Nov 2006 A1
20060265747 Judge Nov 2006 A1
20060267802 Judge et al. Nov 2006 A1
20060277259 Murphy et al. Dec 2006 A1
20070002831 Allen et al. Jan 2007 A1
20070019235 Lee Jan 2007 A1
20070025304 Leelahakriengkrai et al. Feb 2007 A1
20070027992 Judge et al. Feb 2007 A1
20070028301 Shull et al. Feb 2007 A1
20070043738 Morris et al. Feb 2007 A1
20070078675 Kaplan Apr 2007 A1
20070124803 Taraz May 2007 A1
20070130350 Alperovitch et al. Jun 2007 A1
20070130351 Alperovitch et al. Jun 2007 A1
20070168394 Vivekanand Jul 2007 A1
20070195753 Judge et al. Aug 2007 A1
20070195779 Judge et al. Aug 2007 A1
20070199070 Hughes Aug 2007 A1
20070203997 Ingerman et al. Aug 2007 A1
20070208817 Lund et al. Sep 2007 A1
20070214151 Thomas et al. Sep 2007 A1
20070233787 Pagan Oct 2007 A1
20070239642 Sindhwani et al. Oct 2007 A1
20070253412 Batteram et al. Nov 2007 A1
20080005223 Flake et al. Jan 2008 A1
20080022384 Yee et al. Jan 2008 A1
20080047009 Overcash et al. Feb 2008 A1
20080077517 Sappington Mar 2008 A1
20080082662 Dandliker et al. Apr 2008 A1
20080091765 Gammage et al. Apr 2008 A1
20080103843 Goeppert et al. May 2008 A1
20080104180 Gabe May 2008 A1
20080123823 Pirzada et al. May 2008 A1
20080159632 Oliver et al. Jul 2008 A1
20080175226 Alperovitch et al. Jul 2008 A1
20080175266 Alperovitch et al. Jul 2008 A1
20080177684 Laxman et al. Jul 2008 A1
20080177691 Alperovitch et al. Jul 2008 A1
20080178259 Alperovitch et al. Jul 2008 A1
20080178288 Alperovitch et al. Jul 2008 A1
20080184366 Alperovitch et al. Jul 2008 A1
20080301755 Sinha et al. Dec 2008 A1
20080303689 Iverson Dec 2008 A1
20090003204 Okholm et al. Jan 2009 A1
20090089279 Jeong et al. Apr 2009 A1
20090103524 Mantripragada et al. Apr 2009 A1
20090113016 Sen et al. Apr 2009 A1
20090119740 Alperovitch et al. May 2009 A1
20090122699 Alperovitch et al. May 2009 A1
20090125980 Alperovitch et al. May 2009 A1
20090164582 Dasgupta et al. Jun 2009 A1
20090192955 Tang et al. Jul 2009 A1
20090254499 Deyo Oct 2009 A1
20090254572 Redlich et al. Oct 2009 A1
20090282476 Nachenberg et al. Nov 2009 A1
20100115040 Sargent et al. May 2010 A1
20100306846 Alperovitch et al. Dec 2010 A1
20110053513 Papakostas et al. Mar 2011 A1
20110280160 Yang Nov 2011 A1
20110296519 Ide et al. Dec 2011 A1
20120011252 Alperovitch et al. Jan 2012 A1
20120084441 Alperovitch et al. Apr 2012 A1
20120110672 Judge et al. May 2012 A1
20120174219 Hernandez et al. Jul 2012 A1
20120204265 Judge Aug 2012 A1
20120216248 Alperovitch et al. Aug 2012 A1
20120239751 Alperovitch et al. Sep 2012 A1
20120240228 Alperovitch et al. Sep 2012 A1
20120271890 Judge et al. Oct 2012 A1
Foreign Referenced Citations (121)
Number Date Country
2003230606 Oct 2003 AU
2005304883 May 2006 AU
2006315184 May 2007 AU
2008207924 Jul 2008 AU
2008207926 Jul 2008 AU
2008207930 Jul 2008 AU
2008323779 May 2009 AU
2008323784 May 2009 AU
2008323922 May 2009 AU
2009203095 Aug 2009 AU
2478299 Sep 2003 CA
2564533 Dec 2005 CA
2586709 May 2006 CA
2628189 May 2007 CA
2654796 Dec 2007 CA
10140166 Apr 2009 CN
101443736 May 2009 CN
101730892 Jun 2010 CN
101730904 Jun 2010 CN
101730903 Nov 2012 CN
103095672 May 2013 CN
0375138 Jun 1990 EP
0420779 Apr 1991 EP
0413537 Dec 1991 EP
0720333 Jul 1996 EP
0838774 Apr 1998 EP
0869652 Oct 1998 EP
0907120 Apr 1999 EP
1271846 Jan 2003 EP
1326376 Jul 2003 EP
1488316 Dec 2004 EP
1672558 Jun 2006 EP
1 819 108 Aug 2007 EP
1820101 Aug 2007 EP
1982540 Oct 2008 EP
2036246 Mar 2009 EP
2115642 Nov 2009 EP
2115689 Nov 2009 EP
2213056 Aug 2010 EP
2218215 Aug 2010 EP
2223258 Sep 2010 EP
2562975 Feb 2013 EP
2562976 Feb 2013 EP
2562986 Feb 2013 EP
2562987 Feb 2013 EP
2271002 Mar 1994 GB
2357932 Jul 2001 GB
3279-DELNP-2007 Aug 2007 IN
4233-DELNP-2007 Aug 2008 IN
4842CHENP2009 Jan 2010 IN
4763CHENP2009 Jul 2010 IN
2000-148276 May 2000 JP
2000-215046 Aug 2000 JP
2001-028006 Jan 2001 JP
2003-150482 May 2003 JP
2004-533677 Nov 2004 JP
2004-537075 Dec 2004 JP
2005-520230 Jul 2005 JP
2006-268544 Oct 2006 JP
2006350870 Dec 2006 JP
2007-540073 Jun 2008 JP
2009-516269 Apr 2009 JP
2006-0012137 Feb 2006 KR
2006-028200 Mar 2006 KR
1020060041934 May 2006 KR
10-699531 Mar 2007 KR
699531 Mar 2007 KR
10-737523 Jul 2007 KR
737523 Jul 2007 KR
10-750377 Aug 2007 KR
750377 Aug 2007 KR
10-447082 Dec 2009 KR
447082 Dec 2009 KR
106744 Nov 2004 SG
142513 Jun 2008 SG
WO 9635994 Nov 1996 WO
WO 9905814 Feb 1999 WO
WO 9933188 Jul 1999 WO
WO 9937066 Jul 1999 WO
WO 0007312 Feb 2000 WO
WO 0008543 Feb 2000 WO
WO 0042748 Jul 2000 WO
WO 0059167 Oct 2000 WO
WO 0117165 Mar 2001 WO
WO 0122686 Mar 2001 WO
WO 0150691 Jul 2001 WO
WO 0176181 Oct 2001 WO
WO 0180480 Oct 2001 WO
WO 0188834 Nov 2001 WO
WO 0213469 Feb 2002 WO
WO 0213489 Feb 2002 WO
WO 0215521 Feb 2002 WO
WO 02075547 Sep 2002 WO
WO 0282293 Oct 2002 WO
WO 02091706 Nov 2002 WO
WO 03077071 Sep 2003 WO
WO 2004061698 Jul 2004 WO
WO 2004061703 Jul 2004 WO
WO 2004081734 Sep 2004 WO
WO 2004088455 Oct 2004 WO
WO 2005006139 Jan 2005 WO
WO 2005086437 Sep 2005 WO
WO 2005116851 Dec 2005 WO
WO 2005119485 Dec 2005 WO
WO 2005119488 Dec 2005 WO
WO 2006029399 Mar 2006 WO
WO 2006119509 Mar 2006 WO
WO 2006052736 May 2006 WO
WO 2007030951 Mar 2007 WO
WO 2007059428 May 2007 WO
WO 2007146690 Dec 2007 WO
WO 2007146696 Dec 2007 WO
WO 2007146701 Dec 2007 WO
WO 2008008543 Jan 2008 WO
WO 2008091980 Jul 2008 WO
WO 2008091982 Jul 2008 WO
WO 2008091986 Jul 2008 WO
WO 2009146118 Feb 2009 WO
WO 2009061893 May 2009 WO
WO 2009062018 May 2009 WO
WO 2009062023 May 2009 WO
Non-Patent Literature Citations (115)
Entry
PCT Notification of International Search Report & Written Opinion, PCT/US2009/039401, mailed Nov. 16, 2009, 14 pages.
PCT Notification Concerning Transmittal International Preliminary Report on Patentability, PCT/US2009/039401, mailed Oct. 14, 2010, 9 pages.
EPO Communication Pursuant to Article 94(3) EPC in EP Application Serial No. 09755480.2-2416 mailed on Dec. 11, 2012.
EP Supplementary European Search Report in EP Application Serial No. 09755480.2-2416 mailed on Dec. 3, 2012.
Lewis et al., “A Comparison of Two Learning Algorithms for Text Categorization”, Third Annual Symposium on Document Analysis and Information Retrieval, Apr. 11-13, 1994, pp. 81-92.
Sahami, “Learning Limited Dependence Bayesian Classifiers”, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 335-338, 1996.
Lewis, “An Evaluation of Phrasal and Clustered Representations on a Text Categorization Task”, 15th Ann Int'l Sigir, Jun. 1992, pp. 37-50.
Michell, “Machine Learning” (Book), 1997, pp. 180-184.
Cohen, “Learning Rules that Classify E-mail”, pp. 1-8; Conference Machine Learning in Information Access-Spring Symposium-Technical Report-American Association for Artificial Intelligence SSS, AAAI Press, Mar. 1996.
Koller, et al., “Hierarchically classifying documents using very few words”, in Proceedings of the Fourteenth International Conference on Machine Learning, 1997.
Li et. al., “Classification of Text Documents”, The Computer Journal, vol. 41, No. 8, 1998, pp. 537-546.
Palme et. al., “Issues when designing filters in messaging systems”, 19 Computer Communications, 1996, pp. 95-101.
Joachins, “Text Categorization with Support Vector Machines: Learning with Many Relevant Features”, Machine Learning: ECML-98, Apr. 1998, pp. 1-14.
Iwayama et al., “Hierarchical Bayesian Clustering for Automatic Text Classification”, Department of Computer Science, Tokyo Institute of Technology, ISSN 0918-2802, Aug. 1995, 10 pages.
Spertus, “Smokey: Automatic Recognition of Hostile Messages”, Innovative Applications 1997, pp. 1058-1065.
Schutze, “A Comparison of Classifiers and Document Representations for the Routing Problem”, pp. 229-237; Publication 1996.
Takkinen et al., “Cafe: A Conceptual Model for Managing Information in Electronic Mail”, Proc. 31st Annual Hawaii International Conference on System Sciences, 1998, pp. 44-53.
Yang et al., “A Comparative Study on Feature Selection in Text Categorization”, Machine learning-International Workshop Then Conference, p. 412-420, Jul. 1997.
Cranor et al., “Spam!”, Communications of the ACM, vol. 41, No. 8, Aug. 1998, pp. 74-83.
LeFebvre, “Sendmail and Spam”, Performance Computing, Aug. 1998, pp. 55-58.
Ranum et al, “Implementing a Generalized Tool for Network Monitoring”, Lisa Xi, Oct. 26-31, 1997, pp. 1-8.
“Method for Automatic Contextual Transposition Upon Receipt of item of Specified Criteria” printed Feb. 1994 in IBM Technical Disclosure Bulletin, vol. 37, No. 2B, p. 333.
Koller et al., “Toward Optimal Feature Selection”, Machine Learning: Proc. of the Thirteenth International Conference, 1996.
Website: Technical Focus—Products—Entegrity AssureAccess. www2.entegrity.com, Published prior to May 2006 (pp. 1-4).
Website: Create Secure Internet Communication Channels—Atabok Homepage. www.atabok.com, Published Feb. 19, 2002, pp. 1-3.
Website: ATABOK VCNMAIL™ Secure Email Solution—Atabok Related Produces. www.atabok.com, Published Feb. 19, 2002, pp. 1-2.
Website: ATABOK VCN Auto-Exchange™—Atabok Related Produces. www.atabok.com, Published Feb. 19, 2002, 1 page.
Website: Controlling Digital Assets Is a Paramount Need for All Business—Atabok Related Produces. www.atabok.com, Published Feb. 19, 2002, 1 page.
Website: Control Your Confidential Communications with Atabok—Atabok Related Produces. www.atabok.com, Published prior to May 2006, 1 page.
Website: Entrust Entelligence—Entrust Homepage. www.entrust.com, Published prior to May 2006, 1 page.
Website: E-mail Plug-in—Get Technical/Interoperability—Entrust Entelligence. www.entrust.com, Published Feb. 19, 2002, 1 page.
Website: E-mail Plug-in—Get Technical/System Requirements—Entrust Entelligence. www.entrust.com, Published Feb. 19, 2002, 1 page.
Website: E-mail Plug-in—Features and Benefits—Entrust Entelligence. www.entrust.com, Published Feb. 19, 2002, 1 page.
Website: Internet Filtering Software—Internet Manager Homepage. www.elronsw.com, Published Feb. 19, 2002, 1 page.
Website: ESKE—Email with Secure Key Exchange—ESKE. www.danu.ie, Published prior to May 2006, 1 page.
Website: Terminet—ESKE. www.danu.ie, Published Feb. 19, 2002, 1 page.
Website: Baltimore Focus on e-Security—Baltimore Technologies. www.baltimore.com, Published Feb. 19, 2002, pp. 1-2.
Website: Go Secure! for Microsoft Exchange—Products/Services—Verisign, Inc. www.verisign.com, Publshed prior to May 2006, p. 2.
Avery, “MIMEsweeper defuses virus network, 'net mail bombs”, info World, May 20, 1996, vol. 12, No. 21, p. N1.
Wilkerson, “Stomping out mail viruses”, in PC Week, Jul. 15, 1996, p. N8.
Serenelli et al., “Securing Electronic Mail Systems”, Communications-Fusing Command Control and Intelligence: MILCOM '921992, pp. 677-680.
Kramer et. al., “Integralis' Minesweeper defuses E-mail bombs”, PC Week, Mar. 18, 1996, p. N17-N23.
Ranum et. al., “A Toolkit and Methods for Internet Firewalls”, Proc. of USENIX Summer 1994 Technical Conference Jun. 6-10, 1994, pp. 37-44.
McGhie, “Firewall Systems: The Next Generation”, Integration issues in Large Commerical Media Delivery Systems: Proc. of SPIE-The International Society for Optical Engineering, Oct. 23-24, 1995, pp. 270-281.
Rose et. al., “Design of the TTI Prototype Trusted Mail Agent”, Computer Message Systems-85: Proc. of the IFIP TC 6 International Symposium on Computer Message Systems, Sep. 5-7, 1985, pp. 377-399.
Greenwald et. al., “Designing an Academic Firewall: Policy, Practice, and Experience with Surf”, Proc. of the 1996 Symposium on Network and Distributed Systems Security, 1996, pp. 1-14.
Tresse et. al., “X Through the Firewall, and Other Application Relays”, Proc. of the USENIX Summer 1993 Technical Conference, Jun. 21-25, 1993, pp. 87-99.
Bryan, “Firewalls for Sale”, BYTE, Apr. 1995, pp. 99-104.
Cheswick et al., “A DNS Filter and Switch for Packett-filtering Gateways”, Proc. of the Sixth Annual USENIX Security Symposium: Focusing on Applications of Cryptography, Jul. 22-25, 1996, pp. 15-19.
Kahn, “Safe Use of X Window System Protocol Across a Firewall”, Proc. of the Fifth USENIX UNIX Security Symposium, Jun. 5-7, 1995, pp. 105-116.
Pavlou et al., “Automating the OSI to Internet Management Conversion Through the Use of an Object-Oriented Platform”, Proc. of the IFIP TC6/WG6.4 International Conference on Advanced Information Processing Techniques for LAN and MAN Management, Apr. 7-9, 1993, pp. 245-260.
Krishnaswamy et al—Verity: A QoS Metric for Selecting Web Services and Providers, Proceedings of the Fourth International Conference on Web Information Systems Engineering Workshops (WISEW'03), IEEE, 2004.
Kamvar et al., The EigenTrust Algorithm for Reputation Management in P2P Networks, ACM, WWW2003, Budapest, Hungary, May 20-24, 2003, pp. 640-651.
Luk, W., et al. “Incremental Development of Hardware Packet Filters”, Proc. International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA). Jan. 1, 2001. pp. 115-118. XP055049950. Retrieved from the Internet: URL:www.doc.ic.ac.uk/-sy99/c1.ps.
Georgopoulos, C. et al., “A Protocol Processing Architecture Backing TCP/IP-based Security Applications in High Speed Networks”. Interworking 2000. Oct. 1, 2000. XP055049972. Bergen. Norway Available online at <URL:http://pelopas.uop.gr/-fanis/html—files/pdf—files/papers/invited/I2—IW2002.pdf>.
“Network Processor Designs for Next-Generation Networking Equipment”. White Paper Ezchip Technologies. XX. XX. Dec. 27, 1999. pp. 1-4. XP002262747.
Segal, Richard, et al. “Spam Guru: An Enterprise Anti-Spam Filtering System”, IBM, 2004 (7 pages).
Yang et al., “An Example-Based Mapping Method for Text Categorization and Retrieval”, ACM Transactions on Information Systems, Jul. 1994, vol. 12, No. 3, pp. 252-277.
Okumura, Motonobu, “E-Mail Filtering by Relation Learning”, IEICE Technical Report, vol. 103, No. 603, The Institute of Electronics, Information and Communication Engineers, Jan. 19, 2004, vol. 103, p. 1-5 [English Abstract Only].
Inoue, Naomi, “Computer and Communication: Recent State of Filtering Software,” ISPJ Magazine, vol. 40, No. 10, Japan, The Institute of Electronics, Information and Communication Engineers, Oct. 15, 1999, vol. 40 p. 1007-1010 [English Abstract Only].
Nilsson, Niles J., “Introduction to Machine Learning, an Early Draft of a Proposed Textbook”, Nov. 3, 1998; XP055050127; available online at <URL http://robotics.stanford.edu/˜nilsson/MLBOOK. pdf >.
Androutsopoulos, Ion et al., “Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach”; Proceedings of the Workshop “Machine Learning and Textual Information Access”; 4th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD-2000). Sep. 1, 2000 [XP055050141] Lyon, France; available online at <URL http://arxiv.org/ftp/cs/papers/0009/0009009.pdf>.
Rennie, J D M, “iFile: An application of Machine Learning to E-Mail Filtering”; Workshop on Text Mining; Aug. 1, 2000. [XP002904311]. pp. 1-6.
Blum, Richard, Open Source E-Mail Security, SAMS XP009166200, ISBN 978-0-672-32237-2, pp. 139-158 Oct. 20, 2001.
Clayton, Richard, “Good Practice for Combating Unsolicited Bulk Email,” Demon Internet, May 18, 1999 (16 pages).
Smith, “A Secure Email Gateway (Building an RCAS External Interface)”, in Tenth Annual Computer Security Applications Conference, Dec. 5-9, 1994, pp. 202-211.
Wiegel, “Secure External References in Multimedia Email Messages”, 3rd ACM Conference on Computer and Communications Security Mar. 14-16, 1996, pp. 11-18.
Leech et. al., Memo entitled “SOCKS Protocol Version 5”, Standards Track, Mar. 1996, pp. 1-9.
Farrow, “Securing the Web: fire walls, proxy, servers, and data driven attacks”, InfoWorld, Jun. 19, 1995, vol. 17, No. 25, p. 103.
Ando, Ruo, “Real-time neural detection with network capturing”, Study report from Information Processing Society of Japan, vol. 2002, No. 12, IPSJ SIG Notes, Information Processing Society of Japan, 2002, Feb. 15, 2002, p. 145-150.
Aikawa, Narichika, “Q&A Collection: Personal computers have been introduced to junior high schools and accessing to the Internet has been started; however, we want to avoid the students from accessing harmful information. What can we do?”, DOS/V Power Report, vol. 8, No. 5, Japan, Impress Co., Ltd., May 1, 1998, p. 358 to 361.
Shishibori, Masami, et al., “A Filtering Method for Mail Documents Using Personal Profiles”, IEICE Technical Report, The Institute of Electronics, Information and Communication Engineers, vol. 98, No. 486, Dec. 17, 1998, pp. 9-16.
Lane, Terran et al., “Sequence Matching and Learning in Anomaly Detection for Computer Security,” AAAI Technical Report WS-97-07, 1997, p. 43 to 49.
Abika.com, “Trace IP address, email or IM to owner or user” http://www.abika.com/help/IPaddressmap.htm, 3 pp. (Jan. 25, 2006).
Abika.com, “Request a Persons Report”, http://www.abika.com/forms/Verifyemailaddress.asp, 1 p. (Jan. 26, 2006).
Lough et al., “A Short Tutorial on Wireless LANs and IEEE 802.11”, printed on May 27, 2002, in the IEEE Computer Society's Student Newsletter, Summer 1997, vol. 5, No. 2.
Feitelson et al., “Self-Tuning Systems”, Mar./Apr. 1999, IEEE, 0740-7459/99, pp. 52-60.
Natsev, Apostol et al., “Walrus: A Similarity Retrieval Algorithm for Image Databases,” Mar. 2004.
Schleimer, Saul, et al., “Winnowing: Local Algorighms for Document Fingerprinting.” Jun. 2003.
Sobottka, K., et al., “Text Extraction from Colored Book and Journal Covers”, 2000 (pp. 163-176).
Thomas, R., et al., “The Game Goes On: An Analsysi of Modern SPAM Techniques,” 2006.
Anklesaria, F. et al., “The Internet Gopher Protocol”, RFC 1436, Mar. 1993.
Berners-Lee, T. et al., “Uniform Resource Identifiers (URI): Generic Syntax”, RFC 2396, Aug. 1998.
Crispin, M., “Internet Message Access Protocol-Version 4rev1”, RFC 2060, Dec. 1996.
Franks, J. et al., “HITP Authentication: Basic and Digest Access Authentication”, RFC 2617, Jun. 1999.
Klensin, J. et al., “SMTP Service Extensions”, RFC 1869, Nov. 1995.
Moats, R., “URN Syntax”, RFC 2141, May 1997.
Moore, K., “SMTP Service Extension for Delivery Status Notifications”, RFC 1891, Jan. 1996.
Myers, J. et al., “Post Office Protocol-Version 3”, RFC 1939, May 1996.
Nielsen, H., et al., “An HTTP Extension Framework”, RFC 2774, Feb. 2000.
Postel, J., “Simple Mail Transfer Protocol”, RFC 821, Aug. 1982.
IronMail™ Version 2.1, User's Manual. © 2001, published by CipherTrust, Inc., 114 pp. [U.S. Appl. No. 10/361,067].
IronMail™ version 2.5, User's Manual, © 2001, published by CipherTrust, Inc., 195 pp. [U.S. Appl. No. 10/361,067].
IronMail™ version 2.5.1, User's Manual, © 2001, published by CipherTrust, Inc., 203 pp. [U.S. Appl. No. 10/361,067].
IronMail™ version 3.0, User's Manual, © 2002, published by CipherTrust, Inc., 280 pages.
IronMail™version 3.0.1, User's Manual, © 2002, published by CipherTrust, Inc., 314 pages.
IronMailTM version 3.1, User's Manual, published by CipherTrust, Inc., 397 pages [Cited in U.S. Appl. No. 10/361,067], 2006.
Website: Exchange Business Information Safely & Quickly —Without Compromising Security or Reliability—Atabok Secure Data Solutions, Feb. 19, 2002, 2 pages.
Braden, R., “Requirements for Internet Hosts—Application and Support”, RFC 1123, Oct. 1989, 98 pages.
Fielding, R. et al., “Hypertext Transfer Protocol—HTTP/1.1”, RFC 2616, Jun. 1999, 114 pages.
Klensin, J. et al., “SMTP Service Extensions”, RFC 1869, Nov. 1995, 11 pages.
Yuchun Tang, “Granular Support Vector Machines Based on Granular Computing, Soft Computing and Statistical Learning.” Georgia State University: May 2006.
Drucker et al; “Support Vector Machines for Spam Categorization”; 1999; IEEE Transactions on Neural Networks; vol. 10, No. 5; pp. 1048-1054.
Graf et al.; “Parallel Support Vector Machines: The Cascade SVM”; 2005; pp. 1-8.
Rokach, Lior et al.; “Decomposition methodology for classification tasks”; 2005; Springer-Verlag London Limited; Pattern Analysis & Applications; pp. 257-271.
Wang, Jigang et al.; “Training Data Selection for Support Vector Machines”; 2005; ICNC 2005, LNCS 3610; pp. 554-564.
Skurichina, Marina et al.; Bagging, Boosting and the Random Subspce Method for Linear Classifiers; 2002; Springer-Verlag London Limited; pp. 121-135.
Tao, Dacheng et al.; “Asymmetric Bagging and Random Subspace for Support Vector Machines-Based Relevance Feedback in Image Retrieval”; 2006; IEEE Computer Society; pp. 1088-1099.
Kotsiantis, S. B. et al.; “Machine learning: a review of classification and combining techniques”; 2006; Springer; Artificial Intelligence Review; pp. 159-190.
Kane, Paul J. et al. “Quantification of Banding, Streaking and Grain in Flat Field Images”, 2000.
Kim, JiSoo et al. “Text Locating from Natural Scene Images Using Image Intensities”, 2005 IEEE.
Gupta, et al., “A Reputation System for Peer-to-Peer Networks,” ACM (2003).
Golbeck, et al., “Inferring Reputation on the Semtantic Web,” ACM, 2004.
Australian Patent Office First Examination Report in Australian Patent Application Serial No. 2009251584 dated Feb. 7, 2013.
China Patent Office First Office Action in Chinese Patent Application Serial No. 200980120009.3 mailed on Mar. 26, 2013.
Related Publications (1)
Number Date Country
20090254663 A1 Oct 2009 US
Provisional Applications (1)
Number Date Country
61042547 Apr 2008 US