Prismatic collimating devices may be used in displays to provide image bearing light for display to a user.
Light R interacts with a first surface 1301 of the first prism 1310 and enters the first prism 1310. The first surface 1301 of the first prism 1310 causes the light to undergo refraction towards a second surface 1302 of the first prism 1310. Due to the presence of the air gap 1330 and the angle of incidence of the light, the light that is refracted by the first surface 1301 undergoes total internal reflection (TIR) at the second surface 1302, and is reflected towards a third surface 1303. The third surface 1303 is configured to reflect light received towards the second surface 1302. Due to the angle of incidence, light received from the third surface 1303 at the second surface 1302 is output from the first prism 1310 towards the second prism 1320.
Light output from the first prism 1310 is received by the second prism 1320 at a fourth surface 1304. The light received by the fourth surface 1304 undergoes refraction, and is directed towards a fifth surface 1305. The fifth surface reflects light back towards the fourth surface 1304. Light received at the fourth surface 1304, due to the angle of incidence and the air gap 1330, undergoes total internal reflection, and is directed towards the sixth surface 1306. Light received at the sixth surface 1306 from the fourth surface is output from the second prism 1320.
Due to the optical power of each surface, light may enter the folded prismatic device 1300 and exit collimated. The collimated light may then be directed toward a further optical element and/or towards a user.
In some examples, to aid reflection the third surface 1303 and the fifth surface may be coated with a reflective mirror coating. In some examples at least one of the first surface 1301, the second surface 1302, the fourth surface 1304, and the sixth surface may be coated with an anti-reflection coating. In some examples all of the first surface 1301, the second surface 1302, the fourth surface 1304, and the sixth surface may be coated with an anti-reflection coating.
The first prism 1310 and the second prism 1320 are arranged to receive and collimate a light beam from a light source. As can be seen from
The first prism and second prism are arranged such that the light beam undergoes total internal reflection and refraction at both the output surface of the first prism 1310 and the input surface of the second prism 1320. Each of the first prism 1310 and second prism 1320 comprise at least three optically powered surfaces. The optical power is chosen based on the desired properties of the output light and the input light properties in a similar way to the optical power of lenses may be chosen. The surface forms, orientation and material of the prisms may be optimised to achieve the desired output parameters.
Each of the first prism 1310 and the second prism 1320 comprise a surface where the light interacts with the surface twice, and at least two surfaces where the light only interacts once.
In order to allow a small air gap 1330, the surface forms of the second surface 1303 and the fourth surface 1304 may be the same, or substantially the same. However, light that interacts with second surface 1302 the fourth surface 1304 may interact such that one is effectively concave, and the other effectively convex. The surface forms being the same allows the air gap 1330 to be kept constant, and also may reduce the complexity of aligning the prisms.
In some examples the air gap 1330 may be less than 1 mm. In some examples the air gap 1330 may be within a range of 0.25 mm to 0.5 mm. The lower range is based on the tolerance of maintaining the gap. A lower bound for the air gap 1330 may be of order of 100 s of nm, as below 100 s of nm issues like interference or evanescent coupling may occur. The size of the air gap may also be dictated by the overall size of the device where a smaller device requires a smaller air gap.
In some examples the first prism 1310 and the second prism 1320 may have a substantially triangular cross-section.
In some examples the folded prismatic collimating device 1300 may output a light beam having a common exit pupil in both a vertical and horizontal axis. In some examples the folded prismatic collimating device 1300 may output a light beam having an uncommon exit pupil in a vertical and horizontal axis, such that the light beam that is output has a different waist point for the vertical and horizontal axis.
In some examples the first prism 1310 and the second prism 1320 may be bonded together, for example by an adhesive. The air gap 1330 may be replaced by a bonding layer or another low refractive index coating.
In some examples, the prisms may comprise alignment features, to reduce the complexity of aligning the prisms.
In some examples, the at least one of the first surface 1301, second surface 1302, third surface 1303, fourth surface 1304, fifth surface 1305 and sixth surface 1306 may have a surface form substantially defined by at least one of: a spherical surface definition, an aspheric surface definition, a biconical surface definition, or a high order polynomial definition. In this context high may mean an order of ten or more.
A high order polynomial may be a polynomial with at least 10 terms.
Number | Date | Country | Kind |
---|---|---|---|
21275114.3 | Aug 2021 | EP | regional |
2111715.5 | Aug 2021 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2022/052095 | 8/11/2022 | WO |