NOT APPLICABLE
The present invention relates to prismatic films used for illumination, and in particular for such films used in computer liquid crystal displays (LCD).
Prism film has been proposed for controlling the illumination of architectural light fixtures for many decades. In recent years, with the invention of LCD monitors, prismatic film became an important part of the light source for illuminating the LCD. Its primary function is to concentrate the angle of illumination from the backlight to within the desired viewing angles. When a LCD is used in a notebook computer, the light source is normally installed at the edge of the display to reduce its thickness. In this case, the prismatic film also helps to redirect the off-axis illumination to a direction normal to the display surface.
Whitehead's U.S. Pat. No. 4,542,449 illustrates such a prismatic film. There are many variations of prismatic film. One of the recent patents (U.S. Pat. No. 6,091,547) covering prismatic film is issued to Mark Gardiner et.al. This patent is similar to Whitehead's patent except that it specifically describes that the period of the prism is less than 30 μm and the apex angle of the prism is between 45 and 135 degrees.
One problem with many prior art prism films is that the redirected light forms a Moiré pattern—an undesired aliasing effect caused by an interference pattern. It produces noticeable dark and light bands on the monitor.
U.S. Pat. No. 6,862,141 shows an optical surface substrate which has a worm-like and continuous 3D structure. The 3D surface is a result of a first surface structure function being modulated by a second surface function. The second surface function is random while the first surface function is deterministic. The resulting three-dimensional surface of the substrate retains the light turning characteristics of the first surface structure function, but also diffuses light to, for example, reduce Moire artifacts.
The present invention provides an improvement to prism films for displays that reduces the Moiré pattern effect, and also provides a light diffusion function. A prism film with many small prism units is used. The pattern of the prism film is varied, ideally with a random or pseudo random variation. The variation can be in any, some or all aspects of the prism structure. In particular, the thickness and position of the prism elements can be varied.
In one embodiment, the prism is broken into multiple rows, with the rows being offset to provide a varying pattern. In particular, the offset of the rows can be a random or pseudo random variation. This provides a structure which provides the desired light diffusion, yet has a regular aspect making it easier and less expensive to manufacture.
In another embodiment, the prism is made of multiple triangular ridges, and the height and/or location of the apex is varied from one prism unit to the next.
The apex 301 as shown is in the center of a prism for a symmetric prism. However, a prism can be asymmetric with the apex off to one side of the center of the prism. The apexes of the prisms in row 304 and the apexes of the prisms in row 305 are shifted with respect to each other. In fact, the apex of each row is randomly shifted with respect to one another. This random or pseudo random shifting of the rows provides the desired diffusion effect. At the same time, each row has a regular structure, making manufacture more practical.
In one embodiment, the height of the apexes of the prisms is varied randomly or pseudo randomly. In one embodiment, the height of the prisms in the matrix is randomly chosen in such a way that the apex angles are between 90 and 135 degrees.
The method of fabricating this prismatic structure is shown in
After exposure and development a surface structure as shown in
The use of triangular or pyramidal shapes allows the surface to be more easily programmed to not only provide the diffusion desired, but to achieve the prime purpose of reflecting light, entering from the edges, outward orthogonally, within a desired range of view to concentrate the brightness.
In one embodiment, the substrate is a transparent material, such as a dielectric sheet. The substrate can be the film which is then placed over a lightguide, or could be the lightguide itself. In one embodiment, the substrate (film) is polymer material such as acrylic or polyester.
As will be understood by those of skill in the art, the present invention could be embodied in other specific forms without departing from the essential characteristics thereof. For example, instead of prisms with straight edges, a curved side could be provided, with the curve extending from the apex to the base. Accordingly the foregoing description is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.