This application is related to, and claims the benefit of, a foreign priority application filed in China as Serial No. 200720122049.X on Aug. 3, 2007. The related application is incorporated herein by reference.
The present invention relates to a prism sheet that has a curved surface and a liquid crystal display (LCD) device implementing the prism sheet.
LCD devices are commonly used as displays for compact electronic apparatuses, because they provide good quality images with little power consumption and are very thin. The liquid crystal material in an LCD device does not emit light. The liquid crystal material must be lit by a light source to clearly and sharply display text and images. Thus, a backlight module is generally needed for an LCD device.
Referring to
The backlight module 19 includes a light source 191, a reflector 192, a light guide plate (LGP) 193, a first diffuser 194, a prism sheet 195, and a second diffuser 196. The reflector 192, the LGP 193, the first diffuser 194, the prism sheet 195, and the second diffuser 196 are positioned in that order, with the second diffuser 196 positioned adjacent to the display panel 10. The light source 191 is positioned adjacent to the LGP 193.
The LGP 193 is used to convert linear light beams emitted by the light source 191 into planar light beams. The first and second diffuser 194, 196 are used to homogenize the planar light beams converted by the LGP 193. The prism sheet 195 is used to convert scattered planar light beams into concentrated planar light beams for promoting a brightness of the planar light beams. The prism sheet 195 includes a base 198 and a plurality of lenses 197. The lenses 197 have the same shape and form a serrated surface on a surface of the base 198 facing the display panel 10.
However, an optical grating is liable to be formed because the lenses 197 are similarly shaped and a distance between each two adjacent lenses 197 is the same. In addition, another optical grating is liable to be formed from the black matrix 15. As a result, Morie fringes are generated as light beams pass through the two optical gratings, thereby deteriorating the display characteristics of the LCD device 1.
Therefore, an improved prism sheet is desired to overcome the above-described deficiencies.
An aspect of the invention relates to a prism sheet including a base including an upper surface and a plurality of lenses disposed on the upper surface. The upper surface is a wavy surface.
Other novel features and advantages will become more apparent from the following detailed description and when taken in conjunction with the accompanying drawings.
The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of at least one embodiment. In the drawings, like reference numerals designate corresponding parts throughout the various views.
Reference will now be made to the drawings to describe the embodiments in detail.
Referring to
The backlight module 29 includes a light source 291, a reflector 292, an LGP 293, a first diffuser 294, a prism sheet 295, and a second diffuser 296. The reflector 292, the LGP 293, the first diffuser 294, the prism sheet 295, and the second diffuser 296 are positioned in that order, with the second diffuser 296 positioned adjacent to the display panel 20. The light source 291 is positioned adjacent to the LGP 293.
The LGP 293 is used to convert linear light beams emitted by the light source 291 into planar light beams via light guide spots (not labeled) disposed thereon. The first diffuser 294 is used to homogenize light spots formed from the light guide spots of the LGP 293. The prism sheet 295 is used to convert scattered planar light beams into concentrated planar light beams. The second diffuser 296 is used to homogenize the planar light beams passing through the prism sheet 295 and protect the prism sheet 295.
Referring also to
A distance between the centers of each pair of adjacent lenses 298 is different because the upper surface 297 is wavy along the Y direction. The wavy surface of the lenses 298 and the black matrix 25 destroys a forming condition of the Morie fringes, thereby improving the display characteristics of the LCD device 2.
Referring to
It is to be understood that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes made in detail, especially in matters of shape, size, and arrangement of parts, within the principles of the embodiments, to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2007 2 0122049 | Aug 2007 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
7251079 | Capaldo et al. | Jul 2007 | B2 |
20040051825 | Lee et al. | Mar 2004 | A1 |
20060256582 | Chuang | Nov 2006 | A1 |
20060279296 | Lee et al. | Dec 2006 | A1 |
20070275215 | Lu | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090033831 A1 | Feb 2009 | US |