The invention relates to the field of lighting and concerns luminaires utilizing light emitting diodes (LEDs) for illuminating an area. More particularly, the invention concerns LED modules that can be arrayed in a luminaire to provide a desired level, direction and pattern of illumination.
Commonly owned U.S. Pat. No. 8,342,709, which is incorporated by reference herein in its entirety, discloses various arrays of LED modules that snap into relatively large rectangular openings in a luminaire carrier plate. A portion of each module's heat sink extends into the luminaire housing above the carrier plate, and each module has a four-sided reflector that shapes and directs the light emitted by a row of LEDs mounted on a circuit board.
The LED module of the present invention has a downwardly directed heat sink and is adapted for installation on the underside of a luminaire carrier plate. The heat sink comprises a front end having a front face, a top wall extending rearward from the front end, and a plurality of cooling fins extending rearward from the front end and downward from the top wall. The top wall has a top face for abutting the underside of the luminaire carrier plate. A circuit board carrying at least one LED is mounted on the front face, and a prism is mounted to the heat sink over the LED(s). The top face preferably is disposed at an acute angle to the front face, and the cooling fins preferably taper in height from the front end rearward.
Another aspect of the invention is a catadioptric prism per se for shaping and directing light emitted by an even number of aligned, laterally spaced LEDs. The prism has a transparent body with a fore-and-aft medial vertical plane and comprises a rear light-receiving face, a front light-emitting face, a top face, a bottom face and two side faces. The front face has several prominent sections, as follows. A lower section on each side of the medial vertical plane has a substantially vertical front, and substantially vertical curved sides that merge with the front. A middle section on each side of the medial vertical plane and above the lower section is wider than it is high and has a substantially horizontal rounded face with rounded ends that merge with the rounded face. An upper section, which is above both middle sections, has a downwardly and forwardly slanted surface. The rear face of the prism has a convex cradle section on each side of the medial vertical plane. Each cradle section has at least one pocket behind the middle section of the front face for cradling an LED; and the pockets are symmetrically disposed on opposite sides of the medial vertical plane. The prism preferably is bilaterally symmetrical about the medial vertical plane.
Preferred embodiments of the disclosed invention, including the best mode for carrying out the invention, are described in detail below, purely by way of example, with reference to the accompanying drawing figures, in which:
As used in this application, including the claims, terms such as “front,” “rear,” “side,” “top,” “bottom,” “above,” “below,” “upward,” “downward,” “lateral,” “vertical” and “horizontal” are used in a relative sense to facilitate the description of the invention, and are not intended to limit the invention to any particular position or orientation except when clearly describing its orientation in an installed, operational position.
Referring to
Heat sink 14 preferably is made of anodized, die cast aluminum and has a series of parallel vertical cooling fins 26 on its underside. The penultimate cooling fin on each side is shortened to make room for a mounting hole 28 in the top wall 29 of the heat sink, which accommodates a mounting screw (not shown) from below for attachment to the carrier plate P of a luminaire (see, e.g.,
The array of LED modules 8 shown in
Due to the slant of heat sink top wall 29, prism 10 will face obliquely downward when the LED module is mounted to a substantially horizontal luminaire carrier plate. That orientation and the optical characteristics of the prism 10 (described below) will cause the optical axis X to meet a substantially horizontal surface to be illuminated at an angle of approximately 60° to 80° off vertical, preferably about 65° to 70° off vertical as shown in
Prism 10 preferably is molded of a UV stabilized, optically clear acrylic thermoplastic material having a refractive index of about 1.49. Other materials may be used instead, for example, glass or polycarbonate. The optical surfaces preferably have a class A polish to maximize internal reflections.
At the front of prism 10 on each side of the medial vertical plane, at the bottom, is a bulging “breakfront” portion 44 having curved vertical sides 46 and a substantially flat, vertical front face 48. Above breakfront portion 44 is a horizontal “semi-tubular” portion 50 with rounded ends 52 and a rounded face 54, which has a radius of curvature that tightens toward its horizontal center. Above semi-tubular portion 50 is a horizontal “forehead” bar 56 that spans both sides and has a slightly slanted “brow” portion 58, which gradually transitions to a flat, more slanted “crown” portion 60. At the rear of prism 10 on each side of the medial vertical plane is a convex, horizontally elongated “cradle” portion 62, which has two side-by-side pockets (recesses) 64 separated by a vertical rib 66. Each pocket 64 cradles an LED 18 (see
While exemplary embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes, modifications, additions, and substitutions are possible, without departing from the scope and spirit of the invention.
This application claims the benefit of U.S. provisional patent application No. 61/591,619, filed Jan. 27, 2012, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61591619 | Jan 2012 | US |