Not Applicable.
The present invention relates to the electrical, electronic and computer arts, and, more particularly, to analytics, optimization, and the like.
Detecting and tracking latent factors from temporal data is of interest in a variety of applications. Nonnegative Matrix Factorization (NMF) has been employed in some cases for such detection and tracking.
Principles of the invention provide techniques for privacy-aware on-line user role tracking. As used herein, “privacy aware” means in a manner that is sensitive to and respectful of people's privacy. In one aspect, an exemplary method for analyzing a set of data (in the form of a nonnegative asymmetric matrix) which tracks time-stamped activities of a plurality of entities includes the step of obtaining access to a first nonnegative factor matrix and a second nonnegative factor matrix obtained by factorizing the nonnegative asymmetric matrix. The first nonnegative factor matrix is representative of initial role membership of the entities, and the second nonnegative factor matrix is representative of initial role activity descriptions. A further step includes, at a given one of the time stamps, while holding a change in the first nonnegative factor matrix constant, updating a change in the second nonnegative factor matrix, to reflect time variance of the set of data at the given one of the time stamps, without accessing actual data values at previous ones of the time stamps. A still further step includes at the given one of the time stamps, while holding a change in the second nonnegative factor matrix constant, updating a change in the first nonnegative factor matrix, to reflect the time variance of the set of data at the given one of the time stamps, without accessing the actual data values at the previous ones of the time stamps. An even further step includes updating the role membership of the entities and the role activity descriptions, at the given one of the time stamps, based on the updating steps.
In another aspect, an exemplary method for analyzing a set of data (in the form of a nonnegative symmetric matrix) which tracks time-stamped activities of a plurality of entities, includes the step of obtaining access to a nonnegative factor matrix, obtained by factorizing the nonnegative symmetric matrix. The nonnegative factor matrix is representative of initial role membership of the entities. Possession of a matrix inherently implies possession of its transpose as well. Further steps include, at a given one of the time stamps, updating a change in the nonnegative factor matrix, to reflect time variance of the set of data at the given one of the time stamps, without accessing actual data values at previous ones of the time stamps; and updating the role membership of the entities, at the given one of the time stamps, based on the updating step.
As used herein, “facilitating” an action includes performing the action, making the action easier, helping to carry the action out, or causing the action to the performed. Thus, by way of example and not limitation, instructions executing on one processor might facilitate an action carried out by instructions executing on a remote processor, by sending appropriate data or commands to cause or aid the action to be performed. For the avoidance of doubt, where an actor facilitates an action by other than performing the action, the action is nevertheless performed by some entity or combination of entities.
One or more embodiments of the invention or elements thereof can be implemented in the form of a computer program product including a computer readable storage medium with computer usable program code for performing the method steps indicated. Furthermore, one or more embodiments of the invention or elements thereof can be implemented in the form of a system (or apparatus) including a memory, and at least ore processor that is coupled to the memory and operative to perform exemplary method steps. Yet further, in another aspect, one or more embodiments of the invention or elements thereof can be implemented in the form of means for carrying out one or more of the method steps described herein; the means can include (i) hardware module(s), (ii) software module(s) stored in a computer readable storage medium (or multiple such media) and implemented on a hardware processor, or (iii) a combination of (i) and (ii); any of (i)-(iii) implement the specific techniques set forth herein.
Techniques of the present invention can provide substantial beneficial technical effects. For example, one or more embodiments may provide Evolutionary Nonnegative Matrix Factorization (eNMF) with one or more of the following advantages:
These and other features and advantages of the present invention will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
Nonnegative Matrix Factorization (NMF) techniques have aroused considerable interests from the field of artificial intelligence in recent years because of their good interpretability and computational efficiency. However, in many real world applications, the data features usually evolve smoothly over time. In such cases, it would be very expensive in both computation and storage to rerun the whole NMF procedure after each time when the data feature(s) change.
One or more embodiments advantageously provide Evolutionary Nonnegative Matrix Factorization (eNMF), which incrementally updates the factorized matrices in a computation and space efficient manner with the variation of the data matrix. One or more instances provide such an evolutionary procedure for both asymmetric and symmetric NMF. The results of non-limiting exemplary experiments on several real world data sets are provided to demonstrate the efficacy and efficiency of eNMF in one or more embodiments.
As noted, recent years have witnessed a surge of interest in Nonnegative Matrix Factorization (NMF) from the artificial intelligence field. Different from traditional spectra decomposition methods such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). NMF is usually additive, which results in better interpretation ability, and does not require the factorized latent spaces to be orthogonal, which allows more flexibility to adapt the representation to the data set. NMF has successfully been used in many real world applications, such as information retrieval, environmental study, computer vision and computational social/network science.
Formally, NMF factorizes a nonnegative data matrix into the product of two (low-rank) nonnegative latent matrices. As NMF requires both factorized matrices to be nonnegative, this will generally lead to sparse, part-based representation of the original data set, which is semantically much more meaningful compared to traditional factorization/basis learning methods. Due to the empirical and theoretical success of NMF, people have been working on NMF extensions in the last decade to fit in more application scenarios. Some representative techniques include nonnegative sparse coding, semi and convex NMF, and orthogonal tri-NMF.
Many techniques have been proposed to solve NMF, such as multiplicative updates, active set, and projected gradient. However, all these techniques require holding the whole data matrix in main memory in the entire NMF process, which is quite inefficient in terms of storage cost when the data matrix is large (either in data size or the feature dimensionality). To address this issue, several researchers proposed memory efficient online implementations for NMF in recent years. Rather than processing all data points in a batch mode, these approaches process the data points one at a time in a streaming fashion. Thus they only require the memory to hold one data point through the whole procedure.
One or more embodiments address NMF in another scenario where the data features are evolving over time. Note that the difference between this setting and online learning is that in online learning, the data points are processed one by one, i.e., the elements in the data matrix are changed one column at a time. However, in one or more embodiments, any elements in the data matrix are allowed to change from time to time. A straightforward solution is to rerun the whole NMF procedure at each time stamp when the data feature(s) change. However, this poses several challenges in terms of space cost, computational time as well as privacy.
Let X and {tilde over (X)}=X+ΔX be the old and new data feature matrices respectively. In many real applications, ΔX is usually very sparse while {tilde over (X)} is not. Even is {tilde over (X)} also sparse, it is usually much denser compared with the ΔX matrix. See the table of
For evolutionary data, one common assumption is that the data features evolve smoothly over time, i.e., the norm of the difference between the data feature matrices at two consecutive time stamps is very small. Based on this assumption, one or more embodiments provide an Evolutionary Nonnegative Matrix Factorization (eNMF) technique, where it is assumed that the factorized matrices also evolve smoothly over time. Instead of minimizing a new similar objective on the evolved feature matrix, eNMF minimizes an upper bound of the objective, and one or more embodiments further provide an efficient projected gradient method to address this issue. As noted, non-limiting exemplary experimental results are presented to demonstrate the efficacy and efficiency of eNMF.
Problem Formulation
Consider a nonnegative matrix Xεn×d, which it is desired to factorize into the product of two nonnegative matrices Fεn×k and Gεd×k ((usually k>>min (d, n)) under some loss. The exemplary embodiment concentrates on the Frobenius norm loss as it is one of the most popular loss forms. However, techniques under other loss forms can be derived in a similar manner:
The optimization problem to be solved is:
where ∥A∥F2=tr(ATA) is the square of the matric Frobenius norm. This problem can be solved via a variety of techniques; for example:
Now, suppose there is a small variation on X so that X becomes:
{tilde over (X)}=X+ΔX (2)
and {tilde over (X)}εN×d is also nonnegative. It is desired to factorize {tilde over (X)} into the product of two nonnegative matrices, {tilde over (F)}εn×k and {tilde over (G)}εd×k; then it is necessary to solve the following optimization problem:
Assume ∥ΔX∥F2 is very small, and {tilde over (F)}, {tilde over (G)} can be represented as:
{tilde over (F)}=F+ΔF (4)
{tilde over (G)}=G+ΔG (5)
Bringing Eq. (4) and Eq. (5) into problem (3), obtain:
with the constraint that:
{tilde over (F)}=F+ΔF≧0 (7)
{tilde over (G)}=G+ΔG≧0 (8)
For the matrix Frobenius norm, there is the following triangle inequality:
∥X+ΔX−FGT−ΔFGT−FΔGT−ΔFΔGT|F≧∥X−FGT∥F+∥ΔX−ΔFGT−FΔGT−ΔFΔGT∥F (8A)
In an evolutionary setting according to one or more embodiments, the optimal F and G have already been obtained by solving problem (1); thus, ∥X−FGT∥F is already minimized, in order to minimize the objective of problem (3), one or more embodiments solve the following optimization problem:
This is an optimization problem with box constraints, and one or more embodiments apply the aforementioned Projected Gradient (PG) (Lin 2007) method to solve it.
Projected Gradient
An example of how to make use of PG to solve problem (9) will now be provided. For notational convenience, introduce a box projection operator PB[A] as:
Please refer to the pseudo-code for Technique 1—Projected Gradient as presented in
can be presented in Technique 1, •, • where is the sum of elementwise multiplication, and the rule for determining the step size in Technique 1 is usually referred to as the Armijo rule (Bertsekas, D. P., Nonlinear Programming, Athena Scientific, 2nd edition, 1999) (expressly incorporated herein by reference in its entirety for all purposes).
Now consider again problem (9). Denote the objective of the above problem by:
=∥ΔX−ΔFGT−FΔGT−ΔFΔGT∥F2 (13)
Then, the gradients of with respect to ΔF and ΔG are:
Observe that there are two variables, ΔF and ΔG, in problem (9). It is not easy, to solve for ΔF and ΔG simultaneously. However, if one variable is fixed, then the problem is convex with respect to the other. Therefore the block coordinate descent scheme (Bertsekas, Nonlinear Programming, supra), which is an alternating optimization strategy, can be employed for solution. At each round of the iteration, fix one variable and solve the other (via PG), until some stopping criterion is satisfied. As the objective is lower bounded by zero and after each round its value will decrease, the technique is guaranteed to converge. See Technique 2—eNMF pseudo-code in
Complexity Analysis
For Technique 2, F, G and ΔF, ΔG need to be held in the main memory; thus, the total storage complexity is O(2k(n+d)). We have usually found in our experiments that the obtained ΔF or ΔG is sparse; therefore the storage cost can be further reduced by only storing the nonzero elements.
For computational complexity, as both eNMF and NMF need to evaluate the function objective value (in the Armijo rule) when applying PG, one significant difference lies in the evaluation of the function gradient. Suppose that there are m and {circumflex over (m)} non zero elements in the matrices X+ΔX and ΔX respectively, then, the time cost for Eq. (14) and Eq. (15) is:
O({circumflex over (m)}k)+O(nk2)+O(dk2).
In contrast, the time complexity for computing the gradient for the original NMF is:
O(mk)+O(nk2)+O(dk2).
In many real applications, the matrix ΔX is usually much sparser than the matrix X+ΔX (i.e., {circumflex over (m)}<<m). Moreover, since:
k<<n,l<m,
O(mk) is the dominant term of the time complexity for the original NMF. Therefore, it would be expected that the exemplary technique according to an aspect of the invention is significantly more efficient in computation compared with the original NMF.
Evolutionary Symmetric NMF
Another interesting scenario is Symmetric NMF (Wang, F.; Li, T.; Wang, X.; Zhu, S.; and Ding, C., Community discovery using nonnegative matrix factorization, Data Mining and Knowledge Discovery, 2010), where there is a symmetric square nonnegative feature matrix Sεn×n (e.g., the connectivity matrix of an undirected graph). The goal to is factorize into the product of a nonnegative matrix Gεn×k (usually k<<n) and its transpose by solving the following optimization problem:
The just-mentioned reference by Wang et al. derived a multiplicative update approach to solve problem (16). Actually, as problem (16) is also a minimization problem with box constraint, it is also possible to apply PG to solve it. Specifically, denote the objective of the above problem as:
S=∥S−GGT∥F2 (17)
Then, solve it by PG using Technique 1 with A=G, f(A)=S, B=O (Oεn×k is an all-zero matrix), and the gradient:
In the evolutionary setting, S is changed to {tilde over (S)}=S+ΔS with a small ∥ΔS∥F2. Then, factorize {tilde over (S)} by solving the following optimization problem:
Assume that {tilde over (G)} takes the following form:
{tilde over (G)}=G+ΔG (20)
with a small ∥ΔG∥F2, Bringing Eq. (20) into the objective of problem (obtain:
∥{tilde over (S)}−{tilde over (G)}{tilde over (G)}T∥F=∥S+ΔS−(G+ΔG)(G+ΔGT∥F≦∥S−GGT∥F+∥ΔS−GΔGT−ΔGGT−ΔGΔGT∥F (21)
Similarly to the asymmetric case, also minimize the upper bound instead of the original objective in problem (19). As ∥S−GGT∥F2 is already minimized, solve the following optimization problem instead for evolutionary SNMF:
This problem is still a minimization problem with box constraints, which can be solved by PG, Denote the objective of the above problem by:
Se(ΔG)=∥ΔS−GΔGT−ΔGGT−ΔGΔGT∥F2 (23)
Then, problem (12 can be solved using PG in Technique 1 with: A=ΔG, f(A)=Se, B=−G, and the gradient:
The procedure of eSNMF is summarized in the pseudo-code of Technique 3—eSNMF in
Suppose there are m and {circumflex over (m)} non-zero elements in the matrices S+ΔS and ΔS respectively; then, the time cost for eq. (24) is O({circumflex over (m)}k)+O(nk{tilde over (2)}). In contrast, the time complexity for computing the gradient for the original NMF is O(mk)+O(nk2). In many real, applications, the matrix ΔS is usually much sparser than the matrix S+ΔS (i.e., {circumflex over (m)}<<m). Moreover, since k<<n, l<m, O(mk) dominates the time complexity for the original SNMF. Thus, one or more embodiments of the exemplary technique are believed to be computationally more efficient compared with the original SNMF.
Experiments
Experiments were conducted to evaluate the exemplary techniques with respect the following three aspects:
It is to be emphasized that the presentation of experimental data is to convey to the skilled artisan results that may be obtained in some cases, and is not intended to limit the scope of the invention or imply that all embodiments will necessarily achieve similar results.
The data set used for evaluation is from DBLP at the University of Trier in Germany. Time-evolving matrices were constructed using the publication records from one of the following four conferences: AAAI, KDD, SIGIR, and NIPS. For each conference, the author-paper and the co-authorship snapshot matrices were first constructed from each of its publication years. The author-paper snapshot matrices are asymmetric; the rows are the authors and the columns are the papers. If a given author wrote a paper, the corresponding element in the matrix is 1 (and 0 otherwise). The first 6 snapshot matrices were aggregated as the initial X matrix, and each of the remaining snapshot matrices were treated as the ΔX matrix in Technique 2. Denote these four asymmetric time-evolving matrices as AAAI-AP, KDD-AP, SIGIR-AP, and NIPS-AP respectively; the same are summarized in the table of
The co-authorship snapshot matrices are symmetric, where each row/column corresponds to an author and edge weights are the number of co-authored papers. The first 6 snapshot matrices were also aggregated as the initial S matrix, and each of the remaining snapshot matrices were treated as the ΔS matrix in Technique 3. Denote these four symmetric time-evolving matrices as AAAI-AA, KDD-AA, SIGIR-AA, and NIPS-AA respectively, as summarized in the table of
Convergence:
In both eNMF and eSNMF, instead of minimizing the true reconstruction error directly, an attempt is made to minimize its upper bound. Here, what is tested is how the true reconstruction error changes with respect to the iteration steps.
In particular,
Effectiveness Comparison:
Here, evaluate the effectiveness of eNMF and eSNMF in terms of the final reconstruction error (i.e., the reconstruction error after the techniques converge). For each time stamp of a given data set, run eNMF (or eSNMF for the symmetric matrix) and NMF (or SNMF for the symmetric matrix) until convergence, and then compare the reconstruction errors. The results are summarized in
In particular,
Speed Comparison:
Speed was also compared between techniques in accordance with one or more aspects of the invention and the original NMF and SNMF,
One or more embodiments of the invention may be employed in a variety of scenarios. For example, in the field of social network analysis, given <people, people> email and/or other communication records over time, monitoring the communities of people over time. In the health care field, given <patient, visit and/or treatment> logs, automatically segment the patients. For cyber-security, given <people/LP, accessing> logs, automatically maintain the role of people/IP as well as the description of each role. In this context, IP refers to Internet Protocol address. In the field of commerce, given <customer, purchasing> logs over time, customers can be grouped for better advertising.
Challenges arise in one or more applications. For example, due consideration should be had to pertinent laws, rules, regulations, and ethical standards pertaining to privacy. Some partition of the data is sensitive, and it is impossible to directly access it; or it can be only accessed at certain time-window. Furthermore, many applications are dynamic in that both role membership and role description might change over time. In addition, efficiency in both running time and storage cost is a consideration. One or more embodiments advantageously de-couple the data dependency by minimizing and/or working on the upper-bound of the exact criteria so that it is not necessary to access, store or process the old sensitive data.
In this regard, in the above-mentioned triangle inequality, the term ∥X−FGT∥F is dependent on X but fixed, while the term ∥ΔX−ΔFGT−FΔGT−ΔFΔGT∥F is independent of X.
Thus, in one or more embodiments, given a <user, activity>, or <user, user> log that changes over time, track the role and/or cluster of the users as well as the description of each role and/or cluster, such that:
One or more embodiments thus address grouping of users, dynamic situations (e.g., dynamics of roles and/or groups), correlation among different users, privacy concerns, and/or finding and/or tracking of the user roles themselves. Furthermore, one or more embodiments can address batch and/or negative changes; group and/or cluster the users into different roles; find the description of roles of the users; track user role descriptions; and/or avoid access of past data (in particular, tracking a user's role without accessing past data). In addition, one or more embodiments can be applied to a general graph; employ matrix-based methods; do not require location information; monitor the collective behavior of a group of users; and/or take as input data a time-evolving graph.
One or more embodiments provide a method and system that tracks user roles from <user, activity, time> logs, including initializing the people-role membership, role-activity description based on old logs; inferring the change of people-role membership, without accessing old and/or sensitive portion(s) of the logs; inferring the change of role-activity description, without accessing old and/or sensitive portion(s) of the logs; and updating the new people-role membership, and role-activity description(s).
In some instances, the method infers the change of people-role membership, without accessing old and/or sensitive portion(s) of the logs, by calculating the interaction between the change of people-role membership and the old role-activity description(s); calculating the interaction between the old people-role membership and the change of role-activity description(s); calculating the interaction between the change of people-role membership and the change of role-activity description(s); inferring the strength of the change of people-role membership(s); and adjusting the strength of the change of people-role membership(s) to the feasible regions.
In some cases, the method infers the change of role-activity description, without accessing old and/or sensitive portion(s) of the logs, by calculating the interaction between the change of people-role membership and the old role-activity description; calculating the interaction between the old people-role membership and the change of role-activity description; calculating the interaction between the change of people-role membership and the change of role-activity description; inferring the strength of the change of role-activities description; and adjusting the strength of the change of role-activities description to the feasible regions.
One or more embodiments provide a method and system that tracks user roles from <user, user, time> logs, including initializing the people-role membership based on old logs; inferring the change of people-role membership, without accessing old and/or sensitive portion(s) of the logs; and updating the new people-role membership.
In some instances, the method that infers the change of people-role membership, without accessing old and/or sensitive portion(s) of the logs, includes calculating the interaction between the change of people-role membership and the old people-role membership; inferring the strength of the change of people-role membership; and adjusting the strength of the change of people-role membership to the feasible regions.
In one or more embodiments, given a user-activity log that changes over time, it is desired to monitor the role and/or cluster of the users as well as the description of each role and/or cluster in a privacy-aware manner. The design objective in one or more instances is two-fold, namely: (1) avoiding access of the sensitive portion of the data to protect user privacy; and (2) avoiding storing and processing of the old data to improve space and time efficiency. One or more embodiments provide a method and system that can efficiently track user-profiling over time without accessing the whole data sets. One or more embodiments advantageously consider the correlation among different users; and/or can be employed even when the data is not static.
Again, to reiterate, a significant aspect of one or more embodiments is as follows: instead of minimizing the original objective function, relax it and minimize its upper bound so that it is not necessary to access, store or process the old sensitive data. The advantage, in one or more cases, is two-fold:
One or more embodiments thus provide an evolutionary Nonnegative Matrix Factorization (eNMF) strategy to efficiently perform NMF in the scenario where the data features are evolving over time. One or more embodiments are both storage and computationally efficient as well as privacy friendly. Non-limiting exemplary experimental results on real world time evolving networks are presented to demonstrate the effectiveness of one or more exemplary embodiments.
Given the discussion thus far, and with reference to
Referring to blocks 1206 and 1208 in
An even further step includes updating the role membership of the entities and the role activity descriptions, at the given one of the time stamps, based on the updating steps, as per the return arrow from block 1208 to block 1204 in
In some instances, the steps of updating the change in the second nonnegative factor matrix and the change in the first nonnegative factor matrix include use of a projected gradient technique, such as Technique 1 in
As noted above, and referring also to Equation (15), in some instances, the method infers the change of entity-role membership, without accessing old and/or sensitive portion(s) of the logs, by calculating the interaction between the change of entity-role membership and the old role-activity description(s) (ΔFGT term); calculating the interaction between the old entity-role membership and the change of role-activity description(s) (FΔGT term); calculating the interaction between the change of entity-role membership and the change of role-activity description(s) (ΔFΔGT term); inferring the strength of the change of entity-role membership(s) (using all the calculated terms to calculate
from Equation (15)); and adjusting the strength of the change of entity-role membership(s) to the feasible regions (by applying Technique 1 to the gradient calculated using Equation (15)).
As noted above, and referring also to Equation (14), in some cases, the method infers the change of role-activity description, without accessing old and/or sensitive portion(s) of the logs, by calculating the interaction between the change of entity-role membership and the old role-activity description (ΔFGT term); calculating the interaction between the old entity-role membership and the change of role-activity description (FΔGT term); calculating the interaction between the change of entity-role membership and the change of role-activity description (ΔFΔGT terra); inferring the strength of the change of role-activities description (using all the calculated terms to calculate
from Equation (14)); and adjusting the strength of the change of role-activities description to the feasible regions thy applying Technique 1 to the gradient calculated using Equation (14)).
In one or more embodiments, the steps of updating the change in the second nonnegative factor matrix and the change in the first nonnegative factor matrix, and the step of updating the role membership of the entities and the role activity descriptions, are repeated at a plurality of additional time stamps t.
As noted, in at least some instances, embodiments of the invention minimize an upper bound of an objective as opposed to an objective itself. Refer to the right side of the triangle inequality 8(A), which is the upper bound of the left-hand side, in connection with Technique 2.
Given the discussion thus far, and with reference to
In some instances, the step of updating the change in the nonnegative factor matrix includes use of a projected gradient technique, such as Technique 1 in
As noted above, and referring also to Equation (24), in some cases, the method that infers the change of entity-role membership, without accessing old and/or sensitive portion(s) of the logs, includes calculating the interaction between the change of entity-role membership and the old entity-role membership (GΔGT term); inferring the strength of the change of entity-role member ship (using all the calculated terms to calculate
from Equation (24)); and adjusting the strength of the change of entity-role membership to the feasible regions (by applying Technique 3 using the gradient calculated using Equation (24)).
In one or more embodiments, the step of updating the change in the nonnegative factor matrix and the step of updating the role membership of the entities, are repeated at a plurality of additional time stamps k.
As noted, in at least some instances, embodiments of the invention minimize an upper bound of an objective as opposed to an objective itself. Refer to the right hand side of the triangle inequality (21), which is the upper bound of the left-hand side, in connection with Technique 3.
The exemplary block diagram of
Exemplary System and Article of Manufacture Details
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
One or more embodiments of the invention, or elements thereof can be implemented in the form of an apparatus including a memory and at least one processor that is coupled to the memory and operative to perform exemplary method steps.
One or more embodiments can make use of software running on a general purpose computer or workstation. With reference to
Accordingly, computer software including instructions or code for performing the methodologies of the invention, as described herein, may be stored in one or more of the associated memory devices (for example, ROM, fixed or removable memory) and, when ready to be utilized, loaded in part or in whole (for example, into RAM) and implemented by a CPU. Such software could include, but is not limited to, firmware, resident software, microcode, and the like.
A data processing system suitable for storing and/or executing program code will include at least one processor 1102 coupled directly or indirectly to memory elements 1104 through a system bus 1110. The memory elements can include local memory employed during actual implementation of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during implementation.
Input/output or I/O devices (including but not limited to keyboards 1108, displays 1106, pointing devices, and the like) can be coupled to the system either directly (such as via bus 1110) or through intervening I/O controllers (omitted for clarity).
Network adapters such as network interface 1114 may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.
As used herein, including the claims, a “server” includes a physical data processing system (for example, system 1112 as shown in
As noted, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon. Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. Media block 1118 is a non-limiting example. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RE etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
It should be noted that any of the methods described herein can include an additional step of providing a system comprising distinct software modules embodied on a computer readable storage medium; the modules can include, for example, any or all of the elements depicted in the block diagrams and/or described herein; by way of example and not limitation, an initialization module, an inference module, and an update module. The method steps can then be carried out using the distinct software modules and/or sub-modules of the system, as described above, executing on one or more hardware processors 1102. Further, a computer program product can include a computer-readable storage medium with code adapted to be implemented to carry out one or more method steps described herein, including the provision of the system with the distinct software modules.
In any case, it should be understood that the components illustrated herein may be implemented in various forms of hardware, software, or combinations thereof; for example, application specific integrated circuit(s) (ASICS), functional circuitry, one or more appropriately programmed general purpose digital computers with associated memory, and the like. Given the teachings of the invention provided herein, one of ordinary skill in the related art will be able to contemplate other implementations of the components of the invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the an without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This invention was made with Government support under Contract No.: W911NF-09-2-0053 (Army Research Office (ARO)). The Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6751657 | Zothner | Jun 2004 | B1 |
6907427 | Franz et al. | Jun 2005 | B2 |
7181441 | Mandato | Feb 2007 | B2 |
7213032 | Mascarenhas | May 2007 | B2 |
7243105 | Thint | Jul 2007 | B2 |
7548985 | Guigui | Jun 2009 | B2 |
7594193 | Thomas | Sep 2009 | B2 |
8015003 | Wilson et al. | Sep 2011 | B2 |
8090665 | Yang et al. | Jan 2012 | B2 |
8356086 | Liu et al. | Jan 2013 | B2 |
8498949 | Huh et al. | Jul 2013 | B2 |
8515879 | Huh et al. | Aug 2013 | B2 |
20050188423 | Motsinger et al. | Aug 2005 | A1 |
20060036680 | Shim | Feb 2006 | A1 |
20060073891 | Holt | Apr 2006 | A1 |
20060085419 | Rosen | Apr 2006 | A1 |
20070255736 | Chakrabarti et al. | Nov 2007 | A1 |
20070255737 | Chakrabarti et al. | Nov 2007 | A1 |
20070288465 | Aggarwal et al. | Dec 2007 | A1 |
20080288551 | Van De Sluis | Nov 2008 | A1 |
20080294684 | Chi et al. | Nov 2008 | A1 |
20090182873 | Spalink et al. | Jul 2009 | A1 |
20090271433 | Perronnin et al. | Oct 2009 | A1 |
20100076913 | Yang et al. | Mar 2010 | A1 |
20100094612 | Weerasinghe | Apr 2010 | A1 |
20100169176 | Turakhia | Jul 2010 | A1 |
20100299379 | Das Gupta et al. | Nov 2010 | A1 |
20100313009 | Combet et al. | Dec 2010 | A1 |
20110066730 | Julia et al. | Mar 2011 | A1 |
20120041905 | Huh et al. | Feb 2012 | A1 |
20120041906 | Huh et al. | Feb 2012 | A1 |
Entry |
---|
Lars omlor ad Jean-Jaques Slotine, Continuous Non-Negative Matrix Factorization for Time-Dependent Data, 17th European Signal Processing Conference, published Aug. 24, 2008, pp. 1928-1932. |
Fei Wang et al., Towards Evolutionary NonNegative Matrix Factorization, Proceedings of teh 25th AAAI Conference on Artificial Intelligence, published Aug. 4, 2011. |
Cao et al., Detect and Track Latent Factors with Online Nonnegative Matrix Factorization, IJCAI 2007, published 2007. |
Cao, B.; et al. “Detect and track latent factors with online nonnegative matrix factorization”. IJCAI 2007, 2689-2694. |
Elsner et al.; “Protecting user privacy in WiFi sharing networks”; 2010 IEEE Globecom Workshops (GC'10); 2010; ISBN: 978-1-4244-8863-6; Publisher: IEEE. |
Lee, D. D., and Seung, H. S. “Learning the parts of objects by non-negative matrix factorization”. Nature 401, Oct. 1999, (6755):788-791. |
Anttila, P. “Source identification of bulk wet deposition in finland by positive matrix factorization”. Atmospheric Environment, vol. 29, Issue 14, P1705-1718, 1995. |
Bertsekas, D. P. Nonlinear Programming. Athena Scientific, 2nd edition. 1999. |
Chi, Y.et al, “Evolutionary spectral clustering by incorporating temporal smoothness”. In KDD '07: Proc. of the 12th ACM SIGKDD Inter'l conference on Knowledge discovery 2007. |
Dhillon, I. S., and Sra, S. 2005. Generalized nonnegative matrix approximations with Bregman divergences. In Advances in Neural Information Proc. Systems, 283-290. |
Ding, C.et al. “Orthogonal nonnegative matrix t-factorizations for clustering”. In Proc. of the 12th ACM SIGKDD international conference, 126-135 2006. |
Ding, C.; Li, T.; and Jordan, M. I. “Convex and Semi-Nonnegative Matrix Factorizations”. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1):45-55. 2010. |
Eggert, J., and Korner, E. 2004. Sparse coding and nmf. In Proceedings of IEEE International Joint Conference on Neural Networks, vol. 4, 2529-2533. |
F'evotte, C., and Idier, J. 2010. Algorithms for nonnegative matrix factorization with the beta-divergence. CoRR abs/1010.1763. |
Guillamet, D.et al. “A weighted non-negative matrix factorization for local representations”. In Proceedings of IEEE Computer Society Conference on CVPR, 2001, vol. 1, 942-947. |
Kim, H., et al. “Nonnegative matrix factorization based on alternating . . . ”. SIAM Journal on Matrix Analysis and Applications 30(2): 713-730, 2008. |
Lee, D. D., and Seung, H. S. 2001. Algorithms for Nonnegative Matrix Factorization. In Advances in Neural Information Processing Systems 13, 556-562. MIT Press. |
Lin, C.-J. 2007. Projected Gradient Methods for NonnegativeMatrix Factorization. Neural Comp. 19(10):2756-2779. |
Shahnaz, F.; Berry, M. W.; Pauca; and Plemmons, R. J. 2006. Document clustering using nonnegative matrix factorization. Information Processing & Management 42(2):373-386. |
Wang, F.; Li, T.; Wang, X.; Zhu, S.; and Ding, C. 2010. Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery. |
Wang, F.; Li, P.; and {umlaut over (K)}onig, C. 2011. Efficient document clustering via online nonnegative matrix factorization. In Proceedings of the 11th SIAM Conference on Data Mining. |
D. Achlioptas and F.McSherry. “Fast computation of low-rank matrix approximations”. J. ACM, 54(2), 2007. |
Xiaowei Ying and Xintao Wu. “Randomizing Social Networks: a Spectrum Preserving Approach”. SDM 2008. |
Mark Manulis, et al. “Privacy-Preserving Group Discovery with Linear Complexity”. ACNS 2010. |
Yehuda Lindell, et al. “Privacy Preserving Data Mining”. Advances in Cryptology—Crypto '00 Proceedings. 2000. |
H. Tong, et al. “Colibri: fast mining of large static and dynamic graphs”. In KDD, pp. 686-694, 2008. |
J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. “Less is more: Compact matrix decomposition for large sparse graphs”. In SDM, 2007. |
Number | Date | Country | |
---|---|---|---|
20130036116 A1 | Feb 2013 | US |