This disclosure generally relates to illumination of light modulation devices, and more specifically relates to light guides for providing large area illumination from localized light sources for use in 2D, 3D, and/or autostereoscopic display devices.
Spatially multiplexed autostereoscopic displays typically align a parallax component such as a lenticular screen or parallax barrier with an array of images arranged as at least first and second sets of pixels on a spatial light modulator, for example an LCD. The parallax component directs light from each of the sets of pixels into different respective directions to provide first and second viewing windows in front of the display. An observer with an eye placed in the first viewing window can see a first image with light from the first set of pixels; and with an eye placed in the second viewing window can see a second image, with light from the second set of pixels.
Such displays have reduced spatial resolution compared to the native resolution of the spatial light modulator and further, the structure of the viewing windows is determined by the pixel aperture shape and parallax component imaging function. Gaps between the pixels, for example for electrodes, typically produce non-uniform viewing windows. Undesirably such displays exhibit image flicker as an observer moves laterally with respect to the display and so limit the viewing freedom of the display. Such flicker can be reduced by defocusing the optical elements; however such defocusing results in increased levels of image cross talk and increases visual strain for an observer. Such flicker can be reduced by adjusting the shape of the pixel aperture, however such changes can reduce display brightness and call compromise addressing electronics in the spatial light modulator.
According to the present disclosure, a directional illumination apparatus may include an imaging directional backlight for directing light, an illuminator array for providing light to the imaging directional backlight. The imaging directional backlight may include a waveguide for guiding light. The waveguide may include a first light guiding surface and a second light guiding surface, opposite the first light guiding surface.
Display backlights in general employ waveguides and edge emitting sources. Certain imaging directional backlights have the additional capability of directing the illumination through a display panel into viewing windows. An imaging system may be formed between multiple sources and the respective window images. One example of an imaging directional backlight is an optical valve that may employ a folded optical system and hence may also be an example of a folded imaging directional backlight. Light may propagate substantially without loss in one direction through the optical valve while counter-propagating light may be extracted by reflection off tilted facets as described in U.S. Pat. No. 9,519,153, which is herein incorporated by reference in its entirety.
Directional backlights provide illumination through a waveguide with directions within the waveguide imaged to viewing windows. Diverging light from light sources at the input end and propagating within the waveguide is provided with reduced divergence, and typically collimated, by a curved reflecting mirror at a reflecting end of the waveguide and is imaged towards a viewing window by means of curved light extraction features or a lens such as a Fresnel lens. For the on-axis viewing window, the collimated light is substantially parallel to the edges of a rectangular shaped waveguide and so light is output across the entire area of the waveguide towards the viewing window. For off-axis positions, the direction of the collimated light is not parallel to the edges of a rectangular waveguide but is inclined at a non-zero angle. Thus a non-illuminated (or void) outer portion (that may be triangular in shape) is formed between one edge of the collimated beam and the respective edge of the waveguide. No light is directed to the respective viewing window from within the outer portion and the display will appear dark in this region. It would be desirable to reduce the appearance of the dark outer portions for off-axis viewing positions so that more of the area of the waveguide can be used to illuminate a spatial light modulator, advantageously reducing system size and cost.
In general with this and related imaging directional backlight systems, not all the backlight area may be useable due to vignetting at high angles. Modification of the system may overcome this limitation by introducing light into regions that are void. Such modified illumination apparatus embodiments may lead to increased brightness, local independent illumination and directional capabilities.
According to a first aspect of the present disclosure there may be provided a display device comprising: a directional backlight arranged to output light wherein the directional backlight is arranged to provide switching between at least two different angular luminance profiles; a transmissive spatial light modulator arranged to receive output light from the backlight; wherein the spatial light modulator is arranged to modulate the output light from the backlight to provide an image that may be switched between at least two different angular contrast profiles.
Advantageously a privacy display may be provided that has increased invisibility to an off-axis snooper in comparison to a privacy display comprising only a directional backlight or only a restricted contrast viewing angle.
The spatial light modulator may be a liquid crystal display comprising a liquid crystal material. The liquid crystal display may comprise addressing electrodes that arc controlled to provide in-plane and out-of-plane electric field profiles; wherein the electric field profiles may be arranged to control director orientation of the liquid crystal material to achieve controllable pixel transmission; further comprising at least one bias electrode; wherein the bias electrode may be arranged to further control director orientation of the liquid crystal material to achieve switchable angular contrast profiles.
Advantageously a wide angle mode may be provided with high contrast at off-axis viewing positions, and a switchable privacy mode may be provided with increased invisibility of images for an off-axis snooper by means of image contrast reduction.
The directional backlight may comprises: an array of light sources; a waveguide arranged to receive input light from the light sources at different input positions and comprising first and second, opposed guide surfaces for guiding the input light along the waveguide, sides that extend between the first and second guide surfaces and a reflective end for reflecting the input light back along the waveguide, wherein the second guide surface is arranged to deflect the reflected input light through the first guide surface as output light, and the waveguide is arranged to image the light sources in a lateral direction between the sides of the waveguide so that the output light from the light sources is directed into respective optical windows in output directions that are distributed in dependence on input positions of the light sources. The first guide surface may be arranged to guide light by total internal reflection, and the second guide surface comprises light extraction features and intermediate regions between the light extraction features, the light extraction features being oriented to deflect the reflected input light through the first guide surface as output light and the intermediate regions being arranged to direct light through the waveguide without extracting it. The light extraction features may be curved and have positive optical power in the lateral direction between sides of the waveguide that extend between the first and second guide surfaces. The reflective end may have positive optical power in the lateral direction extending between sides of the waveguide that extend between the first and second guide surfaces. The waveguide may comprise an input end opposite to the reflective end and the light sources are arranged to input light into the waveguide through the input end. The light sources may be arranged to input light into the waveguide through the sides of the waveguide.
Advantageously a directional backlight may be provided that may be arranged to achieve switching between at least first and second angular luminance profiles by means of control of profile of light emitting elements.
The spatial light modulator may comprise a pixelated liquid crystal display comprising a liquid crystal pixel layer and pixel addressing electrodes arranged to provide in-plane electric fields to pixels of the pixelated liquid crystal display. The pixelated liquid crystal display may further comprise pixel bias electrodes arranged to provide out-of-plane bias electric fields to the liquid crystal pixel layer. The spatial light modulator may further comprise a liquid crystal bias layer arranged between the input polariser and output polariser of the pixelated liquid crystal display; and bias layer electrodes arranged to provide out-of-plane bias electric fields to the liquid crystal bias layer. Advantageously contrast of the display may vary with viewing angle.
The bias electric fields may be time varying. Advantageously the size of the polar region for which reduced contrast is achieved may be increased.
The bias layer electrodes may be patterned to provide at least two pattern regions. The pattern regions may be camouflage patterns. At least one of the pattern regions may be individually addressable. Advantageously a snooper may see a camouflaged image for off-axis viewing while a primary observer may see an image without camouflage.
The angular luminance profiles from the directional backlight may be controlled in the lateral direction; and the angular contrast profiles from the spatial light modulator may be controlled in the lateral direction. The angular luminance profiles from the directional backlight may be controlled in the lateral direction; and the out of plane bias electric fields may be arranged to tilt the respective liquid crystal layer about an axis parallel to the lateral direction.
Advantageously a switchable privacy mode display may be provided that has comfortable viewing freedom in the vertical direction for a primary observer and has increased image invisibility for an off-axis observer in the lateral (azimuthal) direction.
The privacy display may further comprise at least one additional polariser arranged on the input side of the input polariser between the input polariser and the backlight or on the output side of the output polariser; and at least one retarder arranged between the at least one additional polariser and the input polariser in the case that the additional polariser is arranged on the input side of the input polariser or between the additional polariser and the output polariser in the case that the additional polariser is arranged on the output side of the input polariser.
The additional polariser may be arranged on the input side of the input polariser and said at least one retarder is arranged between the additional polariser and the input polariser. The additional polariser may be a reflective polariser. The additional polariser may have an electric vector transmission direction that is parallel to the electric vector transmission of the input polariser in the case that the additional polariser is arranged on the input side of the input polariser or is parallel to the electric vector transmission of the output polariser in the case that the additional polariser is arranged on the output side of the input polariser. The additional polariser may be arranged on the output side of the output polariser and said at least one retarder is arranged between the additional polariser and the output polariser.
The at least one retarder may comprise a pair of retarders which have slow axes in the plane of the retarders that are crossed. The pair of retarders may have slow axes that each extend at 45° with respect to an electric vector transmission direction that is parallel to the electric vector transmission of the input polariser in the case that the additional polariser is arranged on the input side of the input polariser or is parallel to the electric vector transmission of the output polariser in the case that the additional polariser is arranged on the output side of the input polariser. The pair of retarders may each comprise a single A-plate. The pair of retarders may each comprise plural A-plates having respective slow axes aligned at different angles from each other. The at least one retarder may comprise a retarder having a slow axis perpendicular to the plane of the retarder. The retarder may have a slow axis perpendicular to the plane of the retarder comprises a C-plate. The at least one retarder may further comprise a pair of retarders which have slow axes in the plane of the retarders that are crossed. The pair of retarders have slow axes that each extend at 0° and 90°, respectively, with respect to an electric vector transmission direction that is parallel to the electric vector transmission of the input polariser in the case that the additional polariser is arranged on the input side of the input polariser or is parallel to the electric vector transmission of the output polariser in the case that the additional polariser is arranged on the output side of the input polariser.
The at least one retarder may comprise a retarder having a slow axis orientation with a component perpendicular to the plane of the retarder, and at least one component in the plane of the retarder.
The at least one retarder may comprise a retarder having a slow axis orientation with a component perpendicular to the plane of the retarder, a component that is orthogonal in the plane of the retarder to the electric vector transmission direction of the input polariser and substantially no component that is parallel in the plane of the retarder to the electric vector transmission direction of the input polariser.
The at least one retarder may comprise a retarder having a slow axis orientation with a component perpendicular to the plane of the retarder, a component that is parallel in the plane of the retarder to the electric vector transmission direction of the input polariser and substantially no component that is orthogonal in the plane of the retarder to the electric vector transmission direction of the input polariser. The at least one retarder may comprise an O-plate. The at least one retarder may comprise a switchable liquid crystal retarder that is switchable between an O-plate retarder and an A-plate retarder by means of an applied voltage across the switchable liquid crystal retarder. The switchable liquid crystal retarder may comprise at least one homeotropic alignment layer.
The privacy display device may further comprising at least one compensation retarder arranged between the at least one additional polariser and the input polariser in the case that the additional polariser is arranged on the input side of the input polariser or between the additional polariser and the output polariser in the case that the additional polariser is arranged on the output side of the input polariser. The compensating retarder may comprise a negative C-plate or crossed positive A-plates.
The switchable liquid crystal retarder may comprise at least first and second regions that are independently addressable with first and second applied voltages. The at least one retarder may comprise a first O-plate retarder and a second O-plate retarder that is switchable.
Advantageously off-axis luminance of the privacy display may be reduced for a snooper in a privacy mode of operation while providing high head-on luminance to a primary observer. Perceived dynamic range of privacy images may be reduced in ambient illumination. Further the off-axis luminance may cooperate with off-axis contrast reduction to provide further reduction of perceived dynamic range to a snooper. Wide angle luminance and contrast may be substantially unmodified. Further camouflage may be provided in at least one of luminance and contrast appearance for an off-axis snooper with low visibility of camouflage for an on-axis observer.
According to a second aspect of the present disclosure there may be provided a display system comprising the display device according to the first aspect and a control system arranged to switch the directional backlight between a first mode arranged to switch the directional backlight to a first angular luminance profile and to switch the spatial light modulator to a first angular contrast profile; and a second mode arranged to switch the directional backlight to a second angular luminance profile and to switch the spatial light modulator to a second angular contrast profile wherein the angular profiles of the first mode have half maximum widths that are larger than the half maximum widths of the angular profiles of the second mode.
Advantageously a privacy display may be provided that has increased invisibility to an off-axis snooper in comparison to a privacy display comprising only a directional backlight or only a restricted contrast viewing angle and may be switched to a wide angle mode.
The switching between the at least first and second angular luminance profiles may be provided by control of luminous flux distributions across the array of input light sources. The switching between the at least first and second angular contrast profiles is provided by control of a bias electric field across the pixels of the spatial light modulator.
Advantageously the switching of the optical system may be provided by electrical control.
In the second mode for a nominal viewing angle there is provided an invisibility function of image contrast against image luminance on which an operating point is selected by control of (i) angular luminance profile and (ii) angular contrast profile.
Advantageously the uniformity of the image appearance for the primary user may be controlled in cooperation with the desired image invisibility for off-axis snoopers.
The display system may further comprise an ambient light control system arranged to control the invisibility function in response to the ambient illuminance. The ambient light control system may comprise an ambient light sensor.
Advantageously the uniformity of the image for the primary user may be adjusted to achieve equivalent image invisibility for snoopers in dependence on the ambient illuminance environment.
According to a third aspect of the present disclosure there may be provided a switchable directional display, comprising: a light valve comprising a first end at which light may enter the light valve and propagate in a first direction; a second end comprising a reflective surface arranged to redirect light propagating in said first direction to propagate in a second direction back toward the first end, wherein the second end is a curved reflective surface, or a Fresnel equivalent of a curved reflective surface: a first light guiding surface extending between the first and second ends, wherein the first light guiding surface is substantially planar; and a second light guiding surface, extending between the first and second ends opposite the first light guiding surface, further comprising a plurality of guiding features and a plurality of extraction features that have a cross-sectional profile and are curved along the direction in which they are elongated, wherein the extraction features and the guiding features are connected to and alternate with one another respectively, further wherein the plurality of extraction features allow light to pass with substantially low loss when the light is propagating in a first direction and allow light to reflect and exit the light valve when the light is propagating in a second direction, wherein a degree of curvature of the extraction features along the direction in which the extraction features are elongated causes the light from a plurality of illumination elements to be focused, whereby the curvature of the extraction features and the curvature of the reflective end cooperate to direct focused light into respective viewing windows; and a polymer dispersed liquid crystal between two transparent substrates, wherein each of the transparent substrates further comprises at least one transparent conductive electrode for applying a voltage across the polymer dispersed liquid crystal wherein the polymer dispersed liquid crystal is switchable between a light scattering state and a clear state by means of the applied voltage; and a spatial light modulator.
Advantageously the light source array control system may have a fixed luminous flux distribution, reducing cost and complexity. Further off-axis positions on the input side of the waveguide may comprise absorbing areas, advantageously achieving reduced off-axis privacy.
Any of the aspects of the present disclosure may be applied in any combination.
Embodiments herein may provide an autostereoscopic display that provides wide angle viewing which may allow for directional viewing and conventional 2D compatibility. The wide angle viewing mode may be for observer tracked autostereoscopic 3D display, observer tracked 2D display (for example for privacy or power saving applications), for wide viewing angle 2D display or for wide viewing angle stereoscopic 3D display. Further, embodiments may provide a controlled illuminator for the purposes of an efficient autostereoscopic display. Such components can be used in directional backlights, to provide directional displays including autostereoscopic displays. Additionally, embodiments may relate to a directional backlight apparatus and a directional display which may incorporate the directional backlight apparatus. Such an apparatus may be used for autostereoscopic displays, privacy displays, multi-user displays and other directional display applications that may achieve for example power savings operation and/or high luminance operation.
Embodiments herein may provide an autostereoscopic display with large area and thin structure. Further, as will be described, the optical valves of the present disclosure may achieve thin optical components with large back working distances. Such components can be used in directional backlights, to provide directional displays including autostereoscopic displays. Further, embodiments may provide a controlled illuminator for the purposes of an efficient autostereoscopic display.
Embodiments of the present disclosure may be used in a variety of optical systems. The embodiment may include or work with a variety of projectors, projection systems, optical components, displays, microdisplays, computer systems, processors, self-contained projector systems, visual and/or audiovisual systems and electrical and/or optical devices. Aspects of the present disclosure may be used with practically any apparatus related to optical and electrical devices, optical systems, presentation systems or any apparatus that may contain any type of optical system. Accordingly, embodiments of the present disclosure may be employed in optical systems, devices used in visual and/or optical presentations, visual peripherals and so on and in a number of computing environments.
Before proceeding to the disclosed embodiments in detail, it should be understood that the disclosure is not limited in its application or creation to the details of the particular arrangements shown, because the disclosure is capable of other embodiments. Moreover, aspects of the disclosure may be set forth in different combinations and arrangements to define embodiments unique in their own right. Also, the terminology used herein is for the purpose of description and not of limitation.
Directional backlights offer control over the illumination emanating from substantially the entire output surface controlled typically through modulation of independent LED light sources arranged at the input aperture side of an optical waveguide. Controlling the emitted light directional distribution can achieve single person viewing for a security function, where the display can only be seen by a single viewer from a limited range of angles; high electrical efficiency, where illumination is primarily provided over a small angular directional distribution; alternating left and right eye viewing for time sequential stereoscopic and autostereoscopic display; and low cost.
These and other advantages and features of the present disclosure will become apparent to those of ordinary skill in the art upon reading; this disclosure in its entirety.
Embodiments are illustrated by way of example in the accompanying FIGURES, in which like reference numbers indicate similar parts, and in which:
Time multiplexed autostereoscopic displays can advantageously improve the spatial resolution of autostereoscopic display by directing light from all of the pixels of a spatial light modulator to a first viewing window in a first time slot, and all of the pixels to a second viewing window in a second time slot. Thus an observer with eyes arranged to receive light in first and second viewing windows will see a full resolution image across the whole of the display over multiple time slots. Time multiplexed displays can advantageously achieve directional illumination by directing an illuminator array through a substantially transparent time multiplexed spatial light modulator using directional optical elements, wherein the directional optical elements substantially form an image of the illuminator array in the window plane.
The uniformity of the viewing windows may be advantageously independent of the arrangement of pixels in the spatial light modulator. Advantageously, such displays can provide observer tracking displays which have low flicker, with low levels of cross talk for a moving observer.
To achieve high uniformity in the window plane, it is desirable to provide an array of illumination elements that have a high spatial uniformity. The illuminator elements of the time sequential illumination system may be provided, for example, by pixels of a spatial light modulator with size approximately 100 micrometers in combination with a lens array. However, such pixels suffer from similar difficulties as for spatially multiplexed displays. Further, such devices may have low efficiency and higher cost, requiring additional display components.
High window plane uniformity can be conveniently achieved with macroscopic illuminators, for example, an array of LEDs in combination with homogenizing and diffusing optical elements that are typically of size 1 mm or greater. However, the increased size of the illuminator elements means that the size of the directional optical elements increases proportionately. For example, a 16 mm wide illuminator imaged to a 65 mm wide viewing window may require a 200 mm back working distance. Thus, the increased thickness of the optical elements can prevent useful application, for example, to mobile displays, or large area displays.
Addressing the aforementioned shortcomings, optical valves as described in commonly-owned U.S. Pat. No. 9,519,153 advantageously can be arranged in combination with fast switching transmissive spatial light modulators to achieve time multiplexed autostereoscopic illumination in a thin package while providing high resolution images with flicker free observer tracking and low levels of cross talk. Described is a one dimensional array of viewing positions, or windows, that can display different images in a first, typically horizontal, direction, but contain the same images when moving in a second, typically vertical, direction.
Conventional non-imaging display backlights commonly employ optical waveguides and have edge illumination from light sources such as LEDs. However, it should be appreciated that there are many fundamental differences in the function, design, structure, and operation between such conventional non-imaging display backlights and the imaging directional backlights discussed in the present disclosure.
Generally, for example, in accordance with the present disclosure, imaging directional backlights are arranged to direct the illumination from multiple light sources through a display panel to respective multiple viewing windows in at least one axis. Each viewing window is substantially formed as an image in at least one axis of a light source by the imaging system of the imaging directional backlight. An imaging system may be formed between multiple light sources and the respective window images. In this manner, the light from each of the multiple light sources is substantially not visible for an observer's eye outside of the respective viewing window.
In contradistinction, conventional non-imaging backlights or light guiding plates (LGPs) are used for illumination of 2D displays. See, e.g., Kälil Käläntär et al., Backlight Unit With Double Surface Light Emission, J. Soc. Inf. Display, Vol. 12, Issue 4, pp. 379-387 (December 2004). Non-imaging backlights are typically arranged to direct the illumination from multiple light sources through a display panel into a substantially common viewing zone for each of the multiple light sources to achieve wide viewing angle and high display uniformity. Thus non-imaging backlights do not form viewing windows. In this manner, the light from each of the multiple light sources may be visible for an observer's eye at substantially all positions across the viewing zone. Such conventional non-imaging backlights may have some directionality, for example, to increase screen gain compared to Lambertian illumination, which may be provided by brightness enhancement films such as BEF™ from 3M. However, such directionality may be substantially the same for each of the respective light sources. Thus, for these reasons and others that should be apparent to persons of ordinary skill, conventional non-imaging backlights are different to imaging directional backlights. Edge lit non-imaging backlight illumination structures may be used in liquid crystal display systems such as those seen in 2D Laptops, Monitors and TVs. Light propagates from the edge of a lossy waveguide which may include sparse features; typically local indentations in the surface of the guide which cause light to be lost regardless of the propagation direction of the light.
As used herein, an optical valve is an optical structure that may be a type of light guiding structure or device referred to as, for example, a light valve, an optical valve directional backlight, and a valve directional backlight (“v-DBL”). In the present disclosure, optical valve is different to a spatial light modulator (even though spatial light modulators may be sometimes generally referred to as a “light valve” in the art). One example of an imaging directional backlight is an optical valve that may employ a folded optical system. Light may propagate substantially without loss in one direction through the optical valve, may be incident on an imaging reflector, and may counter-propagate such that the light may be extracted by reflection off tilted light extraction features, and directed to viewing windows as described in U.S. Pat. No. 9,519,153, which is herein incorporated by reference in its entirety.
Additionally, as used herein, a stepped waveguide imaging directional backlight may be at least one of an optical valve. A stepped waveguide is a waveguide for an imaging directional backlight comprising a waveguide for guiding light, further comprising: a first light guiding surface; and a second light guiding surface, opposite the first light guiding surface, further comprising a plurality of light guiding features interspersed with a plurality of extraction features arranged as steps.
In operation, light may propagate within an exemplary optical valve in a first direction from an input surface to a reflective side and may be transmitted substantially without loss. Light may be reflected at the reflective side and propagates in a second direction substantially opposite the first direction. As the light propagates in the second direction, the light may be incident on light extraction features, which are operable to redirect the light outside the optical valve. Stated differently, the optical valve generally allows light to propagate in the first direction and may allow light to be extracted while propagating in the second direction.
The optical valve may achieve time sequential directional illumination of large display areas. Additionally, optical elements may be employed that are thinner than the back working distance of the optical elements to direct light from macroscopic illuminators to a window plane. Such displays may use an array of light extraction features arranged to extract light counter propagating in a substantially parallel waveguide.
Thin imaging directional backlight implementations for use with LCDs have been proposed and demonstrated by 3M, for example U.S. Pat. No. 7,528,893; by Microsoft, for example U.S. Pat. No. 7,970,246 which may be referred to herein as a “wedge type directional backlight;” by RealD, for example U.S. Pat. No. 9,519,153 which may be referred to herein as an “optical valve” or “optical valve directional backlight,” all of which are herein incorporated by reference in their entirety.
Switchable angular contrast profile liquid crystal displays are described in Japanese Patent Publ. No. JPH1130783 and in U.S. Patent Publ. No. 2017-0123241, both of which are incorporated by reference herein in their entireties.
The present disclosure provides stepped waveguide imaging directional backlights in which light may reflect back and forth between the internal faces of, for example, a stepped waveguide which may include a first side and a first set of features. As the light travels along the length of the stepped waveguide, the light may not substantially change angle of incidence with respect to the first side and first set of surfaces and so may not reach the critical angle of the medium at these internal faces. Light extraction may be advantageously achieved by a second set of surfaces (the step “risers”) that are inclined to the first set of surfaces (the step “treads”). Note that the second set of surfaces may not be part of the light guiding operation of the stepped waveguide, but may be arranged to provide light extraction from the structure. By contrast, a wedge type imaging directional backlight may allow light to guide within a wedge profiled waveguide having continuous internal surfaces. The optical valve is thus not a wedge type imaging directional backlight.
Further, in
The waveguide 1 has first and second, opposed guide surfaces extending between the input end 2 and the reflective end 4 for guiding light forwards and back along the waveguide 1. The second guide surface has a plurality of light extraction features 12 facing the reflective end 4 and arranged to reflect at least some of the light guided hack through the waveguide 1 from the reflective end from different input positions across the input end in different directions through the first guide surface that are dependent on the input position.
In this example, the light extraction features 12 are reflective facets, although other reflective features could be used. The light extraction features 12 do not guide light through the waveguide, whereas the intermediate regions of the second guide surface intermediate the light extraction features 12 guide light without extracting it. Those regions of the second guide surface are planar and may extend parallel to the first guide surface, or at a relatively low inclination. The light extraction features 12 extend laterally to those regions so that the second guide surface has a stepped shape winch may include the light extraction features 12 and intermediate regions. The light extraction features 12 are oriented to reflect light from the light sources, after reflection from the reflective end 4, through the first guide surface.
The light extraction features 12 are arranged to direct input light from different input positions in the lateral direction across the input end in different directions relative to the first guide surface that are dependent on the input position. As the illumination elements 15a-15n are arranged at different input positions, the light from respective illumination elements 15a-15n is reflected in those different directions. In this manner, each of the illumination elements 15a-15n directs light into a respective optical window in output directions distributed in the lateral direction in dependence on the input positions. The lateral direction across the input end 2 in which the input positions are distributed corresponds with regard to the output light to a lateral direction to the normal to the first guide surface. The lateral directions as defined at the input end 2 and with regard to the output light remain parallel in this embodiment where the deflections at the reflective end 4 and the first guide surface are generally orthogonal to the lateral direction. Under the control of a control system, the illuminator elements 15a-15n may be selectively operated to direct light into a selectable optical window. The optical windows may be used individually or in groups as viewing windows.
The SLM 48 extends across the waveguide and modulates the light output therefrom. Although the SLM 48 may a liquid crystal display (LCD), this is merely by way of example and other spatial light modulators or displays may be used including LCOS, DLP devices, and so forth, as this illuminator may work in reflection. In this example, the SLM 48 is disposed across the first guide surface of the waveguide and modulates the light output through the first guide surface after reflection from the light extraction features 12.
The operation of a directional display device that may provide a one dimensional array of viewing windows is illustrated in front view in
Continuing the discussion of
In some embodiments with uncoated extraction features 12, reflection may be reduced when total internal reflection (TIR) fails, squeezing the xz angular profile and shifting off normal. However, in other embodiments having silver coated or metallized extraction features, the increased angular spread and central normal direction may be preserved. Continuing the description of the embodiment with silver coated extraction features, in the xz plane, light may exit the stepped waveguide 1 approximately collimated and may be directed off normal in proportion to the y-position of the respective illuminator element 15a-15n in illuminator array 15 from the input edge center. Having independent illuminator elements 15a-15n along the input edge 2 then enables light to exit from the entire first light directing side 6 and propagate at different external angles, as illustrated in
Illuminating a spatial light modulator (SLM) 48 such as a fast liquid crystal display (LCD) panel with such a device may achieve autostereoscopic 3D as shown in top view or yz-plane viewed from the illuminator array 15 end in
The reflective end 4 may have positive optical power in the lateral direction across the waveguide 1. In other words, the reflective end may have positive optical power in a direction extending between sides of the waveguide that extend between the first and second guide surfaces and between the input end and the reflective end. The light extraction features 12 may have positive optical power in a direction between sides of the waveguide that extend between the first and second guide surfaces 6, 8 and between the input end 2 and the reflective end.
The waveguide 1 may further comprising a reflective end 4 for reflecting input light from the light sources back along the waveguide 1, the second guide surface 8 being arranged to deflect the reflected input light through the first guide surface 6 as output light, and the waveguide 1 being arranged to image the light sources 15a-n so that the output light from the light sources is directed into respective optical windows 26a-n in output directions that are distributed laterally in dependence on the input positions of the light sources.
In embodiments in which typically the reflective end 4 has positive optical power, the optical axis may be defined with reference to the shape of the reflective end 4, for example being a line that passes through the center of curvature of the reflective end 4 and coincides with the axis of reflective symmetry of the end 4 about the x-axis. In the case that the reflecting surface 4 is flat, the optical axis may be similarly defined with respect to other components having optical power, for example the light extraction features 12 if they are curved, or the Fresnel lens 62 described below. The optical axis 238 is typically coincident with the mechanical axis of the waveguide 1. In the present embodiments that typically comprise a substantially cylindrical reflecting surface at end 4, the optical axis 238 is a hive that passes through the center of curvature of the surface at end 4 and coincides with the axis of reflective symmetry of the side 4 about the x-axis. The optical axis 238 is typically coincident with the mechanical axis of the waveguide 1. The cylindrical reflecting surface at end 4 may typically comprise a spherical profile to optimize performance for on-axis and off-axis viewing positions. Other profiles may be used.
Continuing the discussion of
Advantageously, the arrangement illustrated in
A further wedge type directional backlight is generally discussed by U.S. Pat. No. 7,660,047 which is herein incorporated by reference in its entirety. The wedge type directional backlight and optical valve further process light beams in different ways. In the wedge type waveguide, light input at an appropriate angle will output at a defined position on a major surface, but light rays will exit at substantially the same angle and substantially parallel to the major surface. By comparison, light input to a stepped waveguide of an optical valve at a certain angle may output from points across the first side, with output angle determined by input angle. Advantageously, the stepped waveguide of the optical valve may not require further light re-direction films to extract light towards an observer and angular non-uniformities of input may not provide non-uniformities across the display surface.
There will now be described some waveguides, directional backlights and directional display devices that are based on and incorporate the structures of
The reflective end 4 converges the reflected light. Fresnel lens 62 may be arranged to cooperate with reflective end 4 to achieve viewing windows at a viewing plane. Transmissive spatial light modulator 48 may be arranged to receive the light from the directional backlight. The image displayed on the SLM 48 may be presented in synchronization with the illumination of the light sources of the array 15.
The control system may comprise a sensor system arranged to detect the position of the observer 99 relative to the display device 100. The sensor system comprises a position sensor 406, such as a camera arranged to determine the position of an observer 408; and a head position measurement system 404 that may for example comprise a computer vision image processing system. The position sensor 406 may comprise known sensors including those comprising cameras and image processing units arranged to detect the position of observer faces. Position sensor 406 may further comprise a stereo sensor arranged to improve the measure of longitudinal position compared to a monoscopic camera. Alternatively position sensor 406 may comprise measurement of eye spacing to give a measure of required placement of respective arrays of viewing windows from tiles of the directional display.
The control system may further comprise an illumination controller and an image controller 403 that are both supplied with the detected position of the observer supplied from the head position measurement system 404.
The illumination controller comprises an LED controller 402 arranged to determine which light sources of array 15 should be switched to direct light to respective eyes of observer 408 in cooperation with waveguide 1; and an LED driver 400 arranged to control the operation of light sources of light source array 15 by means of drive lines 407. The illumination controller 74 selects the illuminator elements 15 to be operated in dependence on the position of the observer detected by the head position measurement system 72, so that the viewing windows 26 into which light is directed are in positions corresponding to the left and right eyes of the observer 99. In this manner, the lateral output directionality of the waveguide 1 corresponds with the observer position.
The image controller 403 is arranged to control the SLM 48 to display images. To provide an autostereoscopic display, the image controller 403 and the illumination controller may operate as follows. The image controller 403 controls the SLM 48 to display temporally multiplexed left and right eye images and the LED controller 402 operates the light sources 15 to direct light into viewing windows in positions corresponding to the left and right eyes of an observer synchronously with the display of left and right eye images. In this manner, an autostereoscopic effect is achieved using a time division multiplexing technique. In one example, a single viewing window may be illuminated by operation of light source 409 (which may comprise one or more LEDs) by means of drive line 410 wherein other drive lines are not driven as described elsewhere.
The head position measurement system 404 detects the position of an observer relative to the display device 100. The LED controller 402 selects the light sources 15 to be operated in dependence on the position of the observer detected by the head position measurement system 404, so that the viewing windows into which light is directed are in positions corresponding to the left and right eyes of the observer. In this manner, the output directionality of the waveguide 1 may be achieved to correspond with the viewer position so that a first image may be directed to the observer's right eye in a first phase and directed to the observer's left eye in a second phase.
Thus a directional display apparatus may comprise a directional display device and a control system arranged to control the light sources 15a-n.
Reflective end 4 may be provided by a Fresnel mirror. Further taper region 204 may be arranged at the input to the waveguide 1 to increase input coupling efficiency from the light sources 15a-15n of the array of illuminator elements 15 and to increase illumination uniformity. Shading layer 206 with aperture 203 may be arranged to hide light scattering regions at the edge of the waveguide 1. Rear reflector 300 may comprise facets 302 that are curved and arranged to provide viewing windows from groups of optical windows provided by imaging light sources of the array 15 to the window plane. An optical stack 208 may comprise reflective polarizers, retarder layers and diffusers. Rear reflectors 300 and optical stack 208 are described further in U.S. Pat. No. 10,054,732 incorporated herein by reference in its entirety.
Spatial light modulator 48 may comprise a liquid crystal display that may comprise an input polarizer 210, TFT glass substrate 212, liquid crystal layer 214, color filter glass substrate 216 and output polarizer 218. Red pixels 220, green pixels 222 and blue pixels 224 may be arranged in an array at the liquid crystal layer 214. White, yellow, additional green or other color pixels (not shown) may be further arranged in the liquid crystal layer to increase transmission efficiency, color gamut or perceived image resolution.
A directional backlight thus comprises a first guide surface 6 arranged to guide light by total internal reflection and the second guide surface 8 comprising a plurality of light extraction features 12 oriented to direct light guided along the waveguide 1, 301 in directions allowing exit through the first guide surface 6 as the output light and intermediate regions 10 between the light extraction features 12 that are arranged to guide light along the waveguide 1, 301.
Considering the arrangements of
Thus all sides 2, 4, 6, 8, 22, 24 provide reflections to achieve uniform illumination and low cross talk in privacy mode of operation. If features are applied to many areas of the surface then non-uniformities may be provided due to the spatial location of the waveguide extraction loss at the features.
Thus a directional display device may comprise a waveguide wherein the input surface 322 is a surface of a side of the waveguide 1 extending away from the reflective end 304.
Various terms related to retardation components of liquid crystal displays will now be described.
In the present embodiments, slow axis typically refers to the orientation orthogonal to the normal direction in which linearly polarized light has an electric vector direction parallel to the slow axis travels at the slowest speed. The slow axis direction is the direction of this light with the highest refractive index at the design wavelength.
For positive dielectric anisotropy uniaxial birefringent materials the slow axis direction is the extraordinary axis of the birefringent material. The ordinary axes in such materials are typically parallel to the normal direction, and orthogonal to the normal direction and the slow axis.
The terms half a wavelength and quarter a wavelength refer to the operation of a retarder for a design wavelength λ0 that may typically be between 500 nm and 570 nm. The retarder provides a phase shift between two perpendicular polarization components of the light wave incident thereon and is characterized by the amount of relative phase, Γ, that it imparts on the two polarization components; which is related to the birefringence Δn and the thickness d of the retarder by
Γ=2·π·Δn·d/λ0 eqn. 1
where Δn is defined as the difference between the extraordinary and the ordinary index of refraction, i.e.
Δn=ne−no eqn. 2
For a half wave retarder, the relationship between d, Δn, and λ0 is chosen so that the phase shift between polarization components is Γ=π. For a quarter wave retarder, the relationship between d, Δn, and λ0 is chosen so that the phase shift between polarization components is Γ=π/2.
The term half wave retarder herein typically refers to light propagating normal to the retarder and normal to the spatial light modulator.
In the present disclosure an ‘A-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis parallel to the plane of the layer. The plane of the retarders refers to the slow axis of the retarders extend in a plane, that is the x-y plane.
A positive A-plate refers to positively birefringent A-plates, i.e. A-plates with a positive Δn.
In the present disclosure a ‘C-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis perpendicular to the plane of the layer. A ‘positive C-plate’ refers to positively birefringent C-plates, i.e. C-plates with a positive Δn.
In the present disclosure an ‘O-plate’ refers to an optical retarder utilizing a layer of birefringent material with its optical axis having a component parallel to the plane of the layer and a component perpendicular to the plane of the layer. A ‘positive O-plate’ refers to positively birefringent O-plates, i.e. O-plates with a positive Δn.
Achromatic retarders may be provided wherein the material of the retarder is provided with an optical thickness Δn·d that varies with wavelength λ as
Δn·d/λ=k eqn. 3
where k is substantially a constant. Examples of suitable materials include modified polycarbonates from Teijin Films. Achromatic retarders may be provided in the present embodiments to advantageously minimise colour changes between polar angular viewing directions which have low luminance reduction and polar angular viewing directions which have increased luminance reductions as will be described below.
Various other terms used in the present disclosure related to retarders and to liquid crystals will now be described.
Homogeneous alignment refers to the alignment of liquid crystals in a switchable liquid crystal displays where molecules align substantially parallel to a substrate. Homogeneous alignment is sometimes referred to as planar alignment. Homogeneous alignment may typically be provided with a small pre-tilt such as 2 degrees, so that the molecules at the surfaces of the alignment layers of the liquid crystal cell are slightly inclined as will be described below. Pretilt is arranged to minimise degeneracies in switching of cells.
In the present disclosure, homeotropic alignment is the state in which a rod-like liquid crystalline molecules aligns substantially perpendicularly to the substrate. In discotic liquid crystals homeotropic alignment is defined as the state in which an axis of the column structure, which is formed by disc-like liquid crystalline molecules, aligns perpendicularly to a surface. In homeotropic alignment, pretilt is the tilt angle of the molecules that are close to the alignment layer and is typically close to 90 degrees and for example may be 88 degrees.
Liquid crystal molecules with positive dielectric anisotropy are switched from a homogeneous alignment (such as an A-plate retarder orientation) to a homeotropic alignment (such as a C-plate or O-plate retarder orientation) by means of an applied electric field.
Liquid crystal molecules with negative dielectric anisotropy are switched from a homeotropic alignment (such as a C-plate or O-plate retarder orientation) to a homogeneous alignment (such as an A-plate retarder orientation) by means of an applied electric field.
Rod like molecules have a positive birefringence so that ne>no as described in equation 2. Discotic molecules have negative birefringence so that ne<no.
Positive retarders such as A-plates, positive O-plates and positive C-plates may typically be provided by stretched films or rod like liquid crystal molecules. Negative retarders such as negative C-plates may be provided by stretched films or discotic like liquid crystal molecules.
Parallel liquid crystal cell alignment refers to the alignment direction of homogeneous alignment layers being parallel or more typically antiparallel. In the case of pretilted homeotropic alignment, the alignment layers may have components that are substantially parallel or antiparallel. Hybrid aligned liquid crystal cells may have one homogeneous alignment layer and one homeotropic alignment layer. Twisted liquid crystal cells may be provided by alignment layers that do not have parallel alignment, for example oriented at 90 degrees to each other.
Crossed A-plates, C-plates and O-plates are known retarder elements for use in LCD to compensate for contrast degradations for off-axis viewing locations, for example European Patent Publ. No. EP 1726987, herein incorporated by reference in its entirety.
Thus in prior art arrangements crossed A-plates, C-plates and O-plates may be provided between an input polariser and an output polariser to operate in cooperation with a liquid crystal layer that is also arranged between the input and output polarisers. In such prior art arrangements, said retarders are arranged to provide compensation for the variation in birefringence of liquid crystal molecules with viewing angles. Such compensation is arranged to provide increased display contrast for off-axis viewing locations. The contrast viewing angle properties of the display may thus be increased.
It would be desirable to provide a switchable directional display with (i) a wide angle mode that can be observed from a wide range of viewing directions and (ii) a privacy mode of operation in which the display can be seen with high image fidelity for a primary user and has low image visibility for a snooper at viewing locations that are different to the intended location for the primary user.
An off-axis luminance control optical stack 800 may comprise an additional polariser 500 that may be a reflective polariser; substrates 812, 816 for a switchable liquid crystal layer 892; compensation retarder 890, diffuser 68. The switchable liquid crystal layer 892 may be driven by voltage driver 884 and electrodes arranged on substrates 812, 816.
The operation and selection of the switchable liquid crystal layer 892 and compensation retarder 890 is described further in PCT Appl. No. PCT/US18/31206, filed Sep. 4, 2018, entitled “Optical stack for imaging directional backlights”, which is incorporated by reference herein in its entirety. Polarisation recirculation schemes that include retarders 506 and diffusers 1724 are described further U.S. Patent Publ. No. 2018-0196275, filed Jan. 3, 2018, entitled “Optical stack for imaging directional backlights”, which is incorporated by reference herein in its entirety.
By way of comparison to the liquid crystal layer 214 of the spatial light modulator 48 of
Display controller 401 is arranged to provide control signals to light source array controller 402, retarder controller 405, image controller 403 and LCD bias controller 407.
In the present embodiment, the control lines 409 from the individual controllers to the respective controlled elements of the switchable privacy display are illustrated by solid lines if in operation the component is typically operated in a single phase of operation; and by dashed lines if in operation the component is typically operated in at least two phases of operation.
Thus in the present embodiment of
By way of comparison the retarder controller 405 and LCD bias controller 407 may be arranged to provide a first signal to the off-axis luminance control optical stack 800 and spatial light modulator 848 bias electrodes in a wide angle mode of operation, and a second different signal in a privacy mode of operation as will be described further herein.
The operation of various retarder layers in the switchable privacy display of
Directional illuminator 101 is provided by rear reflector 300 (not shown) and directional waveguide 1 that is illuminated by an extended array 15a of light emitting elements arranged across the whole of the input side 2 of the waveguide 1, thus providing a wide angle illumination profile by means of providing multiple optical windows 26 as illustrated in
Compensator retarder 890 comprising a negative C-plate birefringent molecules 893 is arranged to receive polarised light with polarisation orientation 501 from additional polariser 500. The operation and various arrangements of the compensation retarder 890 and liquid crystal layer 892 is described further in PCT Appl. No. PCT/US18/31206, filed Sep. 4, 2018, entitled “Optical stack for imaging directional backlights”.
Switchable retarder layer 892 comprising addressing electrodes 850, 856 and switchable liquid crystal material 891 is provided to receive light from or to provide light to compensation retarder 890. In wide angle mode of operation, no voltage is provided by voltage driver 884 so that homeotropic liquid crystal alignment is provided through the thickness of the switchable liquid crystal material 891.
Light from the layer 892 is provided to the input polariser 210 of the spatial light modulator 848 polariser electric vector transmission direction 211 that is parallel to direction 501.
Spatial light modulator 848 is provided with bias electrodes 907, 912 that may be uniform across the area of the display (or may be patterned) and driven by voltage driver 885. Liquid crystal grey level control electrodes 904 that are driven by voltage drivers 886a, 886b that are typically provided by TFT drive schemes for each pixel.
Liquid crystal molecules 902a are aligned parallel to one of the polariser 210, 218 electric vector transmission directions 211, 219 such that when no voltage is applied to the pixel a black state is achieved. Liquid crystal molecules 902b are aligned at an offset angle to the directions 211, 219 in the x-y plane. When a voltage is applied to the pixel across electrodes 904, field lines 920 are provided and the molecules 902b reorient. A net retardation is provided in the liquid crystal cell and a grey level output is provided for the respective pixel.
In the present disclosure, the molecules 902 of the layer 891 are illustrated as having positive dielectric anisotropy and homogeneous alignment. Alternatively the molecules 902 may have negative dielectric anisotropy and homeotropic alignment.
In a wide angle mode of operation, no bias voltage is applied across electrodes 907, 912 so that the molecules 902a, 902b lie substantially within the plane 227, that is there is no out of plane tilt. Substantially uniform contrast is provided for a wide range of viewing angles as is known for In-Plane Switching (IPS); Fringe Field Switching (FFS) and other similar liquid crystal modes and will be described further herein.
Advantageously a wide angle luminance mode of operation may be provided with wide luminance profile from backlight 101, small reduction of off-axis luminance by optical stack 800 and wide angular range over which a high contrast image can be observed.
The operation of various retarder layers in the switchable privacy display of
A first privacy effect is provided by light source array 15b with a reduced width in comparison to the arrangement of light source array 15a of
A second privacy effect is provided by the switchable retarder layer 892. Voltage driver 884 is arranged such that birefringent molecules 891 of the switchable retarder layer are tilted about the y-axis. In the illustrations of the present disclosure driven liquid crystal layers are indicated by a V symbol for the respective driver, and no voltage driving indicated by a 0V symbol. The voltage drive characteristics from each driver may be different and adjusted to provide optimum drive characteristics for the respective liquid crystal layer. The drive voltage may provide DC, balancing of the layer 892, to minimise image sticking effects. Further the drive voltage may be at interim levels to provide grey level driving for a given liquid crystal layer or pixel. The present illustrations are provided for positive dielectric anisotropy for illustrative purposes. The liquid crystal materials in each layer may alternatively have negative dielectric anisotropy wherein a respective drive voltage may be arranged to drive the liquid crystal molecules to a state that is illustrated as undriven in the present illustrations.
In combination with compensation retarder 890 comprising discotic birefringent materials 893, an off-axis luminance reduction may be provided as will be described further hereinbelow. Such an off-axis luminance reduction may provide a second privacy effect that in combination with the first privacy effect achieves enhanced image privacy to an off-axis snooper by luminance reduction.
A third privacy effect is provided by the switchable bias control provided by bias voltage driver 885 across electrodes 907, 912. Liquid crystal molecules 902a, 902b of the spatial light modulator 848 for black and white pixels are tilted out of plane 227 by application of a bias voltage, while achieving black pixels by application of voltages by means of drivers 886a, white pixels by means of voltage drivers 886b and intermediate grey states by means of applying intermediate voltages to each pixel region. Such out of plane tilt of molecules 902a, 902b may provide pixel contrast that reduces for off-axis viewer locations as will be described further hereinbelow. Such an off-axis contrast reduction may provide a third privacy effect that in combination with the first and second privacy effects achieves enhanced image privacy to an off-axis snooper by luminance and contrast reduction as will be described further hereinbelow.
As will be further described hereinbelow, such combined first and second privacy effects may still provide some image visibility to a snooper under some conditions of operation.
Further the operation of the third privacy effect may in isolation provide undesirable image quality to the primary user.
It may be desirable to provide high image quality to the primary user and enhanced privacy effect for a wide range of viewing conditions.
The operation of the first privacy effect will now be further described.
Accordingly this is an example in which there are plural primary light sources. Thus individual light source flux 2264 may be uniform in a region near the center of the array, and zero in other regions. Alternatively the flux 2264 may vary across the illuminated elements to provide a graded luminance with viewing angle within a primary viewing cone.
Thus luminance distribution 2272 comprises a central viewing window 2247 and stray light region 2241 wherein the luminance is non-zero, for example 1% at the angular position 2251 in the following illustrative example. In operation, the amount of stray light may vary within the region 2241, as shown.
Thus the arrangement of
The contrast of the primary image to the secondary observer may be substantially the same and thus features may still be visible.
It may be desirable to further reduce the visibility images, for example in dark environments where small amounts of light may still provide image readability to snoopers as will be described, hereinbelow.
In the present embodiments, the arrangement of
In comparison to the arrangement of
The second privacy effect of reduced off-axis illumination by compensation retarder 890, switchable retarder 892 and additional polariser 500 may be substantially the same as that provided for the first phase of operation.
The third privacy effect of reduced off-axis contrast reduction by means of bias voltage from driver 885 and out of plane tilt by molecules 902a, 902b may be substantially the same as that provided for the first phase of operation.
In comparison to the arrangement of
The operation of the fourth privacy effect will now be further described in relation to
This is an example in which there are plural secondary light sources.
As illustrated in
It will be observed that the perceived image 2283 in the second phase is substantially the inverse of the perceived image 2282 in the first phase for off-axis viewing positions. The images combine to achieve a perceived secondary image with very low contrast. Advantageously a high degree of obscuration of the primary image to a secondary observer in the secondary viewing windows 2241 may be provided due to contrast reduction.
In operation, matching of perceived primary and secondary images 2282, 2283 may be achieved at a small range of viewing locations, for example location 2251. At other regions of viewing, the matching of the luminance in the two phases for off-axis viewing regions 2241 may be less well matched and residual image contrast may be perceived. In the present disclosure, the luminance for off-axis viewing is reduced.
In comparison to a directional display without the switchable liquid crystal retarder of the present disclosure, the difference in luminance at these non matched angles for first and second phases is smaller. Residual image luminance differences in first and second phases are reduced, and advantageously image contrast is further reduced, advantageously reducing image visibility to a snooper.
In other words the control system 401, 403, 402 may be capable of controlling the spatial light modulator 848 and capable of selectively operating of light sources 15a-n to direct light into corresponding optical windows 26a-n, wherein stray light in the directional backlight is directed in output directions 2251 outside the optical windows 26 corresponding to selectively operated light sources 2264.
The control system may be further arranged to control the spatial light modulator 848 and the array of light sources 15a-n in synchronization with each other so that: (a) the spatial light modulator 848 displays a primary image 2261 while at least one primary light source is selectively operated to direct light into at least one primary optical window for viewing by a primary observer (that is not a snooper), and (b) in a temporally multiplexed manner with the display of the primary image 2261, the spatial light modulator 848 displays a secondary image 2263 while at least one light source other than the at least one primary light source is selectively operated to direct light into secondary optical windows outside the at least one primary optical window, the secondary image 2282 as perceived by a secondary observer (that may be a snooper) outside the primary optical window obscuring the primary image 2282 that modulates the stray light directed outside the primary optical window 2247.
It may be desirable to reduce power consumption of the display further.
The control system may be arranged to control the applied voltage across the switchable liquid crystal retarder in a temporally multiplexed manner. Thus retarder controller 405 may be further arranged to control the voltage across the switchable retarder in synchronisation with the switching of the spatial light modulator and the light sources. The stray light profile may be adjusted in cooperation with the luminous flux on the array 15 of light sources. In the first phase of operation as described with reference to
In operation, reduced light flux may be provided in the second mode of operation if the switchable retarder has a higher off-axis output in the second phase of operation. Advantageously power consumption may be reduced in the second phase of operation, and the light sources may be driven less hard, extending lifetime and increasing efficiency.
Thus a fourth privacy effect may be provided with reduced off-axis contrast.
The operation of privacy effects under various viewing and illumination conditions will now be described.
By way of example, such luminance controlled privacy display 100 may be provided by first and second privacy effects of
A schematic representation of the operation of human vision with respect to privacy display appearance will now be described with respect to
For illustration purposes the variations of perceived against image grey levels are shown as linear variations, in reality the human visual system may have a non-linear response and these variations are non-linear. The present discussion is illustrative and does not account for example for changes in colour perception or shifts between scotopic and photopic vision characteristics.
In human vision, an observer may adapt to a white point on the display, that may be within an angular range of for example 2 degrees of a foveal fixation point. The human visual system has a dynamic range of perhaps seven orders of magnitude. However for a given illumination environment, the human visual system may be capable of clearly resolving perhaps 200 grey levels as will be described further below with reference to
For the present disclosure perceived dynamic range may be provided by equation 1.
Perceived dynamic range=(Wd−Kd)/(Wd+Ra) Eqn. 1
where, for a given region 601 of the display 100, Wd is the luminance of the display 100 for the snooper 47 when white image data is provided on the spatial light modulator 848 in the region 601 in the absence of ambient illumination 604; Kd is the luminance of the display 100 for the snooper 47 when black image data is provided on the spatial light modulator 848 in the region 601 in the absence of ambient illumination 608; and Ra is the luminance of the display 100 in the region 601 for the snooper 47 when the display is switched off and is illuminated by ambient illumination 608 only.
The perceived dynamic range may be the ratio of the perceived grey level range observed by the snooper 47 to the available grey level range of the snooper's human visual system. The perceived dynamic range thus describes the privacy image modulation to the snooper 47 and is a comparative measure that can be used to compare the privacy appearance to a snooper 47 of various different privacy displays.
It would be desirable to provide privacy displays that have the lowest perceived dynamic range. For human observer that is able to distinguish 200 grey levels, it would be desirable that the perceived dynamic range is less than 0.5%; that is all of the grey levels that are displayed to the primary observer 45 are compressed to 1 grey level or less when observed by the snooper 47.
In the present description, the perceived dynamic range is different to the privacy level which is the ratio of luminance for the off-axis snooper 47 and head-on luminance 573 illustrated in
In the embodiment of
In an illustrative embodiment, privacy display 100 may be provided with a head-on luminance 573 of 200 nits to primary observer 45. An off-axis privacy level of 1.5% luminance may be provided, so that in the dark environment with no ambient illumination or reflection of light from surrounding objects, the snooper 47 may perceive a white state luminance Wd from regions 603 of 3 nit while the black state luminance Kd is 0 nits, assuming a high viewing angle spatial light modulator 848 such as an IPS or FFS LCD.
The snooper 47 may thus have access to the full perceived dynamic range, that is the perceived black state 651 and perceived white state 652 represent for example 200 grey levels for displayed black regions 601, 602 and white regions 603.
The image content may be clearly visible to such a snooper 47. Within the constraints of stray light control for typical optical systems in display apparatus, it is thus not convenient to provide cancellation of image data to a snooper 47 in a dark environment by means of off-axis luminance control alone.
The operation of a luminance controlled privacy display 100 with ambient illumination will now be described with reference to
In comparison to the arrangements of
The appearance of a displayed image to a snooper 47 is adjusted by the frontal illumination of the display 100 so that the perceived dynamic range reduces. The frontal illumination increases the white state luminance and due to changes in the chemical receptors, size of observer's pupil and psychovisual processing the brain of the snooper 47 is less able to perceive the fill grey scale resolution of the image while the primary observer 45 retains a much higher perceived dynamic range due to the higher display luminance in comparison to the reflected ambient illumination.
In an illustrative embodiment display 100 may be illuminated by an ambient illuminance of 500 lux (lumen/m2) that may be typical of an office environment. A Lambertian profile front diffuser (or large area ambient illuminant) with front layer refractive index of 1.5 may provide a reflected luminance level Rs of 6 nits from the front surface of the display 100.
Continuing the illustrative embodiment of
Thus the perceived dynamic range may be approximately 33% for the snooper.
By way of comparison, the perceived dynamic range of the primary observer 45 viewing a 200 nit image in an ambient illuminance of 500 lux is 97%.
Thus the image fidelity that is viewable to the snooper 47 may be degraded, however substantial image data may still be visible under such lighting conditions, given that 33% of perceived dynamic range is ‘available’ to the snooper to discern image content, providing approximately 70 grey levels of visibility of content.
The contrast sensitivity is defined as the reciprocal threshold contrast for a given illumination system. Such relationships illustrate that reducing display luminance to a snooper 47 reduces the contrast sensitivity, that is an image with a given contrast level and spatial frequency becomes harder to identify as the display luminance is reduced.
Thus for a snooper observing an image at 1 nit, a peak contrast sensitivity of 200 may be representative of the human visual system response near to 1 cycles per degree.
At a snooper viewing distance of 1000 mm, this corresponds to an image of size approximately 20 mm which may be typical of titles in presentations for example. Thus the threshold contrast is 0.005, that is a luminance level variation of greater than 0.5% can be perceived for such feature sizes.
At different spatial frequencies the contrast sensitivity may be lower, that is the perceived dynamic range required to achieve no image visibility to a snooper 47 may be increased. Thus the privacy image content may be modified to achieve improved image content. For example in flight mode of operation, slide titles and image logos may be reduced in size to achieve reduced visibility to snoopers.
As illustrated in
It would thus be desirable to achieve improved privacy performance than can be achieved by a luminance controlled privacy display in normal office illuminance environments.
In comparison to the arrangement of
Perceived grey levels are illustrated in
In an illustrative example the luminance from a conventional wide angle backlight for a snooper at 45 degrees lateral angle and 0 degrees elevation may be 20% of peak luminance 573 of 200 nits. The image contrast reduction may further reduce the white state image luminance to approximately 10% of peak luminance, that is providing for white image luminance Wd of 20 nits to the snooper 47 with no ambient illumination. The image contrast observed in one region of the display by the snooper 47 may be 1.3:1 for example and the black state image luminance Kd is thus approximately 15 nits. In the absence of ambient illumination the perceived dynamic range may thus be 25%.
For 500 lux illuminance, a frontal luminance Ra from reflected light of 6 nits provides a perceived dynamic range of 19%, approximately 38 perceived grey levels. In operation some regions of the display will have lower contrast ratios as illustrated by variations 657a, 657b in
The operation of measured biased LCD contrast controlled privacy displays will now be described.
Considering
In an illustrative example, a centrally located primary observer 45 with an eye separation of 64 mm viewing a 300 mm width display at a viewing distance of 500 mm sees the highest contrast region of the display offset 32 mm from the centre of the display and the left hand edge of the display is at a visual angle of +/−17 degrees such that the perceived head-on image contrast varies from 120:1 in a central location to less than 20:1 at the left and right hand edges of the display. Thus the contrast, colour gamut and left-right eye image matching of the display for the primary observer 45 is significantly degraded.
It would be desirable to provide a contrast reduction privacy effect for snooper 47 while achieving a high image fidelity for the primary observer 45.
Thus reducing the bias voltage may increase the central luminance and provide significantly less roll off in contrast level Or increase in black state luminance) across the width of the display. Advantageously image contrast may be increased, colour gamut extended and differences between left and right eye image luminance reduced, to achieve increased image fidelity and comfort of observer 45.
The appearance to a snooper 47 of a privacy display 100 comprising reduced off-axis luminance from a privacy backlight 101 with LED array 15b with off-axis luminance reduction and reduced bias LCD bias voltage will now be described.
Thus the image appearance for the primary observer 45 may be substantially improved in comparison to the arrangement of
It would be desirable to further reduce the perceived dynamic range of the privacy display 100.
As illustrated herein with relation to
In a similar manner to
To continue the illustrative embodiment, the white state luminance Wd may be 3 nits and black state luminance Kd of 2.3 nits for a region of the display 100 that has a contrast ratio of 1.3:1. In an office environment with Ra of 6 nits, the perceived dynamic range may be 8%.
In operation, the uniformity of a two phase privacy display may provide non-uniformities of across the area of the display 100 such that the contrast of the corrected images seen by the snooper 47 varies across the display area such that regions 601 may have perceived grey level variations 662a and regions 602 may have variations 662b that may be inverted for example.
Such non uniformities may be provided by non-uniformities of illumination of the snooper 47 by the waveguide 1 or by optical aberrations of the imaging of the light sources 612 compared to the imaging of the light sources 614, 616 that are intended to provide the compensating luminance.
Thus the contrast of the privacy image may vary across the display area, and the perceived dynamic range may vary, undesirably providing snooper 47 with visibility of parts of the image.
It would be desirable to reduce non-uniformity image contrast in a privacy display comprising two phases of operation.
The operation
Thus in the first phase of operation, the white region 603 has reduced off-axis illuminance due to the contrast reduction of the display, while the region 601 may have increased black level that is different from the increased black level of region 602, that is the display contrast change is not uniform.
In the second phase of operation the black region 603 has increased off-axis luminance while the white regions 601, 602 have reduced luminance due to the bias voltage applied to the spatial light modulator 848.
In each phase of operation, the contrast of the regions 601, 602 may be for example 2.0 and 3.0 respectively for a bias mode voltage that is less than that to achieve the contrast properties illustrate in
so that in the first phase grey level variations 662a and 662b are provided for regions 601, 602 whereas in the second phase of operation variations 663a and 663b are provided in the second phase of operation. Thus for a region 601, variations 662a and 662b may cooperate to reduced image contrast to region 603; and for region 602, variations 663a and 663b may provide further reduction in image contrast to region 603. Advantageously image contrast is reduced and uniformity of contrast is increased.
The combined images seen by the user will have reduced contrast in comparison to the arrangements that are observed with bias control alone or two phase privacy mode operation alone. Further, the luminance of the images are reduced by the directional backlight 101 and thus ambient illumination is reduced, as illustrated by white state luminance 608.
In an illustrative embodiment, a substantially uniform contrast of between 0.95 and 1.05 may be provided across the display width, in an ambient illumination of 500 lux and with an off-axis luminance of 5 nits. Thus a maximum perceived dynamic range of approximately 2% may be achieved.
Advantageously, the bias contrast control and two phase contrast control interact to achieve increased uniformity of contrast across a display for a snooper 47. Further the absolute contrast may be provided closer to 1.0 over a wider angular range, reducing perceived dynamic range. Further, the luminance of the display 100 to the snooper 47 may be reduced so that ambient illumination 606 further compresses the perceived dynamic range.
The threshold of contrast sensitivity may be approximately 200 so that it would be desirable to provide further reduction of visibility of an image to a snooper uniformly over a display area.
In an illustrative embodiment, the angular luminance level may be reduced by the switchable retarder layer 892, compensator layer 890 and additional polariser 500 of
Advantageously the arrangements of
In a dark environment, the perceived dynamic range in the present illustrative embodiment is 5%, which provides a high level of privacy.
The present embodiments may be switched between a mode with a high level of image privacy and a wide angle mode for regular operation.
It may be desirable to reduce the thickness of the display in comparison to the arrangement of
The operation of the embodiment of
The embodiments of
In comparison to the time multiplexed embodiments, the spatial light modulator 848 cost may be reduced. Further the illumination slot width for the privacy mode of operation may be increased, so that the privacy mode may have higher luminance for the primary observer 45.
Directional backlights comprising other types of waveguide will now be described
Light source bank controller 411 may be arranged to provide operation of light sources 1925 in a wide angle mode of operation and operation of either light source 1915 or light sources 1915 and 1925 in a privacy mode of operation.
In operation fixed collimating waveguide 1901 is illuminated on side 1902 by light source 1915. The waveguide 1901 is provided with at least one scattering side 1906 and optionally a taper that has a cross sectional shape that increases in width for light propagating in the waveguide 1901 in a direction away from the light sources at the input end 1902. The waveguide 1901 may further be provided by light redirecting micro structures. Light rays 1910 that leak from the upper surface 1906 and are incident on prism array 1926. Prism array 1927 deflects grazing incidence light rays 1910 towards the normal direction, providing a narrow light cone angle in the lateral direction (y-z plane) that may be partially diffused by diffuser 1929. The direction of the ray 1910 is substantially independent of the location of the light source 1915 on the input side 1902 and the fixed collimating waveguide 1901 does not image the source 1915 in comparison to imaging waveguide 1 that provides optical windows.
Thus a directional backlight may comprise a waveguide 1920 that is arranged to deflect input light rays 1910 guided through the waveguide 1920 from the light sources 1915 to exit through the first guide surface 1906. One of the optical components 726 may comprise a prism array 1927 arranged to deflect light rays 1910 that exit through the first guide surface 1906 of the waveguide 1901.
To provide a wide angle mode of operation, a second wide angle waveguide 1920 may be provided. Wide angle waveguide 1920 is provided with microstructures (not shown) on the surfaces 1921, 1919 to provide scattered light for light rays 1930 from light sources 1925.
Switchable liquid crystal retarder 892 and compensation retarder 890 may advantageously achieve substantially reduced off-axis image visibility to a snooper 47 in privacy mode of operation.
In an illustrative embodiment of the privacy mode, such a display with a head-on luminance of 200 nits and with an off-axis luminance of 1 nit and an image contrast ratio of 3:1 may be operated in an ambient illumination of 500 lux. The primary observer 45 will see an increased contrast and colour uniformity of the display in comparison to the arrangement of profile 680 in
By way of comparison
Thus the present embodiments provide interaction of luminance reduction and contrast control that may advantageously achieve increased fidelity for head-on contrast uniformity, while maintaining or improving privacy performance for off-axis snoopers 47.
Display controller 401 may provide control signals to diffuser controller 413 that is arranged to switch diffuser 1960 between a diffusing state for a wide angle mode of operation and clear state for privacy operation.
Fixed collimating waveguide 1951 may be provided with microstructures 1953 that couple some light rays 1970 from light source 1955 into the vertical direction by means of reflection at prism array 726. The microstructures operate in a similar manner to the waveguide of
The backlight may further incorporate a switchable diffuser layer 1960 comprising polymer dispersed liquid crystal (PDLC) 1955. In a narrow angle mode of operation, the liquid crystal is arranged to transmit light rays 1972 that are transmitted, through microstructures 1953. Light rays 1972 are absorbed by absorbing layer 1962 and thus not output through the spatial light modulator 848.
In a wide angle mode of operation, the liquid crystal molecules in the PDLC 1955 are switched to provide a scattering function with the surrounding medium and thus light rays 1974 are scattered to a wide range of viewing positions.
Switchable liquid crystal retarder 892 and compensation retarder 890 may advantageously achieve substantially reduced off-axis image visibility to a snooper in privacy mode of operation.
It may be desirable to increase the control of off-axis contrast to a snooper while maintaining on-axis contrast performance to the primary observer 45.
Further compensation retarders (not shown) may be provided to modify the retardance properties of the liquid crystal bias layer. Switchable LC bias layer controller 417 may be arranged to control driver 1885 that is arranged to drive a voltage across the layer 1800.
The operation of the privacy display of
Switchable liquid crystal layer 1800 is provided that may have homogeneous alignment at alignment layers (not shown) and no bias voltage is applied by driver 1884 so that the molecules 1802 have substantially homogenous alignment.
In operation, the molecules 1802 are substantially aligned parallel or orthogonal to the polarisation state 211 transmitted by the input polariser 210. The layer 1800 may be provided with substantially no off-axis birefringence and a wide angle contrast profile may be achieved by the spatial light modulator 1848.
In comparison to the arrangement of
Switchable liquid crystal bias layer 1800 may be driven by a bias voltage that is applied by means of driver 1884 so that the molecules 1802 have an O-plate arrangement, that is the directors of the molecules 1802 may be tilted at locations not close to respective upper and lower alignment layers (not shown). Such a tilt may provide off-axis birefringence such that the polar contrast profile of the display is modified.
A privacy display may operate in only a first phase of operation. A conventional low frame rate LCD may be used for the pixel layer 214, such that power consumption and power consumption of the spatial light modulator is reduced in comparison to high frame rate pixel layers 214.
In comparison to the arrangement of
In the biased LCD 848 of
Further the arrangement of the pixels may typically be multi-domain to enhance the angular viewing profile in the wide angle mode; that is multiple orientations of white state pixels are provided. When a bias voltage is applied, the molecules undergo both tilt and twist orientations, providing undesirable white state and contrast angular characteristics for small changes of viewing angle. Further the tilt of the molecules 902 in the black state provides a rapid variation of image contrast with viewing angle, providing the angular contrast properties as described with reference to
By way of comparison, in the embodiment of
Advantageously improved contrast properties may be provided for head-on operation in comparison to the arrangement of
For off-axis locations, the polarisation state that is incident onto the pixel layer 214 is modified so that black state luminance is increased, and white state luminance decreased as will be described.
It may be desirable to achieve further reduction of perceived dynamic range by means of two phase contrast reduction.
The operation of the apparatus of
Advantageously very low levels of perceived dynamic range may be provided to snooper 47.
It would be desirable to provide a reduced contrast image over a wide viewing angle.
In an illustrative example, an observer may be located at a polar location of 45 degrees lateral angle and zero degrees elevation. At one time instant, the contrast profile 843a may be provided across the display width. At a second time instant, the voltage across the cell may be adjusted so that the contrast profile 843b is provided which has an inverted contrast profile. The snooper's visual system may integrate the respective contrast images such that a reduced contrast image (i.e. a contrast closer to 1.0) is provided.
Similarly for a different viewing location, profiles 845a, 845b may be provided during the cycling of the voltage across the bias liquid crystal layer 1800. Advantageously the viewing angle of the display may be increased in comparison to a fixed voltage level. Further DC balancing of the liquid crystal layer may be provided.
It may be desirable to further reduce the visibility of a privacy image to a snooper 47 by means of providing image camouflage.
The operation of the privacy displays of the present disclosure will now be described in further detail.
Angular viewing location 520 represents a desirable on-axis viewing direction with zero degrees elevation and zero degrees azimuth.
Angular viewing location 522 represents a desirable off-axis viewing direction with 20 degrees elevation and zero degrees azimuth. Such a viewing location may be provided for rotation of the display about a horizontal axis for a centrally located user.
Angular viewing locations 524, 525 represent occasionally desirable off-axis viewing direction with zero degrees elevation and +/−45 degrees azimuth. In wide angle mode such viewing locations may be occupied by desired users so that relatively high luminance is desirable.
Angular viewing locations 526, 527 represent occasionally desirable off-axis viewing directions that have a 45 degrees off-axis location along respective axes 590, 592 at 45 degrees to the azimuthal and elevation directions.
Advantageously the display may be conveniently rotated about a horizontal axis while maintaining comfortable luminance for a viewer that is on-axis in the lateral direction (0 degrees azimuth).
Further the angular viewing locations 524, 526, 525, 527 as illustrated in
A display may thus be provided with a polar luminance distribution such that the display can conveniently be seen from a wide range of viewing angles.
The angular luminance profile of a display operating in privacy mode of operation will now be described.
Desirable and undesirable viewing locations in a privacy mode of operation will now be described with reference to snoopers—that is those observers undesirably attempting to view an image on the display while the display is operating in privacy mode.
Angular viewing location 520, 522 represent typically desirable viewing directions for a primary display user operating the display in privacy mode.
Angular viewing locations 524, 525 represent undesirable off-axis viewing directions for a snooper located laterally with respect to the display. It is desirable to reduce display luminance in privacy mode of operation to such snoopers.
Angular viewing locations 526, 527 represent further undesirable and common off-axis viewing directions for snoopers.
In privacy mode of operation, the lateral luminance profile may be adjusted by control of the directional backlight 101 so that rotationally asymmetric locus 551 for 50% luminance and rotationally asymmetric locus 553 for 2% luminance is provided.
At angular viewing location 524 of 45 degrees azimuth and 0 degrees elevation the luminance may be less than for example 2%, preferably less than 1.5% and more preferably less than 1% of the peak luminance of the profile 546. In the present illustrative example, the relative luminance 555 at 40 degrees azimuth and 0 degrees elevation may be 2%. A display may thus be provided with an angular luminance profile to achieve low luminance for laterally off-axis viewers, achieving privacy operation.
Thus angular viewing locations 520, 522 may see luminance greater than 50%. Advantageously a comfortable display appearance may be provided in privacy mode of operation for rotations of the display about a horizontal axis.
At angular viewing locations 524, 525 that have a zero degree elevation and angular viewing locations 526, 527 that have a 45 degrees off-axis location along respective axes 590, 592 at 45 degrees to the azimuthal and elevation directions, luminance of less than 2% may be provided. Advantageously the display may have limited visibility for such viewing locations.
It would be desirable to achieve further reduction of off-axis visibility of an image by reducing both luminance and contrast of off-axis images.
Thus a display device may comprise a directional backlight 300, 510, 4, 15 arranged to output light rays 20; wherein the directional backlight 300, 510, 4, 15 is arranged to provide switching between at least two different angular luminance profiles, for example as illustrated in
Control system 970 is arranged to control light source controller 402 that may provide control of the luminous emittance lateral profile of array 15 of light emitting elements as described elsewhere herein.
Control system 970 may further be arranged to control image controller 971 that may further comprise control of electric field properties within image pixels of the spatial light modulator 848.
Desirably in wide angle operation of the present display, the variation of image contrast with viewing angle may be small so that the image is viewable from a wide range of viewing directions. Such wide angle liquid crystal modes are typically provided by in-plane liquid crystal modes, the operation of which will now be described.
Input polariser 210 is provided with a horizontal linear polarisation state.
For an OFF state pixel 916a, the orientation 918a of director of liquid crystal molecules 902a may be orthogonal (or parallel) to the input polariser 216 polarisation transmission axis. The incident polarisation state is unrotated and thus a black state is provided at pixel 916a.
For an ON state pixel 916b, the orientation 918b of director of at least some liquid crystal molecules 920b may be aligned at 45 degrees to the input polariser 216 such that the polarisation state is rotated and transmitted through output polariser 218 at pixel 916b.
In the present description the alignment of liquid crystals in ON and OFF states is shown in planes A-A′ and C-C′ for ON state pixels 916b and in planes B-B′ and D-D′ for OFF state pixels 916a.
In the OFF state pixel 916a no voltage is applied to electrode 904, and no electric field is across adjacent electrodes 904 such that the LC molecules 902a adopt an orientation in to the plane of the paper.
In the ON state pixel 916b an alternating electric field 933 is applied across electrodes 923 and 921 (illustrated in one phase of operation).
For a positive dielectric anisotropy LC material, an in-plane electric field profile 920 will provide alignment of the LC molecule 902b directors as illustrated. For a negative dielectric anisotropy LC material the LC director orients to align away from the electric field. Typically an alternating potential is applied between electrodes 921, 923 so that no time average DC potential exists across the LC material 900.
At least some of the liquid crystal molecules 902b are arranged as illustrated in
Returning to the description of
To achieve a display that is clearly visible for a large viewing freedom, it would be desirable to provide a display with wide luminance angular profile and wide contrast angular profile.
Advantageously a wide viewing angle display for luminance and contrast may be provided.
Thus while the display has reduced visibility due to reduced luminance in the wings, a high contrast may still be provided, thus achieving residual off-axis image visibility under certain lighting conditions, for example dark environments.
It would be desirable to provide a switchable privacy display that has high contrast and luminance for on-axis viewing and reduced contrast and luminance for off-axis viewing.
The liquid crystal display 848 may further comprise at least one bias electrode 912 wherein the bias electrode 912 is arranged to further control director 902a, 902b orientation of the liquid crystal material 900.
When no potential is applied to bias electrode 912 the system behaves as in
For negative dielectric anisotropy liquid crystal materials, the vertical or out of plane electric field will tend to align the LC molecules parallel to the plane of substrate 212. To reduce the viewing angle when a vertical electric field 931 is applied, a pre-tilt may be applied to the LC molecules by means of alignment layers (not illustrated) applied to either the upper or lower substrates 212, 214 or both, as is known in the LC industry.
Advantageously off-axis retardance may be introduced into the black state pixels 916a.
Referring again to
A display system comprising the display device described herein may further be provided with a control system 970 as shown in
The electrode arrangements of
Advantageously a privacy display may be provided with reduced contrast and luminance for off-axis viewing. Privacy performance is thus improved in comparison to privacy displays that have only angular luminance roll-off or angular contrast roll-off with azimuthal viewing angle.
In an illustrative embodiment of the present disclosure the angular luminance profile provided by the directional backlight may provide a luminance of the celiac of the display 100 in the first wide angle mode for a snooper 47 at +/−45 degrees azimuth, 0 degrees elevation of 10 nits, whereas the luminance for the same observer in the second (privacy) mode may be 1 nit.
Point 754 with the wide luminance angular profile mode has a luminance 760 of 10 nits and contrast 762 that may for example be 1.5:1. In order to achieve an equivalent invisibility, point 752 with the narrow luminance angular profile mode has a luminance 764 of 1 nits and contrast 766 that may for example be 3:1. The limits 752, 754 of the invisibility function 750 determine the ranges of invisibility function operating point 756, that is the display angular luminance profile and angular contrast profile may be arranged to operate within these operating points for a given viewing location for observer 47.
Thus point 768 that lies on the invisibility function 756 may have intermediate contrast and luminance settings, and equivalent image invisibility to the snooper 47. Thus in the second (narrow angular luminance and contrast profile) mode for a nominal viewing angle 761 (as illustrated in
In comparison to the operating points 752, 754 the profiles 546, 942 may have wider half maximum widths 976, 978 or more uniform profile shapes for on-axis observer 45.
It would be desirable to provide control of the operating point invisibility function 756 of the image to the snooper 47 in response to the ambient lighting conditions
The ambient light control system 770 may comprise an ambient light sensor which may for example be the camera arranged proximate to the display and may further be arranged to determine the illuminance of a snooper's face. Alternatively, the system 770 may be provided by keyboard input, or for example may be controlled by settings such as public operating mode setting of the device comprising the switchable directional display.
Thus the ambient light control system 770 may be arranged to control the invisibility functions 756, 772 and function operating point 768, 774 in response to the ambient illuminance.
Advantageously the uniformity of the display for both white and black images may be improved for the primary observer 45 in high ambient illuminance environments, and the image invisibility to the snooper 47 may be maintained for different illuminance environments.
Thus a switchable directional display, may comprise a light valve comprising a first end at which light may enter the light valve 1 and propagate in a first direction; a second end comprising a reflective surface arranged to redirect light propagating in said first direction to propagate in a second direction back toward the first end, wherein the second end is a curved reflective surface 4, or a Fresnel equivalent of a curved reflective surface; a first light guiding surface extending between the first and second ends, wherein the first light guiding surface is substantially planar; and a second light guiding surface, extending between the first and second ends opposite the first light guiding surface, further comprising a plurality of guiding features and a plurality of extraction features that have a cross-sectional profile and are curved along the direction in which they are elongated, wherein the extraction features and the guiding features are connected to and alternate with one another respectively, further wherein the plurality of extraction features allow light to pass with substantially low loss when the light is propagating in a first direction and allow light to reflect and exit the light valve when the light is propagating in a second direction, wherein a degree of curvature of the extraction features along the direction in which the extraction features are elongated causes the light from a plurality of illumination elements to be focused, whereby the curvature of the extraction features and the curvature of the reflective end cooperate to direct focused light into respective viewing windows; and a polymer dispersed liquid crystal between two transparent substrates, wherein each of the transparent substrates further comprises at least one transparent conductive electrode for applying a voltage across the polymer dispersed liquid crystal wherein the polymer dispersed liquid crystal is switchable between a light scattering state and a clear state by means of the applied voltage; and a spatial light modulator 848.
The polymer dispersed liquid crystal (PDLC) cell 900 comprises substrates 908 and 906 which may be glass or may be a plastics material such as for example polyimide films. The films are coated with conductive electrodes 905 and 904 which may comprise transparent materials such as indium tin oxide (ITO) or silver nanowire. The PDLC 902 comprises microdroplets of a liquid crystal material dispersed within a transparent polymeric matrix. The transparent polymer matrix may be formed from a curable material which is mixed with the liquid crystal material before being cured for example by UV light. In the absence of an electric field applied by the electrodes 904, 905, the liquid crystal microdroplets form a structure such that their anisotropic refractive index diffuses light and the cell functions as a diffuser element. When an electric field applied between the electrodes 904, 905 it orients the liquid crystal molecules to allow the film to transmit light without substantial diffusion, so that the film becomes transparent. The operating voltage of a PDLC is typically larger than that of for example a TN liquid crystal display. Note that a PDLC can operate without polarisers.
In operation, the directional backlight may be arranged to provide a narrow angular luminance distribution 546. In a wide angle mode the PDLC is provided in a scattering state, whereas in a narrow angle mode a clear state is provided. In this manner, a switchable direction display may be provided.
The light source array 15 may be provided in a central region of the input side 2 of the directional waveguide. Outside of the central region, absorbing material may be provided so that the off-axis stray light illumination to snooper 47 is reduced. Advantageously a low privacy level switchable directional backlight may be provided. Further control of the light source array 15 is not provided, advantageously reducing cost and complexity of the light source control system.
As may be used herein, the terms “substantially” and “approximately” provide an industry-accepted tolerance for its corresponding term and/or relativity between items. Such an industry-accepted tolerance ranges from zero percent to ten percent and corresponds to, but is not limited to, component values, angles, et cetera. Such relativity between items ranges between approximately zero percent to ten percent.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiments) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1128979 | Hess | Feb 1915 | A |
1970311 | Ives | Aug 1934 | A |
2133121 | Stearns | Oct 1938 | A |
2247969 | Lemuel | Jul 1941 | A |
2480178 | Zinberg | Aug 1949 | A |
2810905 | Barlow | Oct 1957 | A |
3409351 | Winnek | Nov 1968 | A |
3715154 | Bestenreiner | Feb 1973 | A |
4057323 | Ward | Nov 1977 | A |
4528617 | Blackington | Jul 1985 | A |
4542958 | Young | Sep 1985 | A |
4621898 | Cohen | Nov 1986 | A |
4804253 | Stewart | Feb 1989 | A |
4807978 | Grinberg et al. | Feb 1989 | A |
4829365 | Eichenlaub | May 1989 | A |
4914553 | Hamada et al. | Apr 1990 | A |
4974941 | Gibbons et al. | Dec 1990 | A |
5005108 | Pristash et al. | Apr 1991 | A |
5035491 | Kawagishi et al. | Jul 1991 | A |
5050946 | Hathaway et al. | Sep 1991 | A |
5278608 | Taylor et al. | Jan 1994 | A |
5347644 | Sedlmayr | Sep 1994 | A |
5349419 | Taguchi et al. | Sep 1994 | A |
5459592 | Shibatani et al. | Oct 1995 | A |
5466926 | Sasano et al. | Nov 1995 | A |
5510831 | Mayhew | Apr 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5581402 | Taylor | Dec 1996 | A |
5588526 | Fantone et al. | Dec 1996 | A |
5658490 | Sharp et al. | Aug 1997 | A |
5697006 | Taguchi et al. | Dec 1997 | A |
5703667 | Ochiai | Dec 1997 | A |
5715028 | Abileah et al. | Feb 1998 | A |
5727107 | Umemoto et al. | Mar 1998 | A |
5771066 | Barnea | Jun 1998 | A |
5796451 | Kim | Aug 1998 | A |
5808784 | Ando et al. | Sep 1998 | A |
5808792 | Woodgate et al. | Sep 1998 | A |
5835166 | Hall et al. | Nov 1998 | A |
5875055 | Morishima et al. | Feb 1999 | A |
5894361 | Yamazaki et al. | Apr 1999 | A |
5896225 | Chikazawa | Apr 1999 | A |
5903388 | Sedlmayr | May 1999 | A |
5914760 | Daiku | Jun 1999 | A |
5933276 | Magee | Aug 1999 | A |
5956001 | Sumida et al. | Sep 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5969850 | Harrold et al. | Oct 1999 | A |
5971559 | Ishikawa et al. | Oct 1999 | A |
6008484 | Woodgate et al. | Dec 1999 | A |
6014164 | Woodgate et al. | Jan 2000 | A |
6023315 | Harrold et al. | Feb 2000 | A |
6055013 | Woodgate et al. | Apr 2000 | A |
6055103 | Woodgate et al. | Apr 2000 | A |
6061179 | Inoguchi et al. | May 2000 | A |
6061489 | Ezra et al. | May 2000 | A |
6064424 | Berkel et al. | May 2000 | A |
6075557 | Holliman et al. | Jun 2000 | A |
6094216 | Taniguchi et al. | Jul 2000 | A |
6099758 | Verrall et al. | Aug 2000 | A |
6108059 | Yang | Aug 2000 | A |
6118584 | Berkel et al. | Sep 2000 | A |
6128054 | Schwarzenberger | Oct 2000 | A |
6144433 | Tillin et al. | Nov 2000 | A |
6172723 | Inoue et al. | Jan 2001 | B1 |
6199995 | Umemoto et al. | Mar 2001 | B1 |
6204904 | Tillin et al. | Mar 2001 | B1 |
6222672 | Towler et al. | Apr 2001 | B1 |
6224214 | Martin et al. | May 2001 | B1 |
6232592 | Sugiyama | May 2001 | B1 |
6256447 | Laine | Jul 2001 | B1 |
6262786 | Perlo et al. | Jul 2001 | B1 |
6295109 | Kubo et al. | Sep 2001 | B1 |
6302541 | Grossmann | Oct 2001 | B1 |
6305813 | Lekson et al. | Oct 2001 | B1 |
6373637 | Gulick et al. | Apr 2002 | B1 |
6377295 | Woodgate et al. | Apr 2002 | B1 |
6392727 | Larson et al. | May 2002 | B1 |
6422713 | Fohl et al. | Jul 2002 | B1 |
6437915 | Moseley et al. | Aug 2002 | B2 |
6456340 | Margulis | Sep 2002 | B1 |
6464365 | Gunn et al. | Oct 2002 | B1 |
6476850 | Erbey | Nov 2002 | B1 |
6654156 | Crossland et al. | Nov 2003 | B1 |
6663254 | Ohsumi | Dec 2003 | B2 |
6724452 | Takeda et al. | Apr 2004 | B1 |
6731355 | Miyashita | May 2004 | B2 |
6736512 | Balogh | May 2004 | B2 |
6798406 | Jones et al. | Sep 2004 | B1 |
6801243 | Berkel | Oct 2004 | B1 |
6816158 | Lemelson et al. | Nov 2004 | B1 |
6825985 | Brown et al. | Nov 2004 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6859240 | Brown et al. | Feb 2005 | B1 |
6867828 | Taira et al. | Mar 2005 | B2 |
7001058 | Inditsky | Feb 2006 | B2 |
7058252 | Woodgate et al. | Jun 2006 | B2 |
7067985 | Adachi | Jun 2006 | B2 |
7091931 | Yoon | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7136031 | Lee et al. | Nov 2006 | B2 |
7163319 | Kuo et al. | Jan 2007 | B2 |
7215391 | Kuan et al. | May 2007 | B2 |
7215475 | Woodgate et al. | May 2007 | B2 |
7227567 | Beck et al. | Jun 2007 | B1 |
7227602 | Jeon et al. | Jun 2007 | B2 |
7239293 | Perlin et al. | Jul 2007 | B2 |
7365908 | Dolgoff | Apr 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7430358 | Qi et al. | Sep 2008 | B2 |
7492346 | Manabe et al. | Feb 2009 | B2 |
7524542 | Kim et al. | Apr 2009 | B2 |
7528893 | Schultz et al. | May 2009 | B2 |
7528913 | Kobayashi | May 2009 | B2 |
7633586 | Winlow et al. | Dec 2009 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7766534 | Iwasaki | Aug 2010 | B2 |
7834834 | Takatani et al. | Nov 2010 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7991257 | Coleman | Aug 2011 | B1 |
8098350 | Sakai et al. | Jan 2012 | B2 |
8154686 | Mather et al. | Apr 2012 | B2 |
8237876 | Tan et al. | Aug 2012 | B2 |
8249408 | Coleman | Aug 2012 | B2 |
8262271 | Tillin et al. | Sep 2012 | B2 |
8646931 | Choi et al. | Feb 2014 | B2 |
8801260 | Urano et al. | Aug 2014 | B2 |
8939595 | Choi et al. | Jan 2015 | B2 |
8973149 | Buck | Mar 2015 | B2 |
9195087 | Terashima | Nov 2015 | B2 |
9274260 | Urano et al. | Mar 2016 | B2 |
9304241 | Wang et al. | Apr 2016 | B2 |
9324234 | Ricci et al. | Apr 2016 | B2 |
9448355 | Urano et al. | Sep 2016 | B2 |
9501036 | Kang et al. | Nov 2016 | B2 |
9519153 | Robinson et al. | Dec 2016 | B2 |
10054732 | Robinson et al. | Aug 2018 | B2 |
10126575 | Robinson et al. | Nov 2018 | B1 |
10303030 | Robinson et al. | May 2019 | B2 |
10401638 | Robinson et al. | Sep 2019 | B2 |
10488705 | Xu et al. | Nov 2019 | B2 |
10649248 | Jiang et al. | May 2020 | B1 |
10649259 | Lee et al. | May 2020 | B2 |
20010001566 | Moseley et al. | May 2001 | A1 |
20010050686 | Allen | Dec 2001 | A1 |
20020018299 | Daniell | Feb 2002 | A1 |
20020024529 | Miller et al. | Feb 2002 | A1 |
20020113866 | Taniguchi et al. | Aug 2002 | A1 |
20020171793 | Sharp et al. | Nov 2002 | A1 |
20030089956 | Allen et al. | May 2003 | A1 |
20030107686 | Sato et al. | Jun 2003 | A1 |
20030117790 | Lee et al. | Jun 2003 | A1 |
20030133191 | Morita et al. | Jul 2003 | A1 |
20030137821 | Gotoh et al. | Jul 2003 | A1 |
20040015729 | Elms et al. | Jan 2004 | A1 |
20040021809 | Sumiyoshi et al. | Feb 2004 | A1 |
20040042233 | Suzuki et al. | Mar 2004 | A1 |
20040046709 | Yoshino | Mar 2004 | A1 |
20040066480 | Yoshida et al. | Apr 2004 | A1 |
20040100598 | Adachi et al. | May 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109303 | Olczak | Jun 2004 | A1 |
20040125430 | Kasajima et al. | Jul 2004 | A1 |
20040135741 | Tomisawa et al. | Jul 2004 | A1 |
20040145703 | O'Connor et al. | Jul 2004 | A1 |
20040170011 | Kim et al. | Sep 2004 | A1 |
20040240777 | Woodgate et al. | Dec 2004 | A1 |
20040263968 | Kobayashi et al. | Dec 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20050007753 | Hees et al. | Jan 2005 | A1 |
20050094295 | Yamashita et al. | May 2005 | A1 |
20050110980 | Maehara et al. | May 2005 | A1 |
20050111100 | Mather et al. | May 2005 | A1 |
20050117186 | Li et al. | Jun 2005 | A1 |
20050135116 | Epstein et al. | Jun 2005 | A1 |
20050157225 | Toyooka et al. | Jul 2005 | A1 |
20050180167 | Hoelen et al. | Aug 2005 | A1 |
20050190180 | Jin et al. | Sep 2005 | A1 |
20050190326 | Jeon et al. | Sep 2005 | A1 |
20050190329 | Okumura | Sep 2005 | A1 |
20050190345 | Dubin et al. | Sep 2005 | A1 |
20050219693 | Hartkop et al. | Oct 2005 | A1 |
20050237488 | Yamasaki et al. | Oct 2005 | A1 |
20050254127 | Evans et al. | Nov 2005 | A1 |
20050264717 | Chien et al. | Dec 2005 | A1 |
20050276071 | Sasagawa et al. | Dec 2005 | A1 |
20050280637 | Ikeda et al. | Dec 2005 | A1 |
20060002678 | Weber et al. | Jan 2006 | A1 |
20060012845 | Edwards | Jan 2006 | A1 |
20060056166 | Yeo et al. | Mar 2006 | A1 |
20060066785 | Moriya | Mar 2006 | A1 |
20060082702 | Jacobs et al. | Apr 2006 | A1 |
20060114664 | Sakata et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060158729 | Vissenberg et al. | Jul 2006 | A1 |
20060176912 | Anikitchev | Aug 2006 | A1 |
20060203162 | Ito et al. | Sep 2006 | A1 |
20060203200 | Koide | Sep 2006 | A1 |
20060215129 | Alasaarela et al. | Sep 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060221642 | Daiku | Oct 2006 | A1 |
20060227427 | Dolgoff | Oct 2006 | A1 |
20060244884 | Jeon et al. | Nov 2006 | A1 |
20060244918 | Cossairt et al. | Nov 2006 | A1 |
20060250580 | Silverstein et al. | Nov 2006 | A1 |
20060262258 | Wang et al. | Nov 2006 | A1 |
20060262376 | Mather et al. | Nov 2006 | A1 |
20060262558 | Cornelissen | Nov 2006 | A1 |
20060267040 | Baek et al. | Nov 2006 | A1 |
20060268207 | Tan et al. | Nov 2006 | A1 |
20060269213 | Hwang et al. | Nov 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060285040 | Kobayashi | Dec 2006 | A1 |
20060291053 | Robinson et al. | Dec 2006 | A1 |
20060291243 | Niioka et al. | Dec 2006 | A1 |
20070008406 | Shestak et al. | Jan 2007 | A1 |
20070013624 | Bourhill | Jan 2007 | A1 |
20070025680 | Winston et al. | Feb 2007 | A1 |
20070035706 | Margulis | Feb 2007 | A1 |
20070035829 | Woodgate et al. | Feb 2007 | A1 |
20070035964 | Olczak | Feb 2007 | A1 |
20070047254 | Schardt et al. | Mar 2007 | A1 |
20070064163 | Tan et al. | Mar 2007 | A1 |
20070081110 | Lee | Apr 2007 | A1 |
20070085105 | Beeson et al. | Apr 2007 | A1 |
20070109400 | Woodgate et al. | May 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070115551 | Spilman et al. | May 2007 | A1 |
20070115552 | Robinson et al. | May 2007 | A1 |
20070139772 | Wang | Jun 2007 | A1 |
20070153160 | Lee et al. | Jul 2007 | A1 |
20070188667 | Schwerdtner | Aug 2007 | A1 |
20070189701 | Chakmakjian et al. | Aug 2007 | A1 |
20070223251 | Liao | Sep 2007 | A1 |
20070223252 | Lee et al. | Sep 2007 | A1 |
20070279554 | Kowarz et al. | Dec 2007 | A1 |
20070279727 | Gandhi et al. | Dec 2007 | A1 |
20070285775 | Lesage et al. | Dec 2007 | A1 |
20080055221 | Yabuta et al. | Mar 2008 | A1 |
20080068329 | Shestak et al. | Mar 2008 | A1 |
20080079662 | Saishu et al. | Apr 2008 | A1 |
20080084519 | Brigham et al. | Apr 2008 | A1 |
20080128728 | Nemchuk et al. | Jun 2008 | A1 |
20080158491 | Zhu et al. | Jul 2008 | A1 |
20080225205 | Travis | Sep 2008 | A1 |
20080259012 | Fergason | Oct 2008 | A1 |
20080259643 | Ijzerman et al. | Oct 2008 | A1 |
20080285310 | Aylward et al. | Nov 2008 | A1 |
20080291359 | Miyashita | Nov 2008 | A1 |
20080297431 | Yuuki et al. | Dec 2008 | A1 |
20080297459 | Sugimoto et al. | Dec 2008 | A1 |
20080304282 | Mi et al. | Dec 2008 | A1 |
20080316198 | Fukushima et al. | Dec 2008 | A1 |
20080316303 | Chiu et al. | Dec 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090016057 | Rinko | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090067156 | Bonnett et al. | Mar 2009 | A1 |
20090085894 | Gandhi et al. | Apr 2009 | A1 |
20090086509 | Omori et al. | Apr 2009 | A1 |
20090109705 | Pakhchyan et al. | Apr 2009 | A1 |
20090128735 | Larson et al. | May 2009 | A1 |
20090128746 | Kean et al. | May 2009 | A1 |
20090135623 | Kunimochi | May 2009 | A1 |
20090140656 | Kohashikawa et al. | Jun 2009 | A1 |
20090160757 | Robinson | Jun 2009 | A1 |
20090167651 | Benitez et al. | Jul 2009 | A1 |
20090168459 | Holman et al. | Jul 2009 | A1 |
20090174840 | Lee et al. | Jul 2009 | A1 |
20090174843 | Sakai et al. | Jul 2009 | A1 |
20090190072 | Nagata et al. | Jul 2009 | A1 |
20090190079 | Saitoh | Jul 2009 | A1 |
20090207629 | Fujiyama et al. | Aug 2009 | A1 |
20090213298 | Mimura et al. | Aug 2009 | A1 |
20090213305 | Ohmuro et al. | Aug 2009 | A1 |
20090225380 | Schwerdtner et al. | Sep 2009 | A1 |
20090244415 | Ide | Oct 2009 | A1 |
20090278936 | Pastoor et al. | Nov 2009 | A1 |
20090290203 | Schwerdtner | Nov 2009 | A1 |
20090315915 | Dunn et al. | Dec 2009 | A1 |
20100002169 | Kuramitsu et al. | Jan 2010 | A1 |
20100002296 | Choi et al. | Jan 2010 | A1 |
20100033558 | Horie et al. | Feb 2010 | A1 |
20100034987 | Fujii et al. | Feb 2010 | A1 |
20100040280 | McKnight | Feb 2010 | A1 |
20100053771 | Travis et al. | Mar 2010 | A1 |
20100053938 | Kim et al. | Mar 2010 | A1 |
20100091093 | Robinson | Apr 2010 | A1 |
20100091254 | Travis et al. | Apr 2010 | A1 |
20100103649 | Hamada | Apr 2010 | A1 |
20100128200 | Morishita et al. | May 2010 | A1 |
20100149459 | Yabuta et al. | Jun 2010 | A1 |
20100165598 | Chen et al. | Jul 2010 | A1 |
20100177113 | Gay et al. | Jul 2010 | A1 |
20100177387 | Travis et al. | Jul 2010 | A1 |
20100182542 | Nakamoto et al. | Jul 2010 | A1 |
20100188438 | Kang | Jul 2010 | A1 |
20100188602 | Feng | Jul 2010 | A1 |
20100205667 | Anderson et al. | Aug 2010 | A1 |
20100214135 | Bathiche et al. | Aug 2010 | A1 |
20100220260 | Sugita et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100238376 | Sakai et al. | Sep 2010 | A1 |
20100271838 | Yamaguchi | Oct 2010 | A1 |
20100277575 | Ismael et al. | Nov 2010 | A1 |
20100278480 | Vasylyev | Nov 2010 | A1 |
20100283930 | Park et al. | Nov 2010 | A1 |
20100289870 | Leister | Nov 2010 | A1 |
20100289989 | Adachi et al. | Nov 2010 | A1 |
20100295755 | Broughton et al. | Nov 2010 | A1 |
20100295920 | McGowan | Nov 2010 | A1 |
20100295930 | Ezhov | Nov 2010 | A1 |
20100300608 | Emerton et al. | Dec 2010 | A1 |
20100309296 | Harrold et al. | Dec 2010 | A1 |
20100321953 | Coleman et al. | Dec 2010 | A1 |
20100328438 | Ohyama et al. | Dec 2010 | A1 |
20110013417 | Saccomanno et al. | Jan 2011 | A1 |
20110018860 | Parry-Jones et al. | Jan 2011 | A1 |
20110019112 | Dolgoff | Jan 2011 | A1 |
20110032483 | Hruska et al. | Feb 2011 | A1 |
20110032724 | Kinoshita | Feb 2011 | A1 |
20110043142 | Travis et al. | Feb 2011 | A1 |
20110044056 | Travis et al. | Feb 2011 | A1 |
20110044579 | Travis et al. | Feb 2011 | A1 |
20110051237 | Hasegawa et al. | Mar 2011 | A1 |
20110115997 | Kim | May 2011 | A1 |
20110187635 | Lee et al. | Aug 2011 | A1 |
20110188120 | Tabirian et al. | Aug 2011 | A1 |
20110199459 | Barenbrug et al. | Aug 2011 | A1 |
20110211142 | Kashiwagi et al. | Sep 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110221998 | Adachi et al. | Sep 2011 | A1 |
20110228183 | Hamagishi | Sep 2011 | A1 |
20110235359 | Liu et al. | Sep 2011 | A1 |
20110241983 | Chang | Oct 2011 | A1 |
20110242150 | Song et al. | Oct 2011 | A1 |
20110242277 | Do et al. | Oct 2011 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110255303 | Nichol et al. | Oct 2011 | A1 |
20110267563 | Shimizu | Nov 2011 | A1 |
20110285927 | Schultz et al. | Nov 2011 | A1 |
20110286222 | Coleman | Nov 2011 | A1 |
20110292321 | Travis et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20110321143 | Angaluri et al. | Dec 2011 | A1 |
20120002121 | Pirs et al. | Jan 2012 | A1 |
20120002136 | Nagata et al. | Jan 2012 | A1 |
20120002295 | Dobschal et al. | Jan 2012 | A1 |
20120008067 | Mun et al. | Jan 2012 | A1 |
20120013720 | Kadowaki et al. | Jan 2012 | A1 |
20120056971 | Kumar et al. | Mar 2012 | A1 |
20120062991 | Mich et al. | Mar 2012 | A1 |
20120063166 | Panagotacos et al. | Mar 2012 | A1 |
20120081920 | Ie et al. | Apr 2012 | A1 |
20120086776 | Lo | Apr 2012 | A1 |
20120086875 | Yokota | Apr 2012 | A1 |
20120092435 | Wohlert | Apr 2012 | A1 |
20120106193 | Kim et al. | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120147280 | Osterman et al. | Jun 2012 | A1 |
20120154450 | Aho et al. | Jun 2012 | A1 |
20120162966 | Kim et al. | Jun 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120206050 | Spero | Aug 2012 | A1 |
20120219180 | Mehra | Aug 2012 | A1 |
20120235891 | Nishitani et al. | Sep 2012 | A1 |
20120243204 | Robinson | Sep 2012 | A1 |
20120243261 | Yamamoto et al. | Sep 2012 | A1 |
20120293721 | Ueyama | Nov 2012 | A1 |
20120294037 | Holman et al. | Nov 2012 | A1 |
20120299913 | Robinson et al. | Nov 2012 | A1 |
20120314145 | Robinson | Dec 2012 | A1 |
20120327101 | Blixt et al. | Dec 2012 | A1 |
20120327172 | El-Saban et al. | Dec 2012 | A1 |
20130039062 | Vinther et al. | Feb 2013 | A1 |
20130100097 | Martin | Apr 2013 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107174 | Yun et al. | May 2013 | A1 |
20130107340 | Wong et al. | May 2013 | A1 |
20130127861 | Gollier | May 2013 | A1 |
20130128165 | Lee et al. | May 2013 | A1 |
20130135588 | Popovich et al. | May 2013 | A1 |
20130156265 | Hennessy | Jun 2013 | A1 |
20130169701 | Whitehead et al. | Jul 2013 | A1 |
20130230136 | Sakaguchi et al. | Sep 2013 | A1 |
20130235561 | Etienne et al. | Sep 2013 | A1 |
20130242231 | Kurata et al. | Sep 2013 | A1 |
20130265625 | Fäcke et al. | Oct 2013 | A1 |
20130278544 | Cok | Oct 2013 | A1 |
20130293793 | Lu | Nov 2013 | A1 |
20130294684 | Lipton et al. | Nov 2013 | A1 |
20130300985 | Bulda | Nov 2013 | A1 |
20130307831 | Robinson et al. | Nov 2013 | A1 |
20130307946 | Robinson et al. | Nov 2013 | A1 |
20130308339 | Woodgate et al. | Nov 2013 | A1 |
20130321340 | Seo et al. | Dec 2013 | A1 |
20130321599 | Harrold et al. | Dec 2013 | A1 |
20130328866 | Woodgate et al. | Dec 2013 | A1 |
20130335821 | Robinson et al. | Dec 2013 | A1 |
20140009508 | Woodgate et al. | Jan 2014 | A1 |
20140016354 | Lee et al. | Jan 2014 | A1 |
20140022619 | Woodgate et al. | Jan 2014 | A1 |
20140036361 | Woodgate et al. | Feb 2014 | A1 |
20140041205 | Robinson et al. | Feb 2014 | A1 |
20140043323 | Sumi | Feb 2014 | A1 |
20140071382 | Scardato | Mar 2014 | A1 |
20140098418 | Lin | Apr 2014 | A1 |
20140098558 | Vasylyev | Apr 2014 | A1 |
20140111760 | Guo et al. | Apr 2014 | A1 |
20140126238 | Kao et al. | May 2014 | A1 |
20140132887 | Kurata | May 2014 | A1 |
20140201844 | Buck | Jul 2014 | A1 |
20140211125 | Kurata | Jul 2014 | A1 |
20140232960 | Schwartz et al. | Aug 2014 | A1 |
20140240344 | Tomono et al. | Aug 2014 | A1 |
20140240828 | Robinson et al. | Aug 2014 | A1 |
20140267584 | Atzpadin et al. | Sep 2014 | A1 |
20140268358 | Kusaka et al. | Sep 2014 | A1 |
20140286043 | Sykora et al. | Sep 2014 | A1 |
20140289835 | Varshavsky et al. | Sep 2014 | A1 |
20140340728 | Taheri | Nov 2014 | A1 |
20140361990 | Leister | Dec 2014 | A1 |
20140368602 | Woodgate et al. | Dec 2014 | A1 |
20150055366 | Chang et al. | Feb 2015 | A1 |
20150116212 | Freed et al. | Apr 2015 | A1 |
20150177447 | Woodgate et al. | Jun 2015 | A1 |
20150177563 | Cho et al. | Jun 2015 | A1 |
20150185398 | Chang et al. | Jul 2015 | A1 |
20150205157 | Sakai et al. | Jul 2015 | A1 |
20150268479 | Woodgate et al. | Sep 2015 | A1 |
20150286061 | Seo et al. | Oct 2015 | A1 |
20150286817 | Haddad et al. | Oct 2015 | A1 |
20150301400 | Kimura et al. | Oct 2015 | A1 |
20150334365 | Tsubaki et al. | Nov 2015 | A1 |
20150339512 | Son et al. | Nov 2015 | A1 |
20150346417 | Powell | Dec 2015 | A1 |
20150346532 | Do et al. | Dec 2015 | A1 |
20150355490 | Kao et al. | Dec 2015 | A1 |
20150378085 | Robinson et al. | Dec 2015 | A1 |
20160103264 | Lee et al. | Apr 2016 | A1 |
20160132721 | Bostick et al. | May 2016 | A1 |
20160147074 | Kobayashi et al. | May 2016 | A1 |
20160154259 | Kim et al. | Jun 2016 | A1 |
20160216420 | Gaides et al. | Jul 2016 | A1 |
20160216540 | Cho et al. | Jul 2016 | A1 |
20160224106 | Liu | Aug 2016 | A1 |
20160238869 | Osterman et al. | Aug 2016 | A1 |
20160334898 | Kwak | Nov 2016 | A1 |
20160349444 | Robinson et al. | Dec 2016 | A1 |
20160356943 | Choi et al. | Dec 2016 | A1 |
20160357046 | Choi et al. | Dec 2016 | A1 |
20170003436 | Inoue et al. | Jan 2017 | A1 |
20170031206 | Smith et al. | Feb 2017 | A1 |
20170090103 | Holman | Mar 2017 | A1 |
20170092187 | Bergquist | Mar 2017 | A1 |
20170092229 | Greenebaum et al. | Mar 2017 | A1 |
20170115485 | Saito et al. | Apr 2017 | A1 |
20170123241 | Su et al. | May 2017 | A1 |
20170139110 | Woodgate et al. | May 2017 | A1 |
20170168633 | Kwak et al. | Jun 2017 | A1 |
20170205558 | Hirayama et al. | Jul 2017 | A1 |
20170236494 | Sommerlade et al. | Aug 2017 | A1 |
20170269283 | Wang et al. | Sep 2017 | A1 |
20170269285 | Hirayama et al. | Sep 2017 | A1 |
20170329399 | Azam et al. | Nov 2017 | A1 |
20170336661 | Harrold et al. | Nov 2017 | A1 |
20170339398 | Woodgate et al. | Nov 2017 | A1 |
20170343715 | Fang et al. | Nov 2017 | A1 |
20180014007 | Brown | Jan 2018 | A1 |
20180052346 | Sakai et al. | Feb 2018 | A1 |
20180082068 | Lancioni et al. | Mar 2018 | A1 |
20180095581 | Hwang et al. | Apr 2018 | A1 |
20180113334 | Fang et al. | Apr 2018 | A1 |
20180188576 | Xu et al. | Jul 2018 | A1 |
20180188603 | Fang et al. | Jul 2018 | A1 |
20180196275 | Robinson et al. | Jul 2018 | A1 |
20180210243 | Fang et al. | Jul 2018 | A1 |
20180231811 | Wu | Aug 2018 | A1 |
20180252949 | Klippstein et al. | Sep 2018 | A1 |
20180259799 | Kroon | Sep 2018 | A1 |
20180259812 | Goda et al. | Sep 2018 | A1 |
20180321523 | Robinson et al. | Nov 2018 | A1 |
20180321553 | Robinson et al. | Nov 2018 | A1 |
20180329245 | Robinson et al. | Nov 2018 | A1 |
20180364526 | Finnemeyer et al. | Dec 2018 | A1 |
20190086706 | Robinson et al. | Mar 2019 | A1 |
20190121173 | Robinson et al. | Apr 2019 | A1 |
20190154896 | Yanai | May 2019 | A1 |
20190196236 | Chen et al. | Jun 2019 | A1 |
20190197928 | Schubert | Jun 2019 | A1 |
20190215509 | Woodgate et al. | Jul 2019 | A1 |
20190227366 | Harrold et al. | Jul 2019 | A1 |
20190235304 | Tamada et al. | Aug 2019 | A1 |
20190250458 | Robinson et al. | Aug 2019 | A1 |
20190293858 | Woodgate et al. | Sep 2019 | A1 |
20190293983 | Robinson et al. | Sep 2019 | A1 |
20190353944 | Acreman et al. | Nov 2019 | A1 |
20200159055 | Robinson et al. | May 2020 | A1 |
20200225402 | Ihas et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
2222313 | Jun 1998 | CA |
1142869 | Feb 1997 | CN |
1377453 | Oct 2002 | CN |
1125943 | Oct 2003 | CN |
1454329 | Nov 2003 | CN |
1466005 | Jan 2004 | CN |
1487332 | Apr 2004 | CN |
1696788 | Nov 2005 | CN |
1776484 | May 2006 | CN |
1826553 | Aug 2006 | CN |
1900785 | Jan 2007 | CN |
1908753 | Feb 2007 | CN |
101029975 | Sep 2007 | CN |
101049028 | Oct 2007 | CN |
101114080 | Jan 2008 | CN |
101142823 | Mar 2008 | CN |
101266338 | Sep 2008 | CN |
101681061 | Mar 2010 | CN |
102147079 | Aug 2011 | CN |
104133292 | Nov 2014 | CN |
204740413 | Nov 2015 | CN |
209171779 | Jul 2019 | CN |
0653891 | May 1995 | EP |
0830984 | Mar 1998 | EP |
0860729 | Aug 1998 | EP |
0939273 | Sep 1999 | EP |
1394593 | Mar 2004 | EP |
2219067 | Aug 2010 | EP |
2451180 | May 2012 | EP |
2405542 | Feb 2005 | GB |
2418518 | Mar 2006 | GB |
2428100 | Jan 2007 | GB |
2482065 | Jan 2012 | GB |
2486935 | Sep 2013 | GB |
H01130783 | Sep 1989 | JP |
H10142556 | May 1998 | JP |
H1130783 | Feb 1999 | JP |
H11174489 | Jul 1999 | JP |
2003215705 | Jul 2003 | JP |
2005181914 | Jul 2005 | JP |
2006010935 | Jan 2006 | JP |
2007094035 | Apr 2007 | JP |
2007109255 | Apr 2007 | JP |
2007148279 | Jun 2007 | JP |
2007273288 | Oct 2007 | JP |
2008204874 | Sep 2008 | JP |
2010160527 | Jul 2010 | JP |
2012060607 | Mar 2012 | JP |
2013015619 | Jan 2013 | JP |
20090932304 | Dec 2009 | KR |
20110006773 | Jan 2011 | KR |
20110017918 | Feb 2011 | KR |
20120011228 | Feb 2012 | KR |
20120049890 | May 2012 | KR |
101990286 | Jun 2019 | KR |
M537663 | Mar 2017 | TW |
1994006249 | Mar 1994 | WO |
1995020811 | Aug 1995 | WO |
1995027915 | Oct 1995 | WO |
1998021620 | May 1998 | WO |
1999011074 | Mar 1999 | WO |
2001061241 | Aug 2001 | WO |
2005071449 | Aug 2005 | WO |
2007111436 | Oct 2007 | WO |
2010021926 | Feb 2010 | WO |
2011020962 | Feb 2011 | WO |
2012158574 | Nov 2012 | WO |
2014011328 | Jan 2014 | WO |
2015040776 | Mar 2015 | WO |
2015057625 | Apr 2015 | WO |
2015143227 | Sep 2015 | WO |
2015157184 | Oct 2015 | WO |
2015190311 | Dec 2015 | WO |
2015200814 | Dec 2015 | WO |
2016195786 | Dec 2016 | WO |
2017050631 | Mar 2017 | WO |
2018035492 | Feb 2018 | WO |
2018208618 | Nov 2018 | WO |
2019055755 | Mar 2019 | WO |
2019067846 | Apr 2019 | WO |
2019147762 | Aug 2019 | WO |
Entry |
---|
3M™ ePrivacy Filter software professional version; http://www.cdw.com/shop/products/3M-ePrivacy-Filter-software-professional-version/3239412.aspx?cm_mmc=ShoppingFeeds-_-ChannelIntelligence-_-Software-_-3239412_3MT%20ePrivacy%20Filter%20software%20professional%20version_3MF-EPFPRO&cpncode=37-7582919&srccode=cii_10191459#PO; Copyright 2007-2016. |
Bahadur, “Liquid crystals applications and uses,” World Scientific, vol. 1, pp. 178 (1990). |
Beato: “Understanding Comfortable stereography”, Dec. 31, 2011 (Dec. 31, 2011), XP055335952, Retrieved from the Internet: URL:http://64.17.134.112/Affonso Beato/Understanding Comfortable Stereography.html [retrieved-on Jan. 17, 2017]. |
Braverman: “The 3D Toolbox : News”, Aug. 13, 2010 (Aug. 13, 2010), XP055336081, Retrieved from the Internet: URL:http://www.dashwood3d.com/blog/the-3d-toolbox/ [retrieved on Jan. 17, 2017]. |
Cootes et al., “Active Appearance Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):681-685, 2001. |
Cootes et al., “Active Shape Models—Their Training and Application” Computer Vision and Image Understanding 61(1):38-59 Jan. 1995. |
Dalal et al., “Histogram of Oriented Gradients for Human Detection”, Computer Vision and Pattern Recognition, pp. 886-893, 2005. |
Drucker et al., “Support Vector Regression Machines”, Advances in Neural Information Processing Systems 9, pp. 155-161, NIPS 1996. |
Ho, “Random Decision Forests”, Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, pp. 278-282, Aug. 14-16, 1995. |
Ian Sexton et al: “Stereoscopic and autostereoscopic display-systems”,—IEEE Signal Processing Magazine, May 1, 1999 (May 1, 1999 ), pp. 85-99, XP055305471, Retrieved from the Internet: RL:http://ieeexplore.ieee.org/iel5/79/16655/00768575.pdf [retrieved on Sep. 26, 2016]. |
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004). |
Kononenko et al., “Learning to Look Up: Realtime Monocular Gaze Correction Using Machine Learning”, Computer Vision and Pattern Recognition, pp. 4667-4675, 2015. |
Languy et al., “Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics”, Optics Letters, 36, pp. 2743-2745. |
Lipton, “Stereographies: Developers' Handbook”, Stereographic Developers Handbook, Jan. 1, 1997, XP002239311, p. 42-49. |
Lipton: “Stereoscopic Composition Lenny Lipton”, Feb. 15, 2009 (Feb. 15, 2009), XP055335930, Retrieved from the Internet: URL:https://lennylipton.wordpress.com/2009/02/15/stereoscopic-composition/ [retrieved on Jan. 17, 2017]. |
Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision 60 (2), pp. 91-110, 2004. |
Lucio et al: “RGBD Camera Effects”, Aug. 1, 2012 (Aug. 1, 2012), XP055335831, SIBGRAPI—Conference on Graphics, Patterns and Images Retrieved from the Internet: URL:https://www.researchgate.net/profile/Leandro Cruz/publication/233398182 RGBD Camera Effects/links/0912f50a2922010eb2000000.pdf [retrieved on Jan. 17, 2017]. |
Marjanovic, M., “Interlace, Interleave, and Field Dominance,” http://www.mir.com/DMG/interl.html, pp. 1-5 (2001). |
Ozuysal et al., “Fast Keypoint recognition in Ten Lines of Code”, Computer Vision and Pattern Recognition, pp. 1-8, 2007. |
Tabiryan et al., “The Promise of Diffractive Waveplates,” Optics and Photonics News, vol. 21, Issue 3, pp. 40-45 (Mar. 2010). |
Travis, et al. “Backlight for view-sequential autostereo 3D”, Microsoft E&DD Applied Sciences, (date unknown), 25 pages. |
Travis, et al. “Collimated light from a waveguide for a display,” Optics Express, vol. 17, No. 22, pp. 19714-19719 (2009). |
Viola and Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, pp. 1-9 CVPR 2001. |
Williams S P et al., “New Computational Control Techniques and Increased Understanding for Stereo 3-D Displays”, Proceedings of SPIE, SPIE, US, vol. 1256, Jan. 1, 1990, XP000565512, p. 75, 77, 79. |
Zach et al., “A Duality Based Approach for Realtime TV-L1 Optical Flow”, Pattern Recognition (Proc. DAGM), 2007, pp. 214-223. |
Gass, et al. “Privacy LCD Technology for Cellular Phones”, Sharp Laboratories of Europe Ltd, Mobile LCD Group, Feb. 2007, pp. 45-49. |
Weindorf et al., “Active Circular Polarizer OLED E-Mirror”, Proceedings of the Society for Information Display 25th Annual Symposium on Vehicle Displays, Livonia, MI, pp. 225-237, Sep. 25-26, 2018. |
Adachi, et al. “P-228L: Late-News Poster: Controllable Viewing-Angle Displays using a Hybrid Aligned Nematic Liquid Crystal Cell”, ISSN, SID 2006 Digest, pp. 705-708. |
Brudy et al., “Is Anyone Looking? Mitigating Shoulder Surfing on Public Displays through Awareness and Protection”, Proceedings of the International Symposium on Persuasive Displays (Jun. 3, 2014), pp. 1-6. |
CN201780030715.3 Notification of the First Office Action dated Jan. 21, 2020. |
EP-16860628.3 Extended European Search Report of European Patent Office dated Apr. 26, 2019. |
EP-17799963.8 Extended European Search Report of European Patent Office dated Oct. 9, 2019. |
Ishikawa, T., “New Design for a Highly Collimating Turning Film”, SID 06 Digest, pp. 514-517. |
PCT/US2016/058695 International search report and written opinion of the international searching authority dated Feb. 28, 2017. |
PCT/US2017/032734 International search report and written opinion of the international searching authority dated Jul. 27, 2017. |
PCT/US2018/031206 International search report and written opinion of the international searching authority dated Jul. 20, 2018. |
PCT/US2018/031218 International Preliminary Report on Patentability dated Nov. 21, 2019. |
PCT/US2018/031218 International search report and written opinion of the international searching authority dated Jul. 19, 2018. |
PCT/US2018/051021 International search report and written opinion of the international searching authority dated Nov. 21, 2018. |
PCT/US2018/051027 International search report and written opinion of the international searching authority dated Nov. 30, 2018. |
PCT/US2018/053328 International search report and written opinion of the international searching authority dated Nov. 30, 2018. |
PCT/US2018/059249 International search report and written opinion of the international searching authority dated Jan. 3, 2019. |
PCT/US2018/059256 International search report and written opinion of the international searching authority dated Jan. 3, 2019. |
PCT/US2019/014889 International search report and written opinion of the international searching authority dated May 24, 2019. |
PCT/US2019/014902 International search report and written opinion of the international searching authority dated Jun. 25, 2019. |
PCT/US2019/023659 International search report and written opinion of the international searching authority dated Jun. 10, 2019. |
PCT/US2019/038409 International search report and written opinion of the international searching authority dated Sep. 19, 2019. |
PCT/US2019/038466 International search report and written opinion of the international searching authority dated Nov. 5, 2019. |
PCT/US2019/042027 International search report and written opinion of the international searching authority dated Oct. 15, 2019. |
PCT/US2019/054291 International search report and written opinion of the international searching authority dated Jan. 6, 2020. |
PCT/US2019/059990 International search report and written opinion of the international searching authority dated Feb. 28, 2020. |
PCT/US2019/066208 International search report and written opinion of the international searching authority dated Feb. 27, 2020. |
PCT/US2020/017537 International search report and written opinion of the international searching authority dated Apr. 29, 2020. |
PCT/US2020/040686 International search report and written opinion of the international searching authority dated Nov. 20, 2020. |
PCT/US2020/044574 International search report and written opinion of the international searching authority dated Oct. 21, 2020. |
Weindorf et al., “Active Circular Polarizer OLED E-Mirror”, Proceedings of the Society for Information Display 25th Annual Symposium of Vehicle Displays, Livonia, MI, pp. 225-237, Sep. 25-26, 2018. |
PCT/US2020/053863 International search report and written opinion of the international searching authority dated Mar. 12, 2021. |
PCT/US2020/060155 International search report and written opinion of the international searching authority dated Feb. 5, 2021. |
PCT/US2020/060191 International search report and written opinion of the international searching authority dated Feb. 8, 2021. |
PCT/US2020/063638 International search report and written opinion of the international searching authority dated Mar. 2, 2021. |
PCT/US2020/064633 International search report and written opinion of the international searching authority dated Mar. 15, 2021. |
Robson, et al. “Spatial and temporal contrast-sensitivity functions of the visual system”, J. Opt. Soc. Amer., vol. 56, pp. 1141-1142 (1966). |
Simonyan et al., “Very Deep Convolutional Networks For Large-Scale Image Recognition”, ICLR 2015. |
CN201880042320.X Notification of the First Office Action dated May 25, 2021. |
EP-18855604.7 Extended European Search Report of European Patent Office dated Jun. 1, 2021. |
EP-18857077.4 Extended European Search Report of European Patent Office dated Jun. 16, 2021. |
Number | Date | Country | |
---|---|---|---|
20190215509 A1 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
62582030 | Nov 2017 | US |