Proactive assistance based on dialog communication between devices

Information

  • Patent Grant
  • 10942703
  • Patent Number
    10,942,703
  • Date Filed
    Wednesday, January 16, 2019
    5 years ago
  • Date Issued
    Tuesday, March 9, 2021
    3 years ago
Abstract
Systems and processes for proactive assistance based on dialog communication between devices are provided. In one example process, while voice communication between an electronic device and a second electronic device is established, a stream of audio data associated with the second electronic device can be received. In response to detecting a user input, a text representation of speech contained in a portion of the stream of audio data can be generated. The process can determine whether the text representation contains information corresponding to one of a plurality of types of information. In response to determining that the text representation contains information corresponding to one of a plurality of types of information, one or more tasks based on the information can be performed.
Description
FIELD

This relates generally to intelligent automated assistants and, more specifically, to proactive assistance based on dialog communication between devices.


BACKGROUND

Intelligent automated assistants (or digital assistants) can provide a beneficial interface between human users and electronic devices. Such assistants can allow users to interact with devices or systems using natural language in spoken and/or text forms. For example, a user can provide a speech input containing a user request to a digital assistant operating on an electronic device. The digital assistant can interpret the user's intent from the speech input and operationalize the user's intent into tasks. The tasks can then be performed by executing one or more services of the electronic device, and a relevant output responsive to the user request can be returned to the user.


Typically, digital assistants can be implemented using a dedicated user interface of the electronic device. To obtain assistance from the digital assistant, a user may need to navigate to the dedicated user interface and provide a user request to the digital assistant. Such actions may be cumbersome, especially when the user is already utilizing the electronic device for other functions (e.g., conducting a phone call or responding to a text message). This can restrict the application and usefulness of digital assistants and thus limit the widespread adoption of digital assistants.


SUMMARY

Systems and processes for proactive assistance based on dialog communication between devices are provided. In one example process, while voice communication between an electronic device and a second electronic device is established, a stream of audio data associated with the second electronic device can be received. In response to detecting a user input, a text representation of speech contained in a portion of the stream of audio data can be generated. The process can determine whether the text representation contains information corresponding to one of a plurality of types of information. In response to determining that the text representation contains information corresponding to one of a plurality of types of information, one or more tasks based on the information can be performed.


In another example process, text associated with a user of a second electronic device can be received. A user input can be detected. In response to detecting the user input, the process can determine whether a portion of the text contains information corresponding to one of a plurality of types of information. In response to determining that the portion of the text contains information corresponding to one of a plurality of types of information, one or more tasks can be performed based on the information.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating a system and environment for implementing a digital assistant according to various examples.



FIG. 2A is a block diagram illustrating a portable multifunction device implementing the client-side portion of a digital assistant according to various examples.



FIG. 2B is a block diagram illustrating exemplary components for event handling according to various examples.



FIG. 3 illustrates a portable multifunction device implementing the client-side portion of a digital assistant according to various examples.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface according to various examples.



FIG. 5A illustrates an exemplary user interface for a menu of applications on a portable multifunction device according to various examples.



FIG. 5B illustrates an exemplary user interface for a multifunction device with a touch-sensitive surface that is separate from the display according to various examples.



FIG. 6A illustrates a personal electronic device according to various examples.



FIG. 6B is a block diagram illustrating a personal electronic device according to various examples.



FIG. 7A is a block diagram illustrating a digital assistant system or a server portion thereof according to various examples.



FIG. 7B illustrates the functions of the digital assistant shown in FIG. 7A according to various examples.



FIG. 7C illustrates a portion of an ontology according to various examples.



FIGS. 8A-B illustrate a process for proactive assistance based on dialog communication between devices according to various examples.



FIGS. 9A-D illustrate exemplary user interfaces of an electronic device for proactive assistance based on dialog communication between devices according to various examples.



FIG. 10 illustrates a functional block diagram of an electronic device according to various examples.





DETAILED DESCRIPTION

In the following description of examples, reference is made to the accompanying drawings in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the various examples.


During dialog communication (e.g., telephone calls, instant messaging, videotelephony calls, etc.) between a user's electronic device and a second electronic device, it can be inconvenient for the user to look up information or perform other tasks on the electronic device (e.g., create a calendar event). This can be because the electronic device is displaying information required for the dialog communication (e.g., during instant messaging), or because the electronic device is positioned against the user's face (e.g., during a telephone call). Further, the user of the electronic device may need to focus his or her attention on communicating with the other participant(s) of the dialog communication rather than performing other tasks on the electronic device. Techniques for providing proactive assistance based on dialog communication between devices are described herein. The techniques enable relevant tasks to be anticipated and performed based on the dialog communication between devices. In one example process, dialog communication can be established between an electronic device and a second electronic device. Dialog associated with the second electronic device can be received. A determination can be made as to whether the dialog contains information corresponding to one of a plurality of types of information. The plurality of types of information can be information that is likely of interest to the user (e.g., contact information, locations, media items, etc.). In response to determining that the dialog contains information corresponding to one of a plurality of types of information, one or more tasks based on the information can be performed. By proactively performing relevant tasks based on the received dialog, the user's attention can be focused on communicating with the other participant(s) of the dialog communication rather than on performing other tasks on the electronic device (e.g., look up contact information or calendar information). In addition, the user would not be required to navigate to a stand-alone interface associated with the digital assistant to obtain assistance during the dialog communication. This can improve user experience and also improve the quality of interpersonal communication using the electronic device.


Although the following description uses terms “first,” “second,” etc. to describe various elements, these elements should not be limited by the terms. These terms are only used to distinguish one element from another. For example, a first user input could be termed a second user input, and, similarly, a second user input could be termed a first user input, without departing from the scope of the various described examples. The first user input and the second user input can both be inputs and, in some cases, can be separate and different inputs.


The terminology used in the description of the various described examples herein is for the purpose of describing particular examples only and is not intended to be limiting. As used in the description of the various described examples and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.


1. System and Environment



FIG. 1 illustrates a block diagram of system 100 according to various examples. In some examples, system 100 can implement a digital assistant. The terms “digital assistant,” “virtual assistant,” “intelligent automated assistant,” or “automatic digital assistant” can refer to any information processing system that interprets natural language input in spoken and/or textual form to infer user intent, and performs actions based on the inferred user intent. For example, to act on an inferred user intent, the system can perform one or more of the following: identifying a task flow with steps and parameters designed to accomplish the inferred user intent, inputting specific requirements from the inferred user intent into the task flow; executing the task flow by invoking programs, methods, services, APIs, or the like; and generating output responses to the user in an audible (e.g., speech) and/or visual form.


Specifically, a digital assistant can be capable of accepting a user request at least partially in the form of a natural language command, request, statement, narrative, and/or inquiry. Typically, the user request can seek either an informational answer or performance of a task by the digital assistant. A satisfactory response to the user request can be a provision of the requested informational answer, a performance of the requested task, or a combination of the two. For example, a user can ask the digital assistant a question, such as “Where am I right now?” Based on the user's current location, the digital assistant can answer, “You are in Central Park near the west gate.” The user can also request the performance of a task, for example, “Please invite my friends to my girlfriend's birthday party next week.” In response, the digital assistant can acknowledge the request by saying “Yes, right away,” and then send a suitable calendar invite on behalf of the user to each of the user's friends listed in the user's electronic address book. During performance of a requested task, the digital assistant can sometimes interact with the user in a continuous dialogue involving multiple exchanges of information over an extended period of time. There are numerous other ways of interacting with a digital assistant to request information or performance of various tasks. In addition to providing verbal responses and taking programmed actions, the digital assistant can also provide responses in other visual or audio forms, e.g., as text, alerts, music, videos, animations, etc.


As shown in FIG. 1, in some examples, a digital assistant can be implemented according to a client-server model. The digital assistant can include client-side portion 102 (hereafter “DA client 102”) executed on user device 104 and server-side portion 106 (hereafter “DA server 106”) executed on server system 108. DA client 102 can communicate with DA server 106 through one or more networks 110. DA client 102 can provide client-side functionalities such as user-facing input and output processing and communication with DA server 106. DA server 106 can provide server-side functionalities for any number of DA clients 102 each residing on a respective user device 104.


In some examples, DA server 106 can include client-facing I/O interface 112, one or more processing modules 114, data and models 116, and I/O interface to external services 118. The client-facing I/O interface 112 can facilitate the client-facing input and output processing for DA server 106. One or more processing modules 114 can utilize data and models 116 to process speech input and determine the user's intent based on natural language input. Further, one or more processing modules 114 perform task execution based on inferred user intent. In some examples, DA server 106 can communicate with external services 120 through network(s) 110 for task completion or information acquisition. I/O interface to external services 118 can facilitate such communications.


User device 104 can be any suitable electronic device. For example, user devices can be a portable multifunctional device (e.g., device 200, described below with reference to FIG. 2A), a multifunctional device (e.g., device 400, described below with reference to FIG. 4), or a personal electronic device (e.g., device 600, described below with reference to FIG. 6A-B.) A portable multifunctional device can be, for example, a mobile telephone that also contains other functions, such as PDA and/or music player functions. Specific examples of portable multifunction devices can include the iPhone®, iPod Touch®, and iPad® devices from Apple Inc. of Cupertino, Calif. Other examples of portable multifunction devices can include, without limitation, laptop or tablet computers. Further, in some examples, user device 104 can be a non-portable multifunctional device. In particular, user device 104 can be a desktop computer, a game console, a television, or a television set-top box. In some examples, user device 104 can include a touch-sensitive surface (e.g., touch screen displays and/or touchpads). Further, user device 104 can optionally include one or more other physical user-interface devices, such as a physical keyboard, a mouse, and/or a joystick. Various examples of electronic devices, such as multifunctional devices, are described below in greater detail.


Examples of communication network(s) 110 can include local area networks (LAN) and wide area networks (WAN), e.g., the Internet. Communication network(s) 110 can be implemented using any known network protocol, including various wired or wireless protocols, such as, for example, Ethernet, Universal Serial Bus (USB), FIREWIRE, Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Wi-Fi, voice over Internet Protocol (VoIP), Wi-MAX, or any other suitable communication protocol.


Server system 108 can be implemented on one or more standalone data processing apparatus or a distributed network of computers. In some examples, server system 108 can also employ various virtual devices and/or services of third-party service providers (e.g., third-party cloud service providers) to provide the underlying computing resources and/or infrastructure resources of server system 108.


In some examples, user device 104 can communicate with DA server 106 via second user device 122. Second user device 122 can be similar or identical to user device 104. For example, second user device 122 can be similar to devices 200, 400, or 600 described below with reference to FIGS. 2A, 4, and 6A-B. User device 104 can be configured to communicatively couple to second user device 122 via a direct communication connection, such as Bluetooth, NFC, BTLE, or the like, or via a wired or wireless network, such as a local Wi-Fi network. In some examples, second user device 122 can be configured to act as a proxy between user device 104 and DA server 106. For example, DA client 102 of user device 104 can be configured to transmit information (e.g., a user request received at user device 104) to DA server 106 via second user device 122. DA server 106 can process the information and return relevant data (e.g., data content responsive to the user request) to user device 104 via second user device 122.


In some examples, user device 104 can be configured to communicate abbreviated requests for data to second user device 122 to reduce the amount of information transmitted from user device 104. Second user device 122 can be configured to determine supplemental information to add to the abbreviated request to generate a complete request to transmit to DA server 106. This system architecture can advantageously allow user device 104 having limited communication capabilities and/or limited battery power (e.g., a watch or a similar compact electronic device) to access services provided by DA server 106 by using second user device 122, having greater communication capabilities and/or battery power (e.g., a mobile phone, laptop computer, tablet computer, or the like), as a proxy to DA server 106. While only two user devices 104 and 122 are shown in FIG. 1, it should be appreciated that system 100 can include any number and type of user devices configured in this proxy configuration to communicate with DA server system 106.


Although the digital assistant shown in FIG. 1 can include both a client-side portion (e.g., DA client 102) and a server-side portion (e.g., DA server 106), in some examples, the functions of a digital assistant can be implemented as a standalone application installed on a user device. In addition, the divisions of functionalities between the client and server portions of the digital assistant can vary in different implementations. For instance, in some examples, the DA client can be a thin-client that provides only user-facing input and output processing functions, and delegates all other functionalities of the digital assistant to a backend server.


2. Electronic Devices


Attention is now directed toward embodiments of electronic devices for implementing the client-side portion of a digital assistant. FIG. 2A is a block diagram illustrating portable multifunction device 200 with touch-sensitive display system 212 in accordance with some embodiments. Touch-sensitive display 212 is sometimes called a “touch screen” for convenience and is sometimes known as or called a “touch-sensitive display system.” Device 200 includes memory 202 (which optionally includes one or more computer-readable storage mediums), memory controller 222, one or more processing units (CPUs) 220, peripherals interface 218, RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, input/output (I/O) subsystem 206, other input control devices 216, and external port 224. Device 200 optionally includes one or more optical sensors 264. Device 200 optionally includes one or more contact intensity sensors 265 for detecting intensity of contacts on device 200 (e.g., a touch-sensitive surface such as touch-sensitive display system 212 of device 200). Device 200 optionally includes one or more tactile output generators 267 for generating tactile outputs on device 200 (e.g., generating tactile outputs on a touch-sensitive surface such as touch-sensitive display system 212 of device 200 or touchpad 455 of device 400). These components optionally communicate over one or more communication buses or signal lines 203.


As used in the specification and claims, the term “intensity” of a contact on a touch-sensitive surface refers to the force or pressure (force per unit area) of a contact (e.g., a finger contact) on the touch-sensitive surface, or to a substitute (proxy) for the force or pressure of a contact on the touch-sensitive surface. The intensity of a contact has a range of values that includes at least four distinct values and more typically includes hundreds of distinct values (e.g., at least 256). Intensity of a contact is, optionally, determined (or measured) using various approaches and various sensors or combinations of sensors. For example, one or more force sensors underneath or adjacent to the touch-sensitive surface are, optionally, used to measure force at various points on the touch-sensitive surface. In some implementations, force measurements from multiple force sensors are combined (e.g., a weighted average) to determine an estimated force of a contact. Similarly, a pressure-sensitive tip of a stylus is, optionally, used to determine a pressure of the stylus on the touch-sensitive surface. Alternatively, the size of the contact area detected on the touch-sensitive surface and/or changes thereto, the capacitance of the touch-sensitive surface proximate to the contact and/or changes thereto, and/or the resistance of the touch-sensitive surface proximate to the contact and/or changes thereto are, optionally, used as a substitute for the force or pressure of the contact on the touch-sensitive surface. In some implementations, the substitute measurements for contact force or pressure are used directly to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is described in units corresponding to the substitute measurements). In some implementations, the substitute measurements for contact force or pressure are converted to an estimated force or pressure, and the estimated force or pressure is used to determine whether an intensity threshold has been exceeded (e.g., the intensity threshold is a pressure threshold measured in units of pressure). Using the intensity of a contact as an attribute of a user input allows for user access to additional device functionality that may otherwise not be accessible by the user on a reduced-size device with limited real estate for displaying affordances (e.g., on a touch-sensitive display) and/or receiving user input (e.g., via a touch-sensitive display, a touch-sensitive surface, or a physical/mechanical control such as a knob or a button).


As used in the specification and claims, the term “tactile output” refers to physical displacement of a device relative to a previous position of the device, physical displacement of a component (e.g., a touch-sensitive surface) of a device relative to another component (e.g., housing) of the device, or displacement of the component relative to a center of mass of the device that will be detected by a user with the user's sense of touch. For example, in situations where the device or the component of the device is in contact with a surface of a user that is sensitive to touch (e.g., a finger, palm, or other part of a user's hand), the tactile output generated by the physical displacement will be interpreted by the user as a tactile sensation corresponding to a perceived change in physical characteristics of the device or the component of the device. For example, movement of a touch-sensitive surface (e.g., a touch-sensitive display or trackpad) is, optionally, interpreted by the user as a “down click” or “up click” of a physical actuator button. In some cases, a user will feel a tactile sensation such as an “down click” or “up click” even when there is no movement of a physical actuator button associated with the touch-sensitive surface that is physically pressed (e.g., displaced) by the user's movements. As another example, movement of the touch-sensitive surface is, optionally, interpreted or sensed by the user as “roughness” of the touch-sensitive surface, even when there is no change in smoothness of the touch-sensitive surface. While such interpretations of touch by a user will be subject to the individualized sensory perceptions of the user, there are many sensory perceptions of touch that are common to a large majority of users. Thus, when a tactile output is described as corresponding to a particular sensory perception of a user (e.g., an “up click,” a “down click,” “roughness”), unless otherwise stated, the generated tactile output corresponds to physical displacement of the device or a component thereof that will generate the described sensory perception for a typical (or average) user.


It should be appreciated that device 200 is only one example of a portable multifunction device, and that device 200 optionally has more or fewer components than shown, optionally combines two or more components, or optionally has a different configuration or arrangement of the components. The various components shown in FIG. 2A are implemented in hardware, software, or a combination of both hardware and software, including one or more signal processing and/or application-specific integrated circuits.


Memory 202 may include one or more computer-readable storage mediums. The computer-readable storage mediums may be tangible and non-transitory. Memory 202 may include high-speed random access memory and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices. Memory controller 222 may control access to memory 202 by other components of device 200.


In some examples, a non-transitory computer-readable storage medium of memory 202 can be used to store instructions (e.g., for performing aspects of processes described below) for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. In other examples, the instructions (e.g., for performing aspects of the processes described below) can be stored on a non-transitory computer-readable storage medium (not shown) of the server system 108 or can be divided between the non-transitory computer-readable storage medium of memory 202 and the non-transitory computer-readable storage medium of server system 108. In the context of this document, a “non-transitory computer-readable storage medium” can be any medium that can contain or store the program for use by or in connection with the instruction execution system, apparatus, or device.


Peripherals interface 218 can be used to couple input and output peripherals of the device to CPU 220 and memory 202. The one or more processors 220 run or execute various software programs and/or sets of instructions stored in memory 202 to perform various functions for device 200 and to process data. In some embodiments, peripherals interface 218, CPU 220, and memory controller 222 may be implemented on a single chip, such as chip 204. In some other embodiments, they may be implemented on separate chips.


RF (radio frequency) circuitry 208 receives and sends RF signals, also called electromagnetic signals. RF circuitry 208 converts electrical signals to/from electromagnetic signals and communicates with communications networks and other communications devices via the electromagnetic signals. RF circuitry 208 optionally includes well-known circuitry for performing these functions, including but not limited to an antenna system, an RF transceiver, one or more amplifiers, a tuner, one or more oscillators, a digital signal processor, a CODEC chipset, a subscriber identity module (SIM) card, memory, and so forth. RF circuitry 208 optionally communicates with networks, such as the Internet, also referred to as the World Wide Web (WWW), an intranet and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN) and/or a metropolitan area network (MAN), and other devices by wireless communication. The RF circuitry 208 optionally includes well-known circuitry for detecting near field communication (NFC) fields, such as by a short-range communication radio. The wireless communication optionally uses any of a plurality of communications standards, protocols, and technologies, including but not limited to Global System for Mobile Communications (GSM), Enhanced Data GSM Environment (EDGE), high-speed downlink packet access (HSDPA), high-speed uplink packet access (HSUPA), Evolution, Data-Only (EV-DO), HSPA, HSPA+, Dual-Cell HSPA (DC-HSPDA), long term evolution (LTE), near field communication (NFC), wideband code division multiple access (W-CDMA), code division multiple access (CDMA), time division multiple access (TDMA), Bluetooth, Bluetooth Low Energy (BTLE), Wireless Fidelity (Wi-Fi) (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11n, and/or IEEE 802.11ac), voice over Internet Protocol (VoIP), Wi-MAX, a protocol for email (e.g., Internet message access protocol (IMAP) and/or post office protocol (POP)), instant messaging (e.g., extensible messaging and presence protocol (XMPP), Session Initiation Protocol for Instant Messaging and Presence Leveraging Extensions (SIMPLE), Instant Messaging and Presence Service (IMPS)), and/or Short Message Service (SMS), or any other suitable communication protocol, including communication protocols not yet developed as of the filing date of this document.


Audio circuitry 210, speaker 211, and microphone 213 provide an audio interface between a user and device 200. Audio circuitry 210 receives audio data from peripherals interface 218, converts the audio data to an electrical signal, and transmits the electrical signal to speaker 211. Speaker 211 converts the electrical signal to human-audible sound waves. Audio circuitry 210 also receives electrical signals converted by microphone 213 from sound waves. Audio circuitry 210 converts the electrical signal to audio data and transmits the audio data to peripherals interface 218 for processing. Audio data may be retrieved from and/or transmitted to memory 202 and/or RF circuitry 208 by peripherals interface 218. In some embodiments, audio circuitry 210 also includes a headset jack (e.g., 312, FIG. 3). The headset jack provides an interface between audio circuitry 210 and removable audio input/output peripherals, such as output-only headphones or a headset with both output (e.g., a headphone for one or both ears) and input (e.g., a microphone).


In some examples, audio circuitry 210 can include a buffer (e.g., memory) to store audio data received from peripherals interface 218. The buffer can also store audio data converted from the electrical signals of microphone 213. The buffer can be a circular buffer. The circular buffer can be a first-in first-out (FIFO) buffer that continually overwrites its contents. The buffer may be of any size, such as for example 10 or 20 seconds. In some examples, audio circuitry 210 can utilize memory 202 to store audio data.


I/O subsystem 206 couples input/output peripherals on device 200, such as touch screen 212 and other input control devices 216, to peripherals interface 218. I/O subsystem 206 optionally includes display controller 256, optical sensor controller 258, intensity sensor controller 259, haptic feedback controller 261, and one or more input controllers 260 for other input or control devices. The one or more input controllers 260 receive/send electrical signals from/to other input control devices 216. The other input control devices 216 optionally include physical buttons (e.g., push buttons, rocker buttons, etc.), dials, slider switches, joysticks, click wheels, and so forth. In some alternate embodiments, input controller(s) 260 are, optionally, coupled to any (or none) of the following: a keyboard, an infrared port, a USB port, and a pointer device such as a mouse. The one or more buttons (e.g., 308, FIG. 3) optionally include an up/down button for volume control of speaker 211 and/or microphone 213. The one or more buttons optionally include a push button (e.g., 306, FIG. 3).


A quick press of the push button may disengage a lock of touch screen 212 or begin a process that uses gestures on the touch screen to unlock the device, as described in U.S. patent application Ser. No. 11/322,549, “Unlocking a Device by Performing Gestures on an Unlock Image,” filed Dec. 23, 2005, U.S. Pat. No. 7,657,849, which is hereby incorporated by reference in its entirety. A longer press of the push button (e.g., 306) may turn power to device 200 on or off. The user may be able to customize a functionality of one or more of the buttons. Touch screen 212 is used to implement virtual or soft buttons and one or more soft keyboards.


Touch-sensitive display 212 provides an input interface and an output interface between the device and a user. Display controller 256 receives and/or sends electrical signals from/to touch screen 212. Touch screen 212 displays visual output to the user. The visual output may include graphics, text, icons, video, and any combination thereof (collectively termed “graphics”). In some embodiments, some or all of the visual output may correspond to user-interface objects.


Touch screen 212 has a touch-sensitive surface, sensor, or set of sensors that accepts input from the user based on haptic and/or tactile contact. Touch screen 212 and display controller 256 (along with any associated modules and/or sets of instructions in memory 202) detect contact (and any movement or breaking of the contact) on touch screen 212 and convert the detected contact into interaction with user-interface objects (e.g., one or more soft keys, icons, web pages, or images) that are displayed on touch screen 212. In an exemplary embodiment, a point of contact between touch screen 212 and the user corresponds to a finger of the user.


Touch screen 212 may use LCD (liquid crystal display) technology, LPD (light emitting polymer display) technology, or LED (light emitting diode) technology, although other display technologies may be used in other embodiments. Touch screen 212 and display controller 256 may detect contact and any movement or breaking thereof using any of a plurality of touch sensing technologies now known or later developed, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with touch screen 212. In an exemplary embodiment, projected mutual capacitance sensing technology is used, such as that found in the iPhone® and iPod Touch® from Apple Inc. of Cupertino, Calif.


A touch-sensitive display in some embodiments of touch screen 212 may be analogous to the multi-touch sensitive touchpads described in the following U.S. Pat. No. 6,323,846 (Westerman et al.), U.S. Pat. No. 6,570,557 (Westerman et al.), and/or U.S. Pat. No. 6,677,932 (Westerman), and/or U.S. Patent Publication 2002/0015024A1, each of which is hereby incorporated by reference in its entirety. However, touch screen 212 displays visual output from device 200, whereas touch-sensitive touchpads do not provide visual output.


A touch-sensitive display in some embodiments of touch screen 212 may be as described in the following applications: (1) U.S. patent application Ser. No. 11/381,313, “Multipoint Touch Surface Controller,” filed May 2, 2006; (2) U.S. patent application Ser. No. 10/840,862, “Multipoint Touchscreen,” filed May 6, 2004; (3) U.S. patent application Ser. No. 10/903,964, “Gestures For Touch Sensitive Input Devices,” filed Jul. 30, 2004; (4) U.S. patent application Ser. No. 11/048,264, “Gestures For Touch Sensitive Input Devices,” filed Jan. 31, 2005; (5) U.S. patent application Ser. No. 11/038,590, “Mode-Based Graphical User Interfaces For Touch Sensitive Input Devices,” filed Jan. 18, 2005; (6) U.S. patent application Ser. No. 11/228,758, “Virtual Input Device Placement On A Touch Screen User Interface,” filed Sep. 16, 2005; (7) U.S. patent application Ser. No. 11/228,700, “Operation Of A Computer With A Touch Screen Interface,” filed Sep. 16, 2005; (8) U.S. patent application Ser. No. 11/228,737, “Activating Virtual Keys Of A Touch-Screen Virtual Keyboard,” filed Sep. 16, 2005; and (9) U.S. patent application Ser. No. 11/367,749, “Multi-Functional Hand-Held Device,” filed Mar. 3, 2006. All of these applications are incorporated by reference herein in their entirety.


Touch screen 212 may have a video resolution in excess of 100 dpi. In some embodiments, the touch screen has a video resolution of approximately 160 dpi. The user may make contact with touch screen 212 using any suitable object or appendage, such as a stylus, a finger, and so forth. In some embodiments, the user interface is designed to work primarily with finger-based contacts and gestures, which can be less precise than stylus-based input due to the larger area of contact of a finger on the touch screen. In some embodiments, the device translates the rough finger-based input into a precise pointer/cursor position or command for performing the actions desired by the user.


In some embodiments, in addition to the touch screen, device 200 may include a touchpad (not shown) for activating or deactivating particular functions. In some embodiments, the touchpad is a touch-sensitive area of the device that, unlike the touch screen, does not display visual output. The touchpad may be a touch-sensitive surface that is separate from touch screen 212 or an extension of the touch-sensitive surface formed by the touch screen.


Device 200 also includes power system 262 for powering the various components. Power system 262 may include a power management system, one or more power sources (e.g., battery, alternating current (AC)), a recharging system, a power failure detection circuit, a power converter or inverter, a power status indicator (e.g., a light-emitting diode (LED)) and any other components associated with the generation, management and distribution of power in portable devices.


Device 200 may also include one or more optical sensors 264. FIG. 2A shows an optical sensor coupled to optical sensor controller 258 in I/O subsystem 206. Optical sensor 264 may include charge-coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) phototransistors. Optical sensor 264 receives light from the environment, projected through one or more lenses, and converts the light to data representing an image. In conjunction with imaging module 243 (also called a camera module), optical sensor 264 may capture still images or video. In some embodiments, an optical sensor is located on the back of device 200, opposite touch screen display 212 on the front of the device so that the touch screen display may be used as a viewfinder for still and/or video image acquisition. In some embodiments, an optical sensor is located on the front of the device so that the user's image may be obtained for video conferencing while the user views the other video conference participants on the touch screen display. In some embodiments, the position of optical sensor 264 can be changed by the user (e.g., by rotating the lens and the sensor in the device housing) so that a single optical sensor 264 may be used along with the touch screen display for both video conferencing and still and/or video image acquisition.


Device 200 optionally also includes one or more contact intensity sensors 265. FIG. 2A shows a contact intensity sensor coupled to intensity sensor controller 259 in I/O subsystem 206. Contact intensity sensor 265 optionally includes one or more piezoresistive strain gauges, capacitive force sensors, electric force sensors, piezoelectric force sensors, optical force sensors, capacitive touch-sensitive surfaces, or other intensity sensors (e.g., sensors used to measure the force (or pressure) of a contact on a touch-sensitive surface). Contact intensity sensor 265 receives contact intensity information (e.g., pressure information or a proxy for pressure information) from the environment. In some embodiments, at least one contact intensity sensor is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212). In some embodiments, at least one contact intensity sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 may also include one or more proximity sensors 266. FIG. 2A shows proximity sensor 266 coupled to peripherals interface 218. Alternately, proximity sensor 266 may be coupled to input controller 260 in I/O subsystem 206. Proximity sensor 266 may perform as described in U.S. patent application Ser. No. 11/241,839, “Proximity Detector In Handheld Device”; Ser. No. 11/240,788, “Proximity Detector In Handheld Device”; Ser. No. 11/620,702, “Using Ambient Light Sensor To Augment Proximity Sensor Output”; Ser. No. 11/586,862, “Automated Response To And Sensing Of User Activity In Portable Devices”; and Ser. No. 11/638,251, “Methods And Systems For Automatic Configuration Of Peripherals,” which are hereby incorporated by reference in their entirety. In some embodiments, the proximity sensor turns off and disables touch screen 212 when the multifunction device is placed near the user's ear (e.g., when the user is making a phone call).


Device 200 optionally also includes one or more tactile output generators 267. FIG. 2A shows a tactile output generator coupled to haptic feedback controller 261 in I/O subsystem 206. Tactile output generator 267 optionally includes one or more electroacoustic devices such as speakers or other audio components and/or electromechanical devices that convert energy into linear motion such as a motor, solenoid, electroactive polymer, piezoelectric actuator, electrostatic actuator, or other tactile output generating component (e.g., a component that converts electrical signals into tactile outputs on the device). Contact intensity sensor 265 receives tactile feedback generation instructions from haptic feedback module 233 and generates tactile outputs on device 200 that are capable of being sensed by a user of device 200. In some embodiments, at least one tactile output generator is collocated with, or proximate to, a touch-sensitive surface (e.g., touch-sensitive display system 212) and, optionally, generates a tactile output by moving the touch-sensitive surface vertically (e.g., in/out of a surface of device 200) or laterally (e.g., back and forth in the same plane as a surface of device 200). In some embodiments, at least one tactile output generator sensor is located on the back of device 200, opposite touch screen display 212, which is located on the front of device 200.


Device 200 may also include one or more accelerometers 268. FIG. 2A shows accelerometer 268 coupled to peripherals interface 218. Alternately, accelerometer 268 may be coupled to an input controller 260 in I/O subsystem 206. Accelerometer 268 may perform as described in U.S. Patent Publication No. 20050190059, “Acceleration-based Theft Detection System for Portable Electronic Devices,” and U.S. Patent Publication No. 20060017692, “Methods And Apparatuses For Operating A Portable Device Based On An Accelerometer,” both of which are incorporated by reference herein in their entirety. In some embodiments, information is displayed on the touch screen display in a portrait view or a landscape view based on an analysis of data received from the one or more accelerometers. Device 200 optionally includes, in addition to accelerometer(s) 268, a magnetometer (not shown) and a GPS (or GLONASS or other global navigation system) receiver (not shown) for obtaining information concerning the location and orientation (e.g., portrait or landscape) of device 200.


In some embodiments, the software components stored in memory 202 include operating system 226, communication module (or set of instructions) 228, contact/motion module (or set of instructions) 230, graphics module (or set of instructions) 232, text input module (or set of instructions) 234, Global Positioning System (GPS) module (or set of instructions) 235, Digital Assistant Client Module 229, and applications (or sets of instructions) 236. Further, memory 202 can store data and models, such as user data and models 231. Furthermore, in some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) stores device/global internal state 257, as shown in FIGS. 2A and 4. Device/global internal state 257 includes one or more of: active application state, indicating which applications, if any, are currently active; display state, indicating what applications, views or other information occupy various regions of touch screen display 212; sensor state, including information obtained from the device's various sensors and input control devices 216; and location information concerning the device's location and/or attitude.


Operating system 226 (e.g., Darwin, RTXC, LINUX, UNIX, OS X, iOS, WINDOWS, or an embedded operating system such as VxWorks) includes various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communication between various hardware and software components.


Communication module 228 facilitates communication with other devices over one or more external ports 224 and also includes various software components for handling data received by RF circuitry 208 and/or external port 224. External port 224 (e.g., Universal Serial Bus (USB), FIREWIRE, etc.) is adapted for coupling directly to other devices or indirectly over a network (e.g., the Internet, wireless LAN, etc.). In some embodiments, the external port is a multi-pin (e.g., 30-pin) connector that is the same as, or similar to and/or compatible with, the 30-pin connector used on iPod® (trademark of Apple Inc.) devices.


Contact/motion module 230 optionally detects contact with touch screen 212 (in conjunction with display controller 256) and other touch-sensitive devices (e.g., a touchpad or physical click wheel). Contact/motion module 230 includes various software components for performing various operations related to detection of contact, such as determining if contact has occurred (e.g., detecting a finger-down event), determining an intensity of the contact (e.g., the force or pressure of the contact or a substitute for the force or pressure of the contact), determining if there is movement of the contact and tracking the movement across the touch-sensitive surface (e.g., detecting one or more finger-dragging events), and determining if the contact has ceased (e.g., detecting a finger-up event or a break in contact). Contact/motion module 230 receives contact data from the touch-sensitive surface. Determining movement of the point of contact, which is represented by a series of contact data, optionally includes determining speed (magnitude), velocity (magnitude and direction), and/or an acceleration (a change in magnitude and/or direction) of the point of contact. These operations are, optionally, applied to single contacts (e.g., one finger contacts) or to multiple simultaneous contacts (e.g., “multitouch”/multiple finger contacts). In some embodiments, contact/motion module 230 and display controller 256 detect contact on a touchpad.


In some embodiments, contact/motion module 230 uses a set of one or more intensity thresholds to determine whether an operation has been performed by a user (e.g., to determine whether a user has “clicked” on an icon). In some embodiments, at least a subset of the intensity thresholds are determined in accordance with software parameters (e.g., the intensity thresholds are not determined by the activation thresholds of particular physical actuators and can be adjusted without changing the physical hardware of device 200). For example, a mouse “click” threshold of a trackpad or touch screen display can be set to any of a large range of predefined threshold values without changing the trackpad or touch screen display hardware. Additionally, in some implementations, a user of the device is provided with software settings for adjusting one or more of the set of intensity thresholds (e.g., by adjusting individual intensity thresholds and/or by adjusting a plurality of intensity thresholds at once with a system-level click “intensity” parameter).


Contact/motion module 230 optionally detects a gesture input by a user. Different gestures on the touch-sensitive surface have different contact patterns (e.g., different motions, timings, and/or intensities of detected contacts). Thus, a gesture is, optionally, detected by detecting a particular contact pattern. For example, detecting a finger tap gesture includes detecting a finger-down event followed by detecting a finger-up (liftoff) event at the same position (or substantially the same position) as the finger-down event (e.g., at the position of an icon). As another example, detecting a finger swipe gesture on the touch-sensitive surface includes detecting a finger-down event followed by detecting one or more finger-dragging events, and subsequently followed by detecting a finger-up (liftoff) event.


Graphics module 232 includes various known software components for rendering and displaying graphics on touch screen 212 or other display, including components for changing the visual impact (e.g., brightness, transparency, saturation, contrast, or other visual property) of graphics that are displayed. As used herein, the term “graphics” includes any object that can be displayed to a user, including, without limitation, text, web pages, icons (such as user-interface objects including soft keys), digital images, videos, animations, and the like.


In some embodiments, graphics module 232 stores data representing graphics to be used. Each graphic is, optionally, assigned a corresponding code. Graphics module 232 receives, from applications etc., one or more codes specifying graphics to be displayed along with, if necessary, coordinate data and other graphic property data, and then generates screen image data to output to display controller 256.


Haptic feedback module 233 includes various software components for generating instructions used by tactile output generator(s) 267 to produce tactile outputs at one or more locations on device 200 in response to user interactions with device 200.


Text input module 234, which may be a component of graphics module 232, provides soft keyboards for entering text in various applications (e.g., contacts 237, e mail 240, IM 241, browser 247, and any other application that needs text input).


GPS module 235 determines the location of the device and provides this information for use in various applications (e.g., to telephone 238 for use in location-based dialing; to camera 243 as picture/video metadata; and to applications that provide location-based services such as weather widgets, local yellow page widgets, and map/navigation widgets).


Digital assistant client module 229 can include various client-side digital assistant instructions to provide the client-side functionalities of the digital assistant. For example, digital assistant client module 229 can be capable of accepting voice input (e.g., speech input), text input, touch input, and/or gestural input through various user interfaces (e.g., microphone 213, accelerometer(s) 268, touch-sensitive display system 212, optical sensor(s) 229, other input control devices 216, etc.) of portable multifunction device 200. Digital assistant client module 229 can also be capable of providing output in audio (e.g., speech output), visual, and/or tactile forms through various output interfaces (e.g., speaker 211, touch-sensitive display system 212, tactile output generator(s) 267, etc.) of portable multifunction device 200. For example, output can be provided as voice, sound, alerts, text messages, menus, graphics, videos, animations, vibrations, and/or combinations of two or more of the above. During operation, digital assistant client module 229 can communicate with DA server 106 using RF circuitry 208.


User data and models 231 can include various data associated with the user (e.g., user-specific vocabulary data, user preference data, user-specified name pronunciations, data from the user's electronic address book, to-do lists, shopping lists, etc.) to provide the client-side functionalities of the digital assistant. Further, user data and models 231 can includes various models (e.g., speech recognition models, statistical language models, natural language processing models, ontology, task flow models, service models, etc.) for processing user input and determining user intent.


In some examples, digital assistant client module 229 can utilize the various sensors, subsystems, and peripheral devices of portable multifunction device 200 to gather additional information from the surrounding environment of the portable multifunction device 200 to establish a context associated with a user, the current user interaction, and/or the current user input. In some examples, digital assistant client module 229 can provide the contextual information or a subset thereof with the user input to DA server 106 to help infer the user's intent. In some examples, the digital assistant can also use the contextual information to determine how to prepare and deliver outputs to the user. Contextual information can be referred to as context data.


In some examples, the contextual information that accompanies the user input can include sensor information, e.g., lighting, ambient noise, ambient temperature, images or videos of the surrounding environment, etc. In some examples, the contextual information can also include the physical state of the device, e.g., device orientation, device location, device temperature, power level, speed, acceleration, motion patterns, cellular signals strength, etc. In some examples, information related to the software state of DA server 106, e.g., running processes, installed programs, past and present network activities, background services, error logs, resources usage, etc., and of portable multifunction device 200 can be provided to DA server 106 as contextual information associated with a user input.


In some examples, the digital assistant client module 229 can selectively provide information (e.g., user data 231) stored on the portable multifunction device 200 in response to requests from DA server 106. In some examples, digital assistant client module 229 can also elicit additional input from the user via a natural language dialogue or other user interfaces upon request by DA server 106. Digital assistant client module 229 can pass the additional input to DA server 106 to help DA server 106 in intent deduction and/or fulfillment of the user's intent expressed in the user request.


A more detailed description of a digital assistant is described below with reference to FIGS. 7A-C. It should be recognized that digital assistant client module 229 can include any number of the sub-modules of digital assistant module 726 described below.


Applications 236 may include the following modules (or sets of instructions), or a subset or superset thereof:

    • Contacts module 237 (sometimes called an address book or contact list);
    • Telephone module 238;
    • Video conference module 239;
    • E-mail client module 240;
    • Instant messaging (IM) module 241;
    • Workout support module 242;
    • Camera module 243 for still and/or video images;
    • Image management module 244;
    • Video player module;
    • Music player module;
    • Browser module 247;
    • Calendar module 248;
    • Widget modules 249, which may include one or more of: weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, dictionary widget 249-5, and other widgets obtained by the user, as well as user-created widgets 249-6;
    • Widget creator module 250 for making user-created widgets 249-6;
    • Search module 251;
    • Video and music player module 252, which merges video player module and music player module;
    • Notes module 253;
    • Map module 254; and/or
    • Online video module 255.


Examples of other applications 236 that may be stored in memory 202 include other word processing applications, other image editing applications, drawing applications, presentation applications, JAVA-enabled applications, encryption, digital rights management, voice recognition, and voice replication.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, contacts module 237 may be used to manage an address book or contact list (e.g., stored in application internal state 292 of contacts module 237 in memory 202 or memory 470), including: adding name(s) to the address book; deleting name(s) from the address book; associating telephone number(s), e-mail address(es), physical address(es) or other information with a name; associating an image with a name; categorizing and sorting names; providing telephone numbers or e-mail addresses to initiate and/or facilitate communications by telephone 238, video conference module 239, e-mail 240, or IM 241; and so forth.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, telephone module 238 may be used to enter a sequence of characters corresponding to a telephone number, access one or more telephone numbers in contacts module 237, modify a telephone number that has been entered, dial a respective telephone number, conduct a conversation, and disconnect or hang up when the conversation is completed. As noted above, the wireless communication may use any of a plurality of communications standards, protocols, and technologies.


In conjunction with RF circuitry 208, audio circuitry 210, speaker 211, microphone 213, touch screen 212, display controller 256, optical sensor 264, optical sensor controller 258, contact/motion module 230, graphics module 232, text input module 234, contacts module 237, and telephone module 238, video conference module 239 includes executable instructions to initiate, conduct, and terminate a video conference between a user and one or more other participants in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, e-mail client module 240 includes executable instructions to create, send, receive, and manage e-mail in response to user instructions. In conjunction with image management module 244, e-mail client module 240 makes it very easy to create and send e-mails with still or video images taken with camera module 243.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, the instant messaging module 241 includes executable instructions to enter a sequence of characters corresponding to an instant message, to modify previously entered characters, to transmit a respective instant message (for example, using a Short Message Service (SMS) or Multimedia Message Service (MMS) protocol for telephony-based instant messages or using XMPP, SIMPLE, or IMPS for Internet-based instant messages), to receive instant messages, and to view received instant messages. In some embodiments, transmitted and/or received instant messages may include graphics, photos, audio files, video files and/or other attachments as are supported in an MMS and/or an Enhanced Messaging Service (EMS). As used herein, “instant messaging” refers to both telephony-based messages (e.g., messages sent using SMS or MMS) and Internet-based messages (e.g., messages sent using XMPP, SIMPLE, or IMPS).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, map module 254, and music player module, workout support module 242 includes executable instructions to create workouts (e.g., with time, distance, and/or calorie burning goals); communicate with workout sensors (sports devices); receive workout sensor data; calibrate sensors used to monitor a workout; select and play music for a workout; and display, store, and transmit workout data.


In conjunction with touch screen 212, display controller 256, optical sensor(s) 264, optical sensor controller 258, contact/motion module 230, graphics module 232, and image management module 244, camera module 243 includes executable instructions to capture still images or video (including a video stream) and store them into memory 202, modify characteristics of a still image or video, or delete a still image or video from memory 202.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and camera module 243, image management module 244 includes executable instructions to arrange, modify (e.g., edit), or otherwise manipulate, label, delete, present (e.g., in a digital slide show or album), and store still and/or video images.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, browser module 247 includes executable instructions to browse the Internet in accordance with user instructions, including searching, linking to, receiving, and displaying web pages or portions thereof, as well as attachments and other files linked to web pages.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, e-mail client module 240, and browser module 247, calendar module 248 includes executable instructions to create, display, modify, and store calendars and data associated with calendars (e.g., calendar entries, to-do lists, etc.) in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, widget modules 249 are mini-applications that may be downloaded and used by a user (e.g., weather widget 249-1, stocks widget 249-2, calculator widget 249-3, alarm clock widget 249-4, and dictionary widget 249-5) or created by the user (e.g., user-created widget 249-6). In some embodiments, a widget includes an HTML (Hypertext Markup Language) file, a CSS (Cascading Style Sheets) file, and a JavaScript file. In some embodiments, a widget includes an XML (Extensible Markup Language) file and a JavaScript file (e.g., Yahoo! Widgets).


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, and browser module 247, the widget creator module 250 may be used by a user to create widgets (e.g., turning a user-specified portion of a web page into a widget).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, search module 251 includes executable instructions to search for text, music, sound, image, video, and/or other files in memory 202 that match one or more search criteria (e.g., one or more user-specified search terms) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, and browser module 247, video and music player module 252 includes executable instructions that allow the user to download and play back recorded music and other sound files stored in one or more file formats, such as MP3 or AAC files, and executable instructions to display, present, or otherwise play back videos (e.g., on touch screen 212 or on an external, connected display via external port 224). In some embodiments, device 200 optionally includes the functionality of an MP3 player, such as an iPod (trademark of Apple Inc.).


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, and text input module 234, notes module 253 includes executable instructions to create and manage notes, to-do lists, and the like in accordance with user instructions.


In conjunction with RF circuitry 208, touch screen 212, display controller 256, contact/motion module 230, graphics module 232, text input module 234, GPS module 235, and browser module 247, map module 254 may be used to receive, display, modify, and store maps and data associated with maps (e.g., driving directions, data on stores and other points of interest at or near a particular location, and other location-based data) in accordance with user instructions.


In conjunction with touch screen 212, display controller 256, contact/motion module 230, graphics module 232, audio circuitry 210, speaker 211, RF circuitry 208, text input module 234, e-mail client module 240, and browser module 247, online video module 255 includes instructions that allow the user to access, browse, receive (e.g., by streaming and/or download), play back (e.g., on the touch screen or on an external, connected display via external port 224), send an e-mail with a link to a particular online video, and otherwise manage online videos in one or more file formats, such as H.264. In some embodiments, instant messaging module 241, rather than e-mail client module 240, is used to send a link to a particular online video. Additional description of the online video application can be found in U.S. Provisional Patent Application No. 60/936,562, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Jun. 20, 2007, and U.S. patent application Ser. No. 11/968,067, “Portable Multifunction Device, Method, and Graphical User Interface for Playing Online Videos,” filed Dec. 31, 2007, the contents of which are hereby incorporated by reference in their entirety.


Each of the above-identified modules and applications corresponds to a set of executable instructions for performing one or more functions described above and the methods described in this application (e.g., the computer-implemented methods and other information processing methods described herein). These modules (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. For example, video player module may be combined with music player module into a single module (e.g., video and music player module 252, FIG. 2A). In some embodiments, memory 202 may store a subset of the modules and data structures identified above. Furthermore, memory 202 may store additional modules and data structures not described above.


In some embodiments, device 200 is a device where operation of a predefined set of functions on the device is performed exclusively through a touch screen and/or a touchpad. By using a touch screen and/or a touchpad as the primary input control device for operation of device 200, the number of physical input control devices (such as push buttons, dials, and the like) on device 200 may be reduced.


The predefined set of functions that are performed exclusively through a touch screen and/or a touchpad optionally include navigation between user interfaces. In some embodiments, the touchpad, when touched by the user, navigates device 200 to a main, home, or root menu from any user interface that is displayed on device 200. In such embodiments, a “menu button” is implemented using a touchpad. In some other embodiments, the menu button is a physical push button or other physical input control device instead of a touchpad.



FIG. 2B is a block diagram illustrating exemplary components for event handling in accordance with some embodiments. In some embodiments, memory 202 (FIG. 2A) or 470 (FIG. 4) includes event sorter 270 (e.g., in operating system 226) and a respective application 236-1 (e.g., any of the aforementioned applications 237-251, 255, 480-490).


Event sorter 270 receives event information and determines the application 236-1 and application view 291 of application 236-1 to which to deliver the event information. Event sorter 270 includes event monitor 271 and event dispatcher module 274. In some embodiments, application 236-1 includes application internal state 292, which indicates the current application view(s) displayed on touch-sensitive display 212 when the application is active or executing. In some embodiments, device/global internal state 257 is used by event sorter 270 to determine which application(s) is (are) currently active, and application internal state 292 is used by event sorter 270 to determine application views 291 to which to deliver event information.


In some embodiments, application internal state 292 includes additional information, such as one or more of: resume information to be used when application 236-1 resumes execution, user interface state information that indicates information being displayed or that is ready for display by application 236-1, a state queue for enabling the user to go back to a prior state or view of application 236-1, and a redo/undo queue of previous actions taken by the user.


Event monitor 271 receives event information from peripherals interface 218. Event information includes information about a sub-event (e.g., a user touch on touch-sensitive display 212, as part of a multi-touch gesture). Peripherals interface 218 transmits information it receives from I/O subsystem 206 or a sensor, such as proximity sensor 266, accelerometer(s) 268, and/or microphone 213 (through audio circuitry 210). Information that peripherals interface 218 receives from I/O subsystem 206 includes information from touch-sensitive display 212 or a touch-sensitive surface.


In some embodiments, event monitor 271 sends requests to the peripherals interface 218 at predetermined intervals. In response, peripherals interface 218 transmits event information. In other embodiments, peripherals interface 218 transmits event information only when there is a significant event (e.g., receiving an input above a predetermined noise threshold and/or for more than a predetermined duration).


In some embodiments, event sorter 270 also includes a hit view determination module 272 and/or an active event recognizer determination module 273.


Hit view determination module 272 provides software procedures for determining where a sub-event has taken place within one or more views when touch-sensitive display 212 displays more than one view. Views are made up of controls and other elements that a user can see on the display.


Another aspect of the user interface associated with an application is a set of views, sometimes herein called application views or user interface windows, in which information is displayed and touch-based gestures occur. The application views (of a respective application) in which a touch is detected may correspond to programmatic levels within a programmatic or view hierarchy of the application. For example, the lowest level view in which a touch is detected may be called the hit view, and the set of events that are recognized as proper inputs may be determined based, at least in part, on the hit view of the initial touch that begins a touch-based gesture.


Hit view determination module 272 receives information related to sub events of a touch-based gesture. When an application has multiple views organized in a hierarchy, hit view determination module 272 identifies a hit view as the lowest view in the hierarchy which should handle the sub-event. In most circumstances, the hit view is the lowest level view in which an initiating sub-event occurs (e.g., the first sub-event in the sequence of sub-events that form an event or potential event). Once the hit view is identified by the hit view determination module 272, the hit view typically receives all sub-events related to the same touch or input source for which it was identified as the hit view.


Active event recognizer determination module 273 determines which view or views within a view hierarchy should receive a particular sequence of sub-events. In some embodiments, active event recognizer determination module 273 determines that only the hit view should receive a particular sequence of sub-events. In other embodiments, active event recognizer determination module 273 determines that all views that include the physical location of a sub-event are actively involved views, and therefore determines that all actively involved views should receive a particular sequence of sub-events. In other embodiments, even if touch sub-events were entirely confined to the area associated with one particular view, views higher in the hierarchy would still remain as actively involved views.


Event dispatcher module 274 dispatches the event information to an event recognizer (e.g., event recognizer 280). In embodiments including active event recognizer determination module 273, event dispatcher module 274 delivers the event information to an event recognizer determined by active event recognizer determination module 273. In some embodiments, event dispatcher module 274 stores in an event queue the event information, which is retrieved by a respective event receiver 282.


In some embodiments, operating system 226 includes event sorter 270. Alternatively, application 236-1 includes event sorter 270. In yet other embodiments, event sorter 270 is a stand-alone module, or a part of another module stored in memory 202, such as contact/motion module 230.


In some embodiments, application 236-1 includes a plurality of event handlers 290 and one or more application views 291, each of which includes instructions for handling touch events that occur within a respective view of the application's user interface. Each application view 291 of the application 236-1 includes one or more event recognizers 280. Typically, a respective application view 291 includes a plurality of event recognizers 280. In other embodiments, one or more of event recognizers 280 are part of a separate module, such as a user interface kit (not shown) or a higher level object from which application 236-1 inherits methods and other properties. In some embodiments, a respective event handler 290 includes one or more of: data updater 276, object updater 277, GUI updater 278, and/or event data 279 received from event sorter 270. Event handler 290 may utilize or call data updater 276, object updater 277, or GUI updater 278 to update the application internal state 292. Alternatively, one or more of the application views 291 include one or more respective event handlers 290. Also, in some embodiments, one or more of data updater 276, object updater 277, and GUI updater 278 are included in a respective application view 291.


A respective event recognizer 280 receives event information (e.g., event data 279) from event sorter 270 and identifies an event from the event information. Event recognizer 280 includes event receiver 282 and event comparator 284. In some embodiments, event recognizer 280 also includes at least a subset of: metadata 283, and event delivery instructions 288 (which may include sub-event delivery instructions).


Event receiver 282 receives event information from event sorter 270. The event information includes information about a sub-event, for example, a touch or a touch movement. Depending on the sub-event, the event information also includes additional information, such as location of the sub-event. When the sub-event concerns motion of a touch, the event information may also include speed and direction of the sub-event. In some embodiments, events include rotation of the device from one orientation to another (e.g., from a portrait orientation to a landscape orientation, or vice versa), and the event information includes corresponding information about the current orientation (also called device attitude) of the device.


Event comparator 284 compares the event information to predefined event or sub-event definitions and, based on the comparison, determines an event or sub event, or determines or updates the state of an event or sub-event. In some embodiments, event comparator 284 includes event definitions 286. Event definitions 286 contain definitions of events (e.g., predefined sequences of sub-events), for example, event 1 (287-1), event 2 (287-2), and others. In some embodiments, sub-events in an event (287) include, for example, touch begin, touch end, touch movement, touch cancellation, and multiple touching. In one example, the definition for event 1 (287-1) is a double tap on a displayed object. The double tap, for example, comprises a first touch (touch begin) on the displayed object for a predetermined phase, a first liftoff (touch end) for a predetermined phase, a second touch (touch begin) on the displayed object for a predetermined phase, and a second liftoff (touch end) for a predetermined phase. In another example, the definition for event 2 (287-2) is a dragging on a displayed object. The dragging, for example, comprises a touch (or contact) on the displayed object for a predetermined phase, a movement of the touch across touch-sensitive display 212, and liftoff of the touch (touch end). In some embodiments, the event also includes information for one or more associated event handlers 290.


In some embodiments, event definition 287 includes a definition of an event for a respective user-interface object. In some embodiments, event comparator 284 performs a hit test to determine which user-interface object is associated with a sub-event. For example, in an application view in which three user-interface objects are displayed on touch-sensitive display 212, when a touch is detected on touch-sensitive display 212, event comparator 284 performs a hit test to determine which of the three user-interface objects is associated with the touch (sub-event). If each displayed object is associated with a respective event handler 290, the event comparator uses the result of the hit test to determine which event handler 290 should be activated. For example, event comparator 284 selects an event handler associated with the sub-event and the object triggering the hit test.


In some embodiments, the definition for a respective event (287) also includes delayed actions that delay delivery of the event information until after it has been determined whether the sequence of sub-events does or does not correspond to the event recognizer's event type.


When a respective event recognizer 280 determines that the series of sub-events do not match any of the events in event definitions 286, the respective event recognizer 280 enters an event impossible, event failed, or event ended state, after which it disregards subsequent sub-events of the touch-based gesture. In this situation, other event recognizers, if any, that remain active for the hit view continue to track and process sub-events of an ongoing touch-based gesture.


In some embodiments, a respective event recognizer 280 includes metadata 283 with configurable properties, flags, and/or lists that indicate how the event delivery system should perform sub-event delivery to actively involved event recognizers. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate how event recognizers may interact, or are enabled to interact, with one another. In some embodiments, metadata 283 includes configurable properties, flags, and/or lists that indicate whether sub-events are delivered to varying levels in the view or programmatic hierarchy.


In some embodiments, a respective event recognizer 280 activates event handler 290 associated with an event when one or more particular sub-events of an event are recognized. In some embodiments, a respective event recognizer 280 delivers event information associated with the event to event handler 290. Activating an event handler 290 is distinct from sending (and deferred sending) sub-events to a respective hit view. In some embodiments, event recognizer 280 throws a flag associated with the recognized event, and event handler 290 associated with the flag catches the flag and performs a predefined process.


In some embodiments, event delivery instructions 288 include sub-event delivery instructions that deliver event information about a sub-event without activating an event handler. Instead, the sub-event delivery instructions deliver event information to event handlers associated with the series of sub-events or to actively involved views. Event handlers associated with the series of sub-events or with actively involved views receive the event information and perform a predetermined process.


In some embodiments, data updater 276 creates and updates data used in application 236-1. For example, data updater 276 updates the telephone number used in contacts module 237, or stores a video file used in video player module. In some embodiments, object updater 277 creates and updates objects used in application 236-1. For example, object updater 277 creates a new user-interface object or updates the position of a user-interface object. GUI updater 278 updates the GUI. For example, GUI updater 278 prepares display information and sends it to graphics module 232 for display on a touch-sensitive display.


In some embodiments, event handler(s) 290 includes or has access to data updater 276, object updater 277, and GUI updater 278. In some embodiments, data updater 276, object updater 277, and GUI updater 278 are included in a single module of a respective application 236-1 or application view 291. In other embodiments, they are included in two or more software modules.


It shall be understood that the foregoing discussion regarding event handling of user touches on touch-sensitive displays also applies to other forms of user inputs to operate multifunction devices 200 with input devices, not all of which are initiated on touch screens. For example, mouse movement and mouse button presses, optionally coordinated with single or multiple keyboard presses or holds; contact movements such as taps, drags, scrolls, etc. on touchpads; pen stylus inputs; movement of the device; oral instructions; detected eye movements; biometric inputs; and/or any combination thereof are optionally utilized as inputs corresponding to sub-events which define an event to be recognized.



FIG. 3 illustrates a portable multifunction device 200 having a touch screen 212 in accordance with some embodiments. The touch screen optionally displays one or more graphics within user interface (UI) 300. In this embodiment, as well as others described below, a user is enabled to select one or more of the graphics by making a gesture on the graphics, for example, with one or more fingers 302 (not drawn to scale in the figure) or one or more styluses 303 (not drawn to scale in the figure). In some embodiments, selection of one or more graphics occurs when the user breaks contact with the one or more graphics. In some embodiments, the gesture optionally includes one or more taps, one or more swipes (from left to right, right to left, upward and/or downward), and/or a rolling of a finger (from right to left, left to right, upward and/or downward) that has made contact with device 200. In some implementations or circumstances, inadvertent contact with a graphic does not select the graphic. For example, a swipe gesture that sweeps over an application icon optionally does not select the corresponding application when the gesture corresponding to selection is a tap.


Device 200 may also include one or more physical buttons, such as “home” or menu button 304. As described previously, menu button 304 may be used to navigate to any application 236 in a set of applications that may be executed on device 200. Alternatively, in some embodiments, the menu button is implemented as a soft key in a GUI displayed on touch screen 212.


In one embodiment, device 200 includes touch screen 212, menu button 304, push button 306 for powering the device on/off and locking the device, volume adjustment button(s) 308, subscriber identity module (SIM) card slot 310, headset jack 312, and docking/charging external port 224. Push button 306 is, optionally, used to turn the power on/off on the device by depressing the button and holding the button in the depressed state for a predefined time interval; to lock the device by depressing the button and releasing the button before the predefined time interval has elapsed; and/or to unlock the device or initiate an unlock process. In an alternative embodiment, device 200 also accepts verbal input for activation or deactivation of some functions through microphone 213. Device 200 also, optionally, includes one or more contact intensity sensors 265 for detecting intensity of contacts on touch screen 212 and/or one or more tactile output generators 267 for generating tactile outputs for a user of device 200.



FIG. 4 is a block diagram of an exemplary multifunction device with a display and a touch-sensitive surface in accordance with some embodiments. Device 400 need not be portable. In some embodiments, device 400 is a laptop computer, a desktop computer, a tablet computer, a multimedia player device, a navigation device, an educational device (such as a child's learning toy), a gaming system, or a control device (e.g., a home or industrial controller). Device 400 typically includes one or more processing units (CPUs) 410, one or more network or other communications interfaces 460, memory 470, and one or more communication buses 420 for interconnecting these components. Communication buses 420 optionally include circuitry (sometimes called a chipset) that interconnects and controls communications between system components. Device 400 includes input/output (I/O) interface 430 comprising display 440, which is typically a touch screen display. I/O interface 430 also optionally includes a keyboard and/or mouse (or other pointing device) 450 and touchpad 455, tactile output generator 457 for generating tactile outputs on device 400 (e.g., similar to tactile output generator(s) 267 described above with reference to FIG. 2A), sensors 459 (e.g., optical, acceleration, proximity, touch-sensitive, and/or contact intensity sensors similar to contact intensity sensor(s) 265 described above with reference to FIG. 2A). Memory 470 includes high-speed random access memory, such as DRAM, SRAM, DDR RAM, or other random access solid state memory devices; and optionally includes non-volatile memory, such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid state storage devices. Memory 470 optionally includes one or more storage devices remotely located from CPU(s) 410. In some embodiments, memory 470 stores programs, modules, and data structures analogous to the programs, modules, and data structures stored in memory 202 of portable multifunction device 200 (FIG. 2A), or a subset thereof. Furthermore, memory 470 optionally stores additional programs, modules, and data structures not present in memory 202 of portable multifunction device 200. For example, memory 470 of device 400 optionally stores drawing module 480, presentation module 482, word processing module 484, website creation module 486, disk authoring module 488, and/or spreadsheet module 490, while memory 202 of portable multifunction device 200 (FIG. 2A) optionally does not store these modules.


Each of the above-identified elements in FIG. 4 may be stored in one or more of the previously mentioned memory devices. Each of the above-identified modules corresponds to a set of instructions for performing a function described above. The above-identified modules or programs (e.g., sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise rearranged in various embodiments. In some embodiments, memory 470 may store a subset of the modules and data structures identified above. Furthermore, memory 470 may store additional modules and data structures not described above.


Attention is now directed towards embodiments of user interfaces that may be implemented on, for example, portable multifunction device 200.



FIG. 5A illustrates an exemplary user interface for a menu of applications on portable multifunction device 200 in accordance with some embodiments. Similar user interfaces may be implemented on device 400. In some embodiments, user interface 500 includes the following elements, or a subset or superset thereof:


Signal strength indicator(s) 502 for wireless communication(s), such as cellular and Wi-Fi signals;

    • Time 504;
    • Bluetooth indicator 505;
    • Battery status indicator 506;
    • Tray 508 with icons for frequently used applications, such as:
      • Icon 516 for telephone module 238, labeled “Phone,” which optionally includes an indicator 514 of the number of missed calls or voicemail messages;
      • Icon 518 for e-mail client module 240, labeled “Mail,” which optionally includes an indicator 510 of the number of unread e-mails;
      • Icon 520 for browser module 247, labeled “Browser;” and
      • Icon 522 for video and music player module 252, also referred to as iPod (trademark of Apple Inc.) module 252, labeled “iPod;” and
    • Icons for other applications, such as:
      • Icon 524 for IM module 241, labeled “Messages;”
      • Icon 526 for calendar module 248, labeled “Calendar;”
      • Icon 528 for image management module 244, labeled “Photos;”
      • Icon 530 for camera module 243, labeled “Camera;”
      • Icon 532 for online video module 255, labeled “Online Video;”
      • Icon 534 for stocks widget 249-2, labeled “Stocks;”
      • Icon 536 for map module 254, labeled “Maps;”
      • Icon 538 for weather widget 249-1, labeled “Weather;”
      • Icon 540 for alarm clock widget 249-4, labeled “Clock;”
      • Icon 542 for workout support module 242, labeled “Workout Support;”
      • Icon 544 for notes module 253, labeled “Notes;” and
      • Icon 546 for a settings application or module, labeled “Settings,” which provides access to settings for device 200 and its various applications 236.


It should be noted that the icon labels illustrated in FIG. 5A are merely exemplary. For example, icon 522 for video and music player module 252 may optionally be labeled “Music” or “Music Player.” Other labels are, optionally, used for various application icons. In some embodiments, a label for a respective application icon includes a name of an application corresponding to the respective application icon. In some embodiments, a label for a particular application icon is distinct from a name of an application corresponding to the particular application icon.



FIG. 5B illustrates an exemplary user interface on a device (e.g., device 400, FIG. 4) with a touch-sensitive surface 551 (e.g., a tablet or touchpad 455, FIG. 4) that is separate from the display 550 (e.g., touch screen display 212). Device 400 also, optionally, includes one or more contact intensity sensors (e.g., one or more of sensors 457) for detecting intensity of contacts on touch-sensitive surface 551 and/or one or more tactile output generators 459 for generating tactile outputs for a user of device 400.


Although some of the examples which follow will be given with reference to inputs on touch screen display 212 (where the touch-sensitive surface and the display are combined), in some embodiments, the device detects inputs on a touch-sensitive surface that is separate from the display, as shown in FIG. 5B. In some embodiments, the touch-sensitive surface (e.g., 551 in FIG. 5B) has a primary axis (e.g., 552 in FIG. 5B) that corresponds to a primary axis (e.g., 553 in FIG. 5B) on the display (e.g., 550). In accordance with these embodiments, the device detects contacts (e.g., 560 and 562 in FIG. 5B) with the touch-sensitive surface 551 at locations that correspond to respective locations on the display (e.g., in FIG. 5B, 560 corresponds to 568 and 562 corresponds to 570). In this way, user inputs (e.g., contacts 560 and 562, and movements thereof) detected by the device on the touch-sensitive surface (e.g., 551 in FIG. 5B) are used by the device to manipulate the user interface on the display (e.g., 550 in FIG. 5B) of the multifunction device when the touch-sensitive surface is separate from the display. It should be understood that similar methods are, optionally, used for other user interfaces described herein.


Additionally, while the following examples are given primarily with reference to finger inputs (e.g., finger contacts, finger tap gestures, finger swipe gestures), it should be understood that, in some embodiments, one or more of the finger inputs are replaced with input from another input device (e.g., a mouse-based input or stylus input). For example, a swipe gesture is, optionally, replaced with a mouse click (e.g., instead of a contact) followed by movement of the cursor along the path of the swipe (e.g., instead of movement of the contact). As another example, a tap gesture is, optionally, replaced with a mouse click while the cursor is located over the location of the tap gesture (e.g., instead of detection of the contact followed by ceasing to detect the contact). Similarly, when multiple user inputs are simultaneously detected, it should be understood that multiple computer mice are, optionally, used simultaneously, or a mouse and finger contacts are, optionally, used simultaneously.



FIG. 6A illustrates exemplary personal electronic device 600. Device 600 includes body 602. In some embodiments, device 600 can include some or all of the features described with respect to devices 200 and 400 (e.g., FIGS. 2A-4B). In some embodiments, device 600 has touch-sensitive display screen 604, hereafter touch screen 604. Alternatively, or in addition to touch screen 604, device 600 has a display and a touch-sensitive surface. As with devices 200 and 400, in some embodiments, touch screen 604 (or the touch-sensitive surface) may have one or more intensity sensors for detecting intensity of contacts (e.g., touches) being applied. The one or more intensity sensors of touch screen 604 (or the touch-sensitive surface) can provide output data that represents the intensity of touches. The user interface of device 600 can respond to touches based on their intensity, meaning that touches of different intensities can invoke different user interface operations on device 600.


Techniques for detecting and processing touch intensity may be found, for example, in related applications: International Patent Application Serial No. PCT/US2013/040061, titled “Device, Method, and Graphical User Interface for Displaying User Interface Objects Corresponding to an Application,” filed May 8, 2013, and International Patent Application Serial No. PCT/US2013/069483, titled “Device, Method, and Graphical User Interface for Transitioning Between Touch Input to Display Output Relationships,” filed Nov. 11, 2013, each of which is hereby incorporated by reference in their entirety.


In some embodiments, device 600 has one or more input mechanisms 606 and 608. Input mechanisms 606 and 608, if included, can be physical. Examples of physical input mechanisms include push buttons and rotatable mechanisms. In some embodiments, device 600 has one or more attachment mechanisms. Such attachment mechanisms, if included, can permit attachment of device 600 with, for example, hats, eyewear, earrings, necklaces, shirts, jackets, bracelets, watch straps, chains, trousers, belts, shoes, purses, backpacks, and so forth. These attachment mechanisms may permit device 600 to be worn by a user.



FIG. 6B depicts exemplary personal electronic device 600. In some embodiments, device 600 can include some or all of the components described with respect to FIGS. 2A, 2B, and 4. Device 600 has bus 612 that operatively couples I/O section 614 with one or more computer processors 616 and memory 618. I/O section 614 can be connected to display 604, which can have touch-sensitive component 622 and, optionally, touch-intensity sensitive component 624. In addition, I/O section 614 can be connected with communication unit 630 for receiving application and operating system data, using Wi-Fi, Bluetooth, near field communication (NFC), cellular, and/or other wireless communication techniques. Device 600 can include input mechanisms 606 and/or 608. Input mechanism 606 may be a rotatable input device or a depressible and rotatable input device, for example. Input mechanism 608 may be a button, in some examples.


Input mechanism 608 may be a microphone, in some examples. Personal electronic device 600 can include various sensors, such as GPS sensor 632, accelerometer 634, directional sensor 640 (e.g., compass), gyroscope 636, motion sensor 638, and/or a combination thereof, all of which can be operatively connected to I/O section 614.


Memory 618 of personal electronic device 600 can be a non-transitory computer-readable storage medium, for storing computer-executable instructions, which, when executed by one or more computer processors 616, for example, can cause the computer processors to perform the techniques and processes described below. The computer-executable instructions can also be stored and/or transported within any non-transitory computer-readable storage medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions. For purposes of this document, a “non-transitory computer-readable storage medium” can be any medium that can tangibly contain or store computer-executable instructions for use by or in connection with the instruction execution system, apparatus, or device. The non-transitory computer-readable storage medium can include, but is not limited to, magnetic, optical, and/or semiconductor storages. Examples of such storage include magnetic disks, optical discs based on CD, DVD, or Blu-ray technologies, as well as persistent solid-state memory such as flash, solid-state drives, and the like. Personal electronic device 600 is not limited to the components and configuration of FIG. 6B, but can include other or additional components in multiple configurations.


As used here, the term “affordance” refers to a user-interactive graphical user interface object that may be displayed on the display screen of devices 200, 400, and/or 600 (FIGS. 2, 4, and 6). For example, an image (e.g., icon), a button, and text (e.g., hyperlink) may each constitute an affordance.


As used herein, the term “focus selector” refers to an input element that indicates a current part of a user interface with which a user is interacting. In some implementations that include a cursor or other location marker, the cursor acts as a “focus selector” so that when an input (e.g., a press input) is detected on a touch-sensitive surface (e.g., touchpad 455 in FIG. 4 or touch-sensitive surface 551 in FIG. 5B) while the cursor is over a particular user interface element (e.g., a button, window, slider or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations that include a touch screen display (e.g., touch-sensitive display system 212 in FIG. 2A or touch screen 212 in FIG. 5A) that enables direct interaction with user interface elements on the touch screen display, a detected contact on the touch screen acts as a “focus selector” so that when an input (e.g., a press input by the contact) is detected on the touch screen display at a location of a particular user interface element (e.g., a button, window, slider, or other user interface element), the particular user interface element is adjusted in accordance with the detected input. In some implementations, focus is moved from one region of a user interface to another region of the user interface without corresponding movement of a cursor or movement of a contact on a touch screen display (e.g., by using a tab key or arrow keys to move focus from one button to another button); in these implementations, the focus selector moves in accordance with movement of focus between different regions of the user interface. Without regard to the specific form taken by the focus selector, the focus selector is generally the user interface element (or contact on a touch screen display) that is controlled by the user so as to communicate the user's intended interaction with the user interface (e.g., by indicating, to the device, the element of the user interface with which the user is intending to interact). For example, the location of a focus selector (e.g., a cursor, a contact, or a selection box) over a respective button while a press input is detected on the touch-sensitive surface (e.g., a touchpad or touch screen) will indicate that the user is intending to activate the respective button (as opposed to other user interface elements shown on a display of the device).


As used in the specification and claims, the term “characteristic intensity” of a contact refers to a characteristic of the contact based on one or more intensities of the contact. In some embodiments, the characteristic intensity is based on multiple intensity samples. The characteristic intensity is, optionally, based on a predefined number of intensity samples, or a set of intensity samples collected during a predetermined time period (e.g., 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10 seconds) relative to a predefined event (e.g., after detecting the contact, prior to detecting liftoff of the contact, before or after detecting a start of movement of the contact, prior to detecting an end of the contact, before or after detecting an increase in intensity of the contact, and/or before or after detecting a decrease in intensity of the contact). A characteristic intensity of a contact is, optionally based on one or more of: a maximum value of the intensities of the contact, a mean value of the intensities of the contact, an average value of the intensities of the contact, a top 10 percentile value of the intensities of the contact, a value at the half maximum of the intensities of the contact, a value at the 90 percent maximum of the intensities of the contact, or the like. In some embodiments, the duration of the contact is used in determining the characteristic intensity (e.g., when the characteristic intensity is an average of the intensity of the contact over time). In some embodiments, the characteristic intensity is compared to a set of one or more intensity thresholds to determine whether an operation has been performed by a user. For example, the set of one or more intensity thresholds may include a first intensity threshold and a second intensity threshold. In this example, a contact with a characteristic intensity that does not exceed the first threshold results in a first operation, a contact with a characteristic intensity that exceeds the first intensity threshold and does not exceed the second intensity threshold results in a second operation, and a contact with a characteristic intensity that exceeds the second threshold results in a third operation. In some embodiments, a comparison between the characteristic intensity and one or more thresholds is used to determine whether or not to perform one or more operations (e.g., whether to perform a respective operation or forgo performing the respective operation) rather than being used to determine whether to perform a first operation or a second operation.


In some embodiments, a portion of a gesture is identified for purposes of determining a characteristic intensity. For example, a touch-sensitive surface may receive a continuous swipe contact transitioning from a start location and reaching an end location, at which point the intensity of the contact increases. In this example, the characteristic intensity of the contact at the end location may be based on only a portion of the continuous swipe contact, and not the entire swipe contact (e.g., only the portion of the swipe contact at the end location). In some embodiments, a smoothing algorithm may be applied to the intensities of the swipe contact prior to determining the characteristic intensity of the contact. For example, the smoothing algorithm optionally includes one or more of: an unweighted sliding-average smoothing algorithm, a triangular smoothing algorithm, a median filter smoothing algorithm, and/or an exponential smoothing algorithm. In some circumstances, these smoothing algorithms eliminate narrow spikes or dips in the intensities of the swipe contact for purposes of determining a characteristic intensity.


The intensity of a contact on the touch-sensitive surface may be characterized relative to one or more intensity thresholds, such as a contact-detection intensity threshold, a light press intensity threshold, a deep press intensity threshold, and/or one or more other intensity thresholds. In some embodiments, the light press intensity threshold corresponds to an intensity at which the device will perform operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, the deep press intensity threshold corresponds to an intensity at which the device will perform operations that are different from operations typically associated with clicking a button of a physical mouse or a trackpad. In some embodiments, when a contact is detected with a characteristic intensity below the light press intensity threshold (e.g., and above a nominal contact-detection intensity threshold below which the contact is no longer detected), the device will move a focus selector in accordance with movement of the contact on the touch-sensitive surface without performing an operation associated with the light press intensity threshold or the deep press intensity threshold. Generally, unless otherwise stated, these intensity thresholds are consistent between different sets of user interface figures.


An increase of characteristic intensity of the contact from an intensity below the light press intensity threshold to an intensity between the light press intensity threshold and the deep press intensity threshold is sometimes referred to as a “light press” input. An increase of characteristic intensity of the contact from an intensity below the deep press intensity threshold to an intensity above the deep press intensity threshold is sometimes referred to as a “deep press” input. An increase of characteristic intensity of the contact from an intensity below the contact-detection intensity threshold to an intensity between the contact-detection intensity threshold and the light press intensity threshold is sometimes referred to as detecting the contact on the touch-surface. A decrease of characteristic intensity of the contact from an intensity above the contact-detection intensity threshold to an intensity below the contact-detection intensity threshold is sometimes referred to as detecting liftoff of the contact from the touch-surface. In some embodiments, the contact-detection intensity threshold is zero. In some embodiments, the contact-detection intensity threshold is greater than zero.


In some embodiments described herein, one or more operations are performed in response to detecting a gesture that includes a respective press input or in response to detecting the respective press input performed with a respective contact (or a plurality of contacts), where the respective press input is detected based at least in part on detecting an increase in intensity of the contact (or plurality of contacts) above a press-input intensity threshold. In some embodiments, the respective operation is performed in response to detecting the increase in intensity of the respective contact above the press-input intensity threshold (e.g., a “down stroke” of the respective press input). In some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the press-input threshold (e.g., an “up stroke” of the respective press input).


In some embodiments, the device employs intensity hysteresis to avoid accidental inputs sometimes termed “jitter,” where the device defines or selects a hysteresis intensity threshold with a predefined relationship to the press-input intensity threshold (e.g., the hysteresis intensity threshold is X intensity units lower than the press-input intensity threshold or the hysteresis intensity threshold is 75%, 90%, or some reasonable proportion of the press-input intensity threshold). Thus, in some embodiments, the press input includes an increase in intensity of the respective contact above the press-input intensity threshold and a subsequent decrease in intensity of the contact below the hysteresis intensity threshold that corresponds to the press-input intensity threshold, and the respective operation is performed in response to detecting the subsequent decrease in intensity of the respective contact below the hysteresis intensity threshold (e.g., an “up stroke” of the respective press input). Similarly, in some embodiments, the press input is detected only when the device detects an increase in intensity of the contact from an intensity at or below the hysteresis intensity threshold to an intensity at or above the press-input intensity threshold and, optionally, a subsequent decrease in intensity of the contact to an intensity at or below the hysteresis intensity, and the respective operation is performed in response to detecting the press input (e.g., the increase in intensity of the contact or the decrease in intensity of the contact, depending on the circumstances).


For ease of explanation, the descriptions of operations performed in response to a press input associated with a press-input intensity threshold or in response to a gesture including the press input are, optionally, triggered in response to detecting either: an increase in intensity of a contact above the press-input intensity threshold, an increase in intensity of a contact from an intensity below the hysteresis intensity threshold to an intensity above the press-input intensity threshold, a decrease in intensity of the contact below the press-input intensity threshold, and/or a decrease in intensity of the contact below the hysteresis intensity threshold corresponding to the press-input intensity threshold. Additionally, in examples where an operation is described as being performed in response to detecting a decrease in intensity of a contact below the press-input intensity threshold, the operation is, optionally, performed in response to detecting a decrease in intensity of the contact below a hysteresis intensity threshold corresponding to, and lower than, the press-input intensity threshold.


3. Digital Assistant System



FIG. 7A illustrates a block diagram of digital assistant system 700 in accordance with various examples. In some examples, digital assistant system 700 can be implemented on a standalone computer system. In some examples, digital assistant system 700 can be distributed across multiple computers. In some examples, some of the modules and functions of the digital assistant can be divided into a server portion and a client portion, where the client portion resides on one or more user devices (e.g., devices 104, 122, 200, 400, or 600) and communicates with the server portion (e.g., server system 108) through one or more networks, e.g., as shown in FIG. 1. In some examples, digital assistant system 700 can be an implementation of server system 108 (and/or DA server 106) shown in FIG. 1. It should be noted that digital assistant system 700 is only one example of a digital assistant system, and that digital assistant system 700 can have more or fewer components than shown, may combine two or more components, or may have a different configuration or arrangement of the components. The various components shown in FIG. 7A can be implemented in hardware, software instructions for execution by one or more processors, firmware, including one or more signal processing and/or application specific integrated circuits, or a combination thereof.


Digital assistant system 700 can include memory 702, one or more processors 704, input/output (I/O) interface 706, and network communications interface 708. These components can communicate with one another over one or more communication buses or signal lines 710.


In some examples, memory 702 can include a non-transitory computer-readable medium, such as high-speed random access memory and/or a non-volatile computer-readable storage medium (e.g., one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state memory devices).


In some examples, I/O interface 706 can couple input/output devices 716 of digital assistant system 700, such as displays, keyboards, touch screens, and microphones, to user interface module 722. I/O interface 706, in conjunction with user interface module 722, can receive user inputs (e.g., voice input, keyboard inputs, touch inputs, etc.) and processes them accordingly. In some examples, e.g., when the digital assistant is implemented on a standalone user device, digital assistant system 700 can include any of the components and I/O communication interfaces described with respect to devices 200, 400, or 600 in FIGS. 2A, 4, 6A-B, respectively. In some examples, digital assistant system 700 can represent the server portion of a digital assistant implementation, and can interact with the user through a client-side portion residing on a user device (e.g., devices 104, 200, 400, or 600).


In some examples, the network communications interface 708 can include wired communication port(s) 712 and/or wireless transmission and reception circuitry 714. The wired communication port(s) can receive and send communication signals via one or more wired interfaces, e.g., Ethernet, Universal Serial Bus (USB), FIREWIRE, etc. The wireless circuitry 714 can receive and send RF signals and/or optical signals from/to communications networks and other communications devices. The wireless communications can use any of a plurality of communications standards, protocols, and technologies, such as GSM, EDGE, CDMA, TDMA, Bluetooth, Wi-Fi, VoIP, Wi-MAX, or any other suitable communication protocol. Network communications interface 708 can enable communication between digital assistant system 700 with networks, such as the Internet, an intranet, and/or a wireless network, such as a cellular telephone network, a wireless local area network (LAN), and/or a metropolitan area network (MAN), and other devices.


In some examples, memory 702, or the computer-readable storage media of memory 702, can store programs, modules, instructions, and data structures including all or a subset of: operating system 718, communications module 720, user interface module 722, one or more applications 724, and digital assistant module 726. In particular, memory 702, or the computer-readable storage media of memory 702, can store instructions for performing the processes described below. One or more processors 704 can execute these programs, modules, and instructions, and reads/writes from/to the data structures.


Operating system 718 (e.g., Darwin, RTXC, LINUX, UNIX, iOS, OS X, WINDOWS, or an embedded operating system such as VxWorks) can include various software components and/or drivers for controlling and managing general system tasks (e.g., memory management, storage device control, power management, etc.) and facilitates communications between various hardware, firmware, and software components.


Communications module 720 can facilitate communications between digital assistant system 700 with other devices over network communications interface 708. For example, communications module 720 can communicate with RF circuitry 208 of electronic devices such as devices 200, 400, and 600 shown in FIG. 2A, 4, 6A-B, respectively. Communications module 720 can also include various components for handling data received by wireless circuitry 714 and/or wired communications port 712.


User interface module 722 can receive commands and/or inputs from a user via I/O interface 706 (e.g., from a keyboard, touch screen, pointing device, controller, and/or microphone), and generate user interface objects on a display. User interface module 722 can also prepare and deliver outputs (e.g., speech, sound, animation, text, icons, vibrations, haptic feedback, light, etc.) to the user via the I/O interface 706 (e.g., through displays, audio channels, speakers, touch-pads, etc.).


Applications 724 can include programs and/or modules that are configured to be executed by one or more processors 704. For example, if the digital assistant system is implemented on a standalone user device, applications 724 can include user applications, such as games, a calendar application, a navigation application, or an email application. If digital assistant system 700 is implemented on a server, applications 724 can include resource management applications, diagnostic applications, or scheduling applications, for example.


Memory 702 can also store digital assistant module 726 (or the server portion of a digital assistant). In some examples, digital assistant module 726 can include the following submodules, or a subset or superset thereof: input/output processing module 728, speech-to-text (STT) processing module 730, natural language processing module 732, dialogue flow processing module 734, task flow processing module 736, service processing module 738, and speech synthesis module 740. Each of these modules can have access to one or more of the following systems or data and models of the digital assistant module 726, or a subset or superset thereof: ontology 760, vocabulary index 744, user data 748, task flow models 754, service models 756, and ASR systems.


In some examples, using the processing modules, data, and models implemented in digital assistant module 726, the digital assistant can perform at least some of the following: converting speech input into text; identifying a user's intent expressed in a natural language input received from the user; actively eliciting and obtaining information needed to fully infer the user's intent (e.g., by disambiguating words, games, intentions, etc.); determining the task flow for fulfilling the inferred intent; and executing the task flow to fulfill the inferred intent.


In some examples, as shown in FIG. 7B, I/O processing module 728 can interact with the user through I/O devices 716 in FIG. 7A or with a user device (e.g., devices 104, 200, 400, or 600) through network communications interface 708 in FIG. 7A to obtain user input (e.g., a speech input) and to provide responses (e.g., as speech outputs) to the user input. I/O processing module 728 can optionally obtain contextual information associated with the user input from the user device, along with or shortly after the receipt of the user input. The contextual information can include user-specific data, vocabulary, and/or preferences relevant to the user input. In some examples, the contextual information also includes software and hardware states of the user device at the time the user request is received, and/or information related to the surrounding environment of the user at the time that the user request was received. In some examples, I/O processing module 728 can also send follow-up questions to, and receive answers from, the user regarding the user request. When a user request is received by I/O processing module 728 and the user request can include speech input, I/O processing module 728 can forward the speech input to STT processing module 730 (or speech recognizer) for speech-to-text conversions.


STT processing module 730 can include one or more ASR systems. The one or more ASR systems can process the speech input that is received through I/O processing module 728 to produce a recognition result. Each ASR system can include a front-end speech pre-processor. The front-end speech pre-processor can extract representative features from the speech input. For example, the front-end speech pre-processor can perform a Fourier transform on the speech input to extract spectral features that characterize the speech input as a sequence of representative multi-dimensional vectors. Further, each ASR system can include one or more speech recognition models (e.g., acoustic models and/or language models) and can implement one or more speech recognition engines. Examples of speech recognition models can include Hidden Markov Models, Gaussian-Mixture Models, Deep Neural Network Models, n-gram language models, and other statistical models. Examples of speech recognition engines can include the dynamic time warping based engines and weighted finite-state transducers (WFST) based engines. The one or more speech recognition models and the one or more speech recognition engines can be used to process the extracted representative features of the front-end speech pre-processor to produce intermediate recognitions results (e.g., phonemes, phonemic strings, and sub-words), and ultimately, text recognition results (e.g., words, word strings, or sequence of tokens). In some examples, the speech input can be processed at least partially by a third-party service or on the user's device (e.g., device 104, 200, 400, or 600) to produce the recognition result. Once STT processing module 730 produces recognition results containing a text string (e.g., words, or sequence of words, or sequence of tokens), the recognition result can be passed to natural language processing module 732 for intent deduction.


More details on the speech-to-text processing are described in U.S. Utility application Ser. No. 13/236,942 for “Consolidating Speech Recognition Results,” filed on Sep. 20, 2011, the entire disclosure of which is incorporated herein by reference.


In some examples, STT processing module 730 can include and/or access a vocabulary of recognizable words via phonetic alphabet conversion module 731. Each vocabulary word can be associated with one or more candidate pronunciations of the word represented in a speech recognition phonetic alphabet. In particular, the vocabulary of recognizable words can include a word that is associated with a plurality of candidate pronunciations. For example, the vocabulary may include the word “tomato” that is associated with the candidate pronunciations of /custom character/ and /custom character/. Further, vocabulary words can be associated with custom candidate pronunciations that are based on previous speech inputs from the user. Such custom candidate pronunciations can be stored in STT processing module 730 and can be associated with a particular user via the user's profile on the device. In some examples, the candidate pronunciations for words can be determined based on the spelling of the word and one or more linguistic and/or phonetic rules. In some examples, the candidate pronunciations can be manually generated, e.g., based on known canonical pronunciations.


In some examples, the candidate pronunciations can be ranked based on the commonness of the candidate pronunciation. For example, the candidate pronunciation /custom character/ can be ranked higher than /custom character/, because the former is a more commonly used pronunciation (e.g., among all users, for users in a particular geographical region, or for any other appropriate subset of users). In some examples, candidate pronunciations can be ranked based on whether the candidate pronunciation is a custom candidate pronunciation associated with the user. For example, custom candidate pronunciations can be ranked higher than canonical candidate pronunciations. This can be useful for recognizing proper nouns having a unique pronunciation that deviates from canonical pronunciation. In some examples, candidate pronunciations can be associated with one or more speech characteristics, such as geographic origin, nationality, or ethnicity. For example, the candidate pronunciation /custom character/ can be associated with the United States, whereas the candidate pronunciation /custom character/ can be associated with Great Britain. Further, the rank of the candidate pronunciation can be based on one or more characteristics (e.g., geographic origin, nationality, ethnicity, etc.) of the user stored in the user's profile on the device. For example, it can be determined from the user's profile that the user is associated with the United States. Based on the user being associated with the United States, the candidate pronunciation /custom character/ (associated with the United States) can be ranked higher than the candidate pronunciation /custom character/ (associated with Great Britain). In some examples, one of the ranked candidate pronunciations can be selected as a predicted pronunciation (e.g., the most likely pronunciation).


When a speech input is received, STT processing module 730 can be used to determine the phonemes corresponding to the speech input (e.g., using an acoustic model), and then attempt to determine words that match the phonemes (e.g., using a language model). For example, if STT processing module 730 can first identify the sequence of phonemes /custom character/corresponding to a portion of the speech input, it can then determine, based on vocabulary index 744, that this sequence corresponds to the word “tomato.”


In some examples, STT processing module 730 can use approximate matching techniques to determine words in an utterance. Thus, for example, the STT processing module 730 can determine that the sequence of phonemes /custom character/ corresponds to the word “tomato,” even if that particular sequence of phonemes is not one of the candidate sequence of phonemes for that word.


Natural language processing module 732 (“natural language processor”) of the digital assistant can take the sequence of words or tokens (“token sequence”) generated by STT processing module 730, and attempt to associate the token sequence with one or more “actionable intents” recognized by the digital assistant. An “actionable intent” can represent a task that can be performed by the digital assistant, and can have an associated task flow implemented in task flow models 754. The associated task flow can be a series of programmed actions and steps that the digital assistant takes in order to perform the task. The scope of a digital assistant's capabilities can be dependent on the number and variety of task flows that have been implemented and stored in task flow models 754, or in other words, on the number and variety of “actionable intents” that the digital assistant recognizes. The effectiveness of the digital assistant, however, can also be dependent on the assistant's ability to infer the correct “actionable intent(s)” from the user request expressed in natural language.


In some examples, in addition to the sequence of words or tokens obtained from STT processing module 730, natural language processing module 732 can also receive contextual information associated with the user request, e.g., from I/O processing module 728. The natural language processing module 732 can optionally use the contextual information to clarify, supplement, and/or further define the information contained in the token sequence received from STT processing module 730. The contextual information can include, for example, user preferences, hardware, and/or software states of the user device, sensor information collected before, during, or shortly after the user request, prior interactions (e.g., dialogue) between the digital assistant and the user, and the like. As described herein, contextual information can be dynamic, and can change with time, location, content of the dialogue, and other factors.


In some examples, the natural language processing can be based on, e.g., ontology 760. Ontology 760 can be a hierarchical structure containing many nodes, each node representing either an “actionable intent” or a “property” relevant to one or more of the “actionable intents” or other “properties.” As noted above, an “actionable intent” can represent a task that the digital assistant is capable of performing, i.e., it is “actionable” or can be acted on. A “property” can represent a parameter associated with an actionable intent or a sub-aspect of another property. A linkage between an actionable intent node and a property node in ontology 760 can define how a parameter represented by the property node pertains to the task represented by the actionable intent node.


In some examples, ontology 760 can be made up of actionable intent nodes and property nodes. Within ontology 760, each actionable intent node can be linked to one or more property nodes either directly or through one or more intermediate property nodes. Similarly, each property node can be linked to one or more actionable intent nodes either directly or through one or more intermediate property nodes. For example, as shown in FIG. 7C, ontology 760 can include a “restaurant reservation” node (i.e., an actionable intent node). Property nodes “restaurant,” “date/time” (for the reservation), and “party size” can each be directly linked to the actionable intent node (i.e., the “restaurant reservation” node).


In addition, property nodes “cuisine,” “price range,” “phone number,” and “location” can be sub-nodes of the property node “restaurant,” and can each be linked to the “restaurant reservation” node (i.e., the actionable intent node) through the intermediate property node “restaurant.” For another example, as shown in FIG. 7C, ontology 760 can also include a “set reminder” node (i.e., another actionable intent node). Property nodes “date/time” (for setting the reminder) and “subject” (for the reminder) can each be linked to the “set reminder” node. Since the property “date/time” can be relevant to both the task of making a restaurant reservation and the task of setting a reminder, the property node “date/time” can be linked to both the “restaurant reservation” node and the “set reminder” node in ontology 760.


An actionable intent node, along with its linked concept nodes, can be described as a “domain.” In the present discussion, each domain can be associated with a respective actionable intent, and refers to the group of nodes (and the relationships there between) associated with the particular actionable intent. For example, ontology 760 shown in FIG. 7C can include an example of restaurant reservation domain 762 and an example of reminder domain 764 within ontology 760. The restaurant reservation domain includes the actionable intent node “restaurant reservation,” property nodes “restaurant,” “date/time,” and “party size,” and sub-property nodes “cuisine,” “price range,” “phone number,” and “location.” Reminder domain 764 can include the actionable intent node “set reminder,” and property nodes “subject” and “date/time.” In some examples, ontology 760 can be made up of many domains. Each domain can share one or more property nodes with one or more other domains. For example, the “date/time” property node can be associated with many different domains (e.g., a scheduling domain, a travel reservation domain, a movie ticket domain, etc.), in addition to restaurant reservation domain 762 and reminder domain 764.


While FIG. 7C illustrates two example domains within ontology 760, other domains can include, for example, “find a movie,” “initiate a phone call,” “find directions,” “schedule a meeting,” “send a message,” and “provide an answer to a question,” “read a list,” “providing navigation instructions,” “provide instructions for a task” and so on. A “send a message” domain can be associated with a “send a message” actionable intent node, and may further include property nodes such as “recipient(s),” “message type,” and “message body.” The property node “recipient” can be further defined, for example, by the sub-property nodes such as “recipient name” and “message address.”


In some examples, ontology 760 can include all the domains (and hence actionable intents) that the digital assistant is capable of understanding and acting upon. In some examples, ontology 760 can be modified, such as by adding or removing entire domains or nodes, or by modifying relationships between the nodes within the ontology 760.


In some examples, nodes associated with multiple related actionable intents can be clustered under a “super domain” in ontology 760. For example, a “travel” super-domain can include a cluster of property nodes and actionable intent nodes related to travel. The actionable intent nodes related to travel can include “airline reservation,” “hotel reservation,” “car rental,” “get directions,” “find points of interest,” and so on. The actionable intent nodes under the same super domain (e.g., the “travel” super domain) can have many property nodes in common. For example, the actionable intent nodes for “airline reservation,” “hotel reservation,” “car rental,” “get directions,” and “find points of interest” can share one or more of the property nodes “start location,” “destination,” “departure date/time,” “arrival date/time,” and “party size.”


In some examples, each node in ontology 760 can be associated with a set of words and/or phrases that are relevant to the property or actionable intent represented by the node. The respective set of words and/or phrases associated with each node can be the so-called “vocabulary” associated with the node. The respective set of words and/or phrases associated with each node can be stored in vocabulary index 744 in association with the property or actionable intent represented by the node. For example, returning to FIG. 7B, the vocabulary associated with the node for the property of “restaurant” can include words such as “food,” “drinks,” “cuisine,” “hungry,” “eat,” “pizza,” “fast food,” “meal,” and so on. For another example, the vocabulary associated with the node for the actionable intent of “initiate a phone call” can include words and phrases such as “call,” “phone,” “dial,” “ring,” “call this number,” “make a call to,” and so on. The vocabulary index 744 can optionally include words and phrases in different languages.


Natural language processing module 732 can receive the token sequence (e.g., a text string) from STT processing module 730, and determine what nodes are implicated by the words in the token sequence. In some examples, if a word or phrase in the token sequence is found to be associated with one or more nodes in ontology 760 (via vocabulary index 744), the word or phrase can “trigger” or “activate” those nodes. Based on the quantity and/or relative importance of the activated nodes, natural language processing module 732 can select one of the actionable intents as the task that the user intended the digital assistant to perform. In some examples, the domain that has the most “triggered” nodes can be selected. In some examples, the domain having the highest confidence value (e.g., based on the relative importance of its various triggered nodes) can be selected. In some examples, the domain can be selected based on a combination of the number and the importance of the triggered nodes. In some examples, additional factors are considered in selecting the node as well, such as whether the digital assistant has previously correctly interpreted a similar request from a user.


User data 748 can include user-specific information, such as user-specific vocabulary, user preferences, user address, user's default and secondary languages, user's contact list, and other short-term or long-term information for each user. In some examples, natural language processing module 732 can use the user-specific information to supplement the information contained in the user input to further define the user intent. For example, for a user request “invite my friends to my birthday party,” natural language processing module 732 can be able to access user data 748 to determine who the “friends” are and when and where the “birthday party” would be held, rather than requiring the user to provide such information explicitly in his/her request.


Other details of searching an ontology based on a token string is described in U.S. Utility application Ser. No. 12/341,743 for “Method and Apparatus for Searching Using An Active Ontology,” filed Dec. 22, 2008, the entire disclosure of which is incorporated herein by reference.


In some examples, once natural language processing module 732 identifies an actionable intent (or domain) based on the user request, natural language processing module 732 can generate a structured query to represent the identified actionable intent. In some examples, the structured query can include parameters for one or more nodes within the domain for the actionable intent, and at least some of the parameters are populated with the specific information and requirements specified in the user request. For example, the user may say “Make me a dinner reservation at a sushi place at 7.” In this case, natural language processing module 732 can be able to correctly identify the actionable intent to be “restaurant reservation” based on the user input. According to the ontology, a structured query for a “restaurant reservation” domain may include parameters such as {Cuisine}, {Time}, {Date}, {Party Size}, and the like. In some examples, based on the speech input and the text derived from the speech input using STT processing module 730, natural language processing module 732 can generate a partial structured query for the restaurant reservation domain, where the partial structured query includes the parameters {Cuisine=“Sushi”} and {Time=“7 pm”}. However, in this example, the user's utterance contains insufficient information to complete the structured query associated with the domain. Therefore, other necessary parameters such as {Party Size} and {Date} may not be specified in the structured query based on the information currently available. In some examples, natural language processing module 732 can populate some parameters of the structured query with received contextual information. For example, in some examples, if the user requested a sushi restaurant “near me,” natural language processing module 732 can populate a {location} parameter in the structured query with GPS coordinates from the user device.


In some examples, natural language processing module 732 can pass the generated structured query (including any completed parameters) to task flow processing module 736 (“task flow processor”). Task flow processing module 736 can be configured to receive the structured query from natural language processing module 732, complete the structured query, if necessary, and perform the actions required to “complete” the user's ultimate request. In some examples, the various procedures necessary to complete these tasks can be provided in task flow models 754. In some examples, task flow models 754 can include procedures for obtaining additional information from the user and task flows for performing actions associated with the actionable intent.


As described above, in order to complete a structured query, task flow processing module 736 may need to initiate additional dialogue with the user in order to obtain additional information, and/or disambiguate potentially ambiguous utterances. When such interactions are necessary, task flow processing module 736 can invoke dialogue flow processing module 734 to engage in a dialogue with the user. In some examples, dialogue flow processing module 734 can determine how (and/or when) to ask the user for the additional information and receives and processes the user responses. The questions can be provided to and answers can be received from the users through I/O processing module 728. In some examples, dialogue flow processing module 734 can present dialogue output to the user via audio and/or visual output, and receives input from the user via spoken or physical (e.g., clicking) responses. Continuing with the example above, when task flow processing module 736 invokes dialogue flow processing module 734 to determine the “party size” and “date” information for the structured query associated with the domain “restaurant reservation,” dialogue flow processing module 734 can generate questions such as “For how many people?” and “On which day?” to pass to the user. Once answers are received from the user, dialogue flow processing module 734 can then populate the structured query with the missing information, or pass the information to task flow processing module 736 to complete the missing information from the structured query.


Once task flow processing module 736 has completed the structured query for an actionable intent, task flow processing module 736 can proceed to perform the ultimate task associated with the actionable intent. Accordingly, task flow processing module 736 can execute the steps and instructions in the task flow model according to the specific parameters contained in the structured query. For example, the task flow model for the actionable intent of “restaurant reservation” can include steps and instructions for contacting a restaurant and actually requesting a reservation for a particular party size at a particular time. For example, using a structured query such as: {restaurant reservation, restaurant=ABC Café, date=Mar. 12, 2012, time=7 pm, party size=5}, task flow processing module 736 can perform the steps of: (1) logging onto a server of the ABC Café or a restaurant reservation system such as OPENTABLE®, (2) entering the date, time, and party size information in a form on the website, (3) submitting the form, and (4) making a calendar entry for the reservation in the user's calendar.


In some examples, task flow processing module 736 can employ the assistance of service processing module 738 (“service processing module”) to complete a task requested in the user input or to provide an informational answer requested in the user input. For example, service processing module 738 can act on behalf of task flow processing module 736 to make a phone call, set a calendar entry, invoke a map search, invoke or interact with other user applications installed on the user device, and invoke or interact with third-party services (e.g., a restaurant reservation portal, a social networking website, a banking portal, etc.). In some examples, the protocols and application programming interfaces (API) required by each service can be specified by a respective service model among service models 756. Service processing module 738 can access the appropriate service model for a service and generate requests for the service in accordance with the protocols and APIs required by the service according to the service model.


For example, if a restaurant has enabled an online reservation service, the restaurant can submit a service model specifying the necessary parameters for making a reservation and the APIs for communicating the values of the necessary parameter to the online reservation service. When requested by task flow processing module 736, service processing module 738 can establish a network connection with the online reservation service using the web address stored in the service model, and send the necessary parameters of the reservation (e.g., time, date, party size) to the online reservation interface in a format according to the API of the online reservation service.


In some examples, natural language processing module 732, dialogue flow processing module 734, and task flow processing module 736 can be used collectively and iteratively to infer and define the user's intent, obtain information to further clarify and refine the user intent, and finally generate a response (i.e., an output to the user, or the completion of a task) to fulfill the user's intent. The generated response can be a dialogue response to the speech input that at least partially fulfills the user's intent. Further, in some examples, the generated response can be output as a speech output. In these examples, the generated response can be sent to speech synthesis module 740 (e.g., speech synthesizer) where it can be processed to synthesize the dialogue response in speech form. In yet other examples, the generated response can be data content relevant to satisfying a user request in the speech input.


Speech synthesis module 740 can be configured to synthesize speech outputs for presentation to the user. Speech synthesis module 740 synthesizes speech outputs based on text provided by the digital assistant. For example, the generated dialogue response can be in the form of a text string. Speech synthesis module 740 can convert the text string to an audible speech output. Speech synthesis module 740 can use any appropriate speech synthesis technique in order to generate speech outputs from text, including, but not limited, to concatenative synthesis, unit selection synthesis, diphone synthesis, domain-specific synthesis, formant synthesis, articulatory synthesis, hidden Markov model (HMM) based synthesis, and sinewave synthesis. In some examples, speech synthesis module 740 can be configured to synthesize individual words based on phonemic strings corresponding to the words. For example, a phonemic string can be associated with a word in the generated dialogue response. The phonemic string can be stored in metadata associated with the word. Speech synthesis model 740 can be configured to directly process the phonemic string in the metadata to synthesize the word in speech form.


In some examples, instead of (or in addition to) using speech synthesis module 740, speech synthesis can be performed on a remote device (e.g., the server system 108), and the synthesized speech can be sent to the user device for output to the user. For example, this can occur in some implementations where outputs for a digital assistant are generated at a server system. And because server systems generally have more processing power or resources than a user device, it can be possible to obtain higher quality speech outputs than would be practical with client-side synthesis.


Additional details on digital assistants can be found in the U.S. Utility application Ser. No. 12/987,982, entitled “Intelligent Automated Assistant,” filed Jan. 10, 2011, and U.S. Utility application Ser. No. 13/251,088, entitled “Generating and Processing Task Items That Represent Tasks to Perform,” filed Sep. 30, 2011, the entire disclosures of which are incorporated herein by reference.


4. Processes for Proactive Assistance Based on Dialog Communication Between Devices



FIGS. 8A-B illustrate process 800 for proactive assistance based on dialog communication between devices according to various examples. FIGS. 9A-D illustrate exemplary user interfaces of an electronic device for proactive assistance based on dialog communication between devices according to various examples. Process 800 can be performed using one or more electronic devices implementing a digital assistant. In some examples, process 800 can be performed at a client-server system (e.g., system 100) implementing a digital assistant. In some examples, process 800 can be performed at an electronic device (e.g., device 104, 200, 400, or 600). In process 800, some blocks are, optionally, combined, the order of some blocks are, optionally, changed, and some blocks are, optionally, omitted.


At block 802, dialog communication can be established with a second electronic device. The dialog communication can include any form of dialog (e.g., voice, text, sign language, etc.) that is exchanged (e.g., transmitted or received) between a user of the electronic device and a user of the second electronic device. The second electronic device can be similar or identical to devices 104, 200, 400, or 600, described above. In some examples, the second electronic device can be a landline telephone device, a mobile telephone device, a VoIP device, a videotelephony device, a server, or a device associated with an automated answering service.


In some examples, establishing dialog communication can include establishing voice communication. Voice communication can be established, for example, by establishing a telephone call, a voice over internet protocol (VoIP) call, a videotelephony call (e.g., Skype call, Facetime call, etc.), or the like. In other examples, establishing dialog communication can include establishing text communication between the electronic device and the second electronic device. For example, establishing text communication can include establishing a text message conversation, an instant messaging or chat session, an email thread, a message board thread, or the like. One or more of blocks 804-816, described below, can be performed while dialog communication is established between the electronic device and the second electronic device (e.g., during the telephone call or instant messaging session). Further, one or more of blocks 804-816 can be performed after ending dialog communication between the electronic device and the second electronic device (e.g., after hanging up the telephone call or after the instant messaging session is over).


At block 804, dialog can be received. In some examples, the dialog can include a stream of audio data. In other examples, the dialog can include text data. The dialog can be associated with the second electronic device or with a user of the second electronic device. Further, in some examples, the dialog can be associated with the electronic device or with a user of the electronic device. The dialog can include speech or text data addressed to the user of the electronic device or to the user of the second electronic device. However, the dialog may not include speech or text addressed to the digital assistant of the electronic device. In examples where the dialog includes a stream of audio data, the stream of audio data can include speech received via the second electronic device from a user of the second electronic device. Additionally or alternatively, the stream of audio data can include speech received at the electronic device (e.g., via microphone 213) from the user of the electronic device. In some examples, the stream of audio data can include previously recorded speech or synthesized speech (e.g., voicemail prompt or automated answering service, automated voice response menu, etc.) associated with the second electronic device. In particular, the record speech or synthesized speech can be played, generated, or transmitted by the second electronic device.


At block 806, at least a portion of the dialog received at block 804 can be stored. In particular, the dialog can be stored in a buffer or memory of the electronic device. In examples where the dialog includes a stream of audio data, the stream of audio data can be stored in a continuous buffer (e.g., memory 202 or 470) of the electronic device or in the memory of a remote server. In these examples, the stream of audio data can be continuously stored without deleting any portion of the stream of audio data from the memory prior to ending the voice communication between the electronic device and the second electronic device. Alternatively, at least a portion of the stream of audio data can be stored in a circular buffer (e.g., buffer of audio circuitry 210) of the electronic device. The circular buffer can be a first-in first-out (FIFO) buffer that continually overwrites its contents. In particular, the most recently received frame of audio data can continually overwrite the oldest stored frame of audio data. The circular buffer may be of any size. For example, the circular buffer can be configured to store the most recent N seconds of the stream of audio data, where N is a predetermined number (e.g., 10 or 20). Further, it should be recognized that in some examples, the circular buffer can be implemented using the processor of the electronic device (e.g., processor(s) 220), the memory of the electronic device (e.g., memory 202) and an audio processing program stored in the memory and executed by the processor. In particular, the audio processing program can include instructions for storing only the most recent N seconds of the stream of audio data in the memory and continually overwriting the older frames of audio data in the memory. Storing only the most recent N seconds of the stream of audio data can be desirable to reduce privacy concerns. In particular, because only a small interval of the audio data is stored at any given time, the user's exposure in the event of any unauthorized distribution of the dialog can be minimized. Further, storing only the most recent N seconds rather than the entire stream of audio data can require fewer computing resources and can thus improve battery life of the electronic device.


At block 808, a user input can be detected. The user input can correspond to an action indicating that the user intends to perform a task on the electronic device related to the dialog. The user input can be any input initiated by the user and can correspond to a predetermined trigger condition for causing block 810, 812, or 814 to be automatically performed (e.g., without additional user intervention). In some examples, the user input can be detected by a physical sensor (e.g., accelerometer 268, microphone 213, touch sensitive display system 212, optical sensor 264, contact intensity sensor 265, etc.) of the electronic device.


In one example, the user input can be detected by a proximity sensor (e.g., optical sensor 264) of the electronic device. In particular, the user input can correspond to a user moving the electronic device (e.g., mobile phone) away from the user's face to look at the display of the electronic device. This can be desirable during telephone calls (e.g., voice dialog) when the electronic device is positioned proximate to the user's face. In this example, the proximity sensor may be initially positioned less than a threshold distance from a surface (e.g., the user's face), and the user input can include changing a position of the electronic device such that the proximity sensor is positioned greater than the threshold distance from the surface (e.g., moving the electronic device away from the user's face). Thus, in this example, detecting the user input can include detecting the movement of the electronic device away from a surface by the proximity sensor of the electronic device.


In another example, the user input can be detected by an accelerometer (e.g., accelerometer 268) of the electronic device. In this example, the user input can include positioning the electronic device for the user to view the display of the electronic device. Specifically, the user input can include raising or rotating the electronic device such that the display is facing the user. Alternatively, the user input can include shaking the electronic device. These movements can, for example, correspond to removing the electronic device from the user's pocket or the user's bag to view the display of the electronic device. Thus, in this example, detecting the user input can include detecting predetermined movements of the electronic device by the accelerometer of the electronic device.


In yet another example, the user input can include a user selection of an affordance on the electronic device. The affordance can be a physical button of the electronic device. Alternatively, the affordance can be displayed on a touchscreen (touchscreen 212) of the electronic device. Thus, in these examples, detecting the user input can include detecting a user selection of an affordance on the electronic device.


In some examples, the user input can be associated with navigating to a user interface of the electronic device. In these examples, detecting the user input can cause the user interface to be displayed on the display of the electronic device. The user interface can be configured to display information based on the received dialog. In particular, the information corresponding to one of a plurality of types of information at block 814 can be displayed via the user interface.


In some examples, the user input can be a voice command corresponding to the user intent of extracting information from the received dialog. For example, the user input can be the voice command “Hey Siri, remember that phone number,” or “Hey Siri, put that in my calendar.” In these examples, the voice command can include a predefine trigger phrase (e.g., “Hey Siri”) that invokes the digital assistant to process the voice command. The voice command can be received via a microphone (e.g., microphone 213) of the electronic device and can be transcribed into text (e.g., using STT processing module 730). The text can then be processed to determine the user intent (e.g., using natural language processing module 732). In these examples, the user intent can be determined to include extracting information from the received dialog.


In some examples, the user input can be detected via a third electronic device (e.g., device 122) that is communicatively coupled to the electronic device. For example, the third electronic device can be a watch or a personal computer that is communicatively coupled to the electronic device. In these examples, the user input can be provided on the third electronic device, and the electronic device can detect the user input via a corresponding signal transmitted from the third electronic device to the electronic device. This can be desirable for telephone calls where the electronic device is held close to the user's face and thus, it would be more convenient for the user to provide the user input on a separate device communicatively coupled to the electronic device.


In examples where the dialog of block 804 includes text, the user input can define a portion of the text. For example, the user input can include highlighting or selecting the portion of the text via a user interface of the electronic device. The portion of text can correspond to the portion to be analyzed at block 814 to determine whether the portion contains information corresponding to one of a plurality of types of information. By allowing the user to define the portion of the dialog to analyze at block 814, the most relevant information can be processed for proactive assistance. This can improve the accuracy and relevance of the proactive assistance provided.


Although in the present example, block 810 includes detecting a user input, it should be recognized that in other examples, block 810 can include detecting any predefined trigger condition. In these examples, the trigger condition need not be initiated by the user of the electronic device. For instance, the trigger condition can be based on the dialog, which can include audio or text input associated with the user of the electronic device and/or the user of the second electronic device. The dialog can be continuously monitored to identify one or more trigger structures. The one or more trigger structures can include a keyword or phrase that is likely of interest to the user (e.g., “phone,” “number,” “meeting,” “tomorrow,” etc.). Further, the one or more trigger structures can include information corresponding to one of the plurality of types of information described below in block 814. For example, the one or more trigger structures can include a text, number, or sound pattern corresponding to a portion of a phone number sequence (e.g., 1-800- . . . ) or a portion of an email address (e.g., john@ . . . ). In examples where the dialog includes speech/audio, the dialog can be monitored using an audio model to identify the one or more trigger structures. The audio model can be a less computationally intensive audio model that consumes less power than conventional audio models. This can enable the audio model to be utilized continuously while receiving the stream of audio data to detect the one or more trigger structures. The trigger condition can be determined to be satisfied upon detecting the one or more trigger structures in the dialog. In these examples, blocks 810, 812, or 814 can be performed in response to determining that the trigger condition has been satisfied.


In examples where the dialog received at block 804 includes a stream of audio data, blocks 810 or 812 can be performed. Blocks 810 and 814 need not be performed in examples where the dialog received at block 804 includes text. At block 810, a determination can be made as to whether an audio quality of the stream of audio data is greater than a threshold value. In particular, the stream of audio data can be continuously monitored to determine the audio quality. The determination of the audio quality can be based on, for example, the audio frame rate, the audio bit rate, or the audio frame error rates. In response to determining that the audio quality of the stream of audio data is greater than the threshold value, one or more of blocks 812-816 can be performed. In response to determining that the audio quality of the stream of audio data is not greater than the threshold value (e.g., poor audio quality), process 800 can end. The determination at block 810 can be desirable to increase the accuracy of the text representation generated at block 812. In particular, poor audio quality can result in an inaccurate text representation being generated at block 812 and meaningless results being produced.


In other examples, the audio quality can be determined based on the text representation generated at block 812. In particular, block 812 (described below) can be initially performed to generate a text representation of speech contained in at least a portion of the stream of audio data. The text representation of block 812 can be associated with a confidence score representing a likelihood that the text representation corresponds to the speech contained in the at least a portion of the stream of audio data. In these examples, the audio quality can be based on the confidence score. In response to determining that the audio quality of the stream of audio data (e.g., the confidence score of the text representation) is greater than the threshold value, one or more of blocks 814-816 can be performed. In response to determining that the audio quality of the stream of audio data (e.g., the confidence score of the text representation) is not greater than the threshold value, process 800 can end.


At block 812, a text representation of speech contained in at least a portion of the stream of audio data can be generated. The text representation can be generated by performing speech-to-text processing on the at least a portion of the stream of audio (e.g., using STT processing module 730). The speech-to-text processing can be performed at the electronic device. Alternatively, the speech-to-text processing can be performed at a remote server. In particular, the electronic device can cause the text representation to be generated by transmitting the at least a portion of the stream of audio to the remote server for speech-to-text processing.


In some examples, the stream of audio data can be continuously converted into text. In these examples, block 812 can be automatically performed without user intervention upon receiving the stream of audio data at block 804. Further, in these examples, the text representation can correspond to speech contained in the entire stream of audio data received at block 804. In other examples, the at least a portion of the stream of audio data can be less than the entire stream of audio data. In particular, the portion of the stream of audio data can include a predetermined duration of the stream of audio data prior to detecting the user input. In these examples, the text representation of speech contained in the at least a portion of the stream of audio can be generated in response to detecting the user input (or trigger condition) at block 808. As described above, the stream of audio data can be buffered using a circular buffer (or using an audio processing program), where only the most recent portion of the stream of audio data (e.g., the most recent N seconds) is stored. Thus, in these examples, the at least a portion of the stream of audio data can be the most recent portion of the stream of audio data stored in the circular buffer (or in the memory using the audio processing program) at the time the user input (or trigger condition) is detected at block 808. In some example, the at least a portion of the stream of audio data can include a portion of the stream of audio data received prior to detecting the user input (or trigger condition) and a portion of the stream of audio data received after detecting the user input (or trigger condition) at block 808. Further, in examples where one or more trigger structures is identified in the stream of audio, the at least a portion of the stream of audio data can include a portion of the stream of audio data prior to the detected one or more trigger structures in the stream of audio data and a portion of the stream of audio data after the detected one or more trigger structures in the stream of audio data.


It can be advantageous for the user to trigger speech-to-text processing for the at least a portion of the stream of audio data. This can be because the user trigger allows the user to identify the portion of the stream of audio that contains information that is of interest to the user. Process 800 can thus focus on determining the relevant information from the identified portion of the stream of audio, which can reduce false positives and improve accuracy and relevance of proactive assistance. Further, the user trigger can also improve user concerns by providing the user a greater sense of control over which parts of the voice communication are analyzed and what information is subsequently store. This can alleviate privacy concerns of both the user of the electronic device and the user of the second electronic device.


In some examples, the at least a portion of the stream of audio data can be based on a sentence boundary. In particular, the stream of audio data can be analyzed to determine a sentence boundary. The determination can be made using waveform analysis of the stream of audio data. For example, time domain and/or frequency domain features of the stream of audio data can be analyzed to determine a sentence boundary. Time domain features can include, for example, zero crossing rates, short-time energy, spectral energy, spectral flatness, and autocorrelation. Frequency domain features can include, for example, mel-frequency cepstral coefficients, linear predictive cepstral coefficients, and mel-frequency discrete wavelet coefficients. In one example, the spectral energy (e.g., amplitude) of the stream of audio data can be analyzed and a sentence boundary can be identified where the spectral energy decreases from above a first threshold level to below a second threshold level within a predetermined time interval. In these examples, the at least a portion of the stream of audio data can have a start-point corresponding to a first sentence boundary and an end-point corresponding to a second sentence boundary. This reduces the likelihood that the text representation contains incomplete sentences, which reduces the likelihood of incomplete information.


As discussed above, the stream of audio data can include speech dialog from both the user of the electronic device and the user of the second electronic device. In some examples, the text representation can include text corresponding to the speech of both the users in the at least a portion of the stream of audio data. In this way, information from both the users can be captured to determine appropriate tasks to perform at block 816. In other examples, only speech associated with the second electronic device can be transcribed into text. For example, the at least a portion of the stream of audio data can include voice data of the user of the second electronic device, but may not include voice data of the user of the electronic device. Alternatively, the stream of audio data can include voice data of both users, but only the portion of the stream of audio data containing voice data of the user of the second electronic device can be transcribed into text. In these examples, the at least a portion of the stream of audio data for which a text representation is generated can include voice data of the user of the second electronic device, but may not include voice data of the user of the electronic device.


The text representation can be generated using a speech recognition model (e.g., acoustic model and language model). The speech recognition model can be based on the encoding of the stream of audio data. For instance, in examples where the stream of audio data comprises GSM-encoded digital audio data, the speech recognition model can be trained using GSM-encoded digital speech data. This can increase the accuracy of the text representation being generated.


In some examples, the speech recognition model used to generate the text representation can be trained with user data stored on the electronic device. The user data can include any data associated with user input such as, for example, names and/or addresses in the address book of the electronic device, locations previous searched on the maps application of the electronic device, text input, or the like. Training the speech recognition model using user data can increase the accuracy of recognizing names or locations that are not commonly used in conventional corpuses of text. Further, in some examples, the speech recognition model can be optimized to recognize specific types of information, such as addresses, phone numbers, names of people, or dates. For example, the speech recognition model can be trained using large samples of speech and text corresponding to these specific types of information. This can increase the accuracy of recognizing speech containing these specific types of information.


In some examples, the appropriate speech recognition model for generating the text representation can be determined at block 812. In particular, the different speech recognition models can be associated with different languages. In some examples, the appropriate speech recognition model can be determined based on the country code of the phone number associated with the second electronic device. Specifically, the country code can be determined at block 812 based on conventional caller identification techniques or based on the number dialed at the electronic device to establish the voice communication with the second electronic device. Based on the determined country code, the appropriate speech recognition model can be selected. The selected speech recognition model can be associated with a language that is predominantly spoken in the country corresponding to the country code. For example, if the country code is determined to be “1” (United States or Canada), then an English speech recognition model can be selected. The selected English speech recognition model can then be utilized for speech-to-text processing to generate the text representation at block 812.


In other examples, the appropriate speech recognition model for generating the text representation can be determined based on the confidence score associated with processing the at least a portion of the stream of audio data using the respective speech recognition model. In particular, the at least a portion of the stream of audio data can be processed using several speech recognition models and the speech recognition model associated with the highest confidence score can be selected to generate the text representation. For example, a first confidence score associated with processing the portion of the stream of audio data using an English speech model can be determined. A second confidence score associated with processing the portion of the stream of audio data using a French speech recognition model can also be determined. In accordance with determining that the second confidence score is greater than the first confidence score, the text representation can be generated using the French speech recognition model.


At block 814, a determination can be made as to whether a text representation of at a portion of the dialog contains information corresponding to one of a plurality of types of information. In examples where the dialog includes a stream of audio data, the text representation of the at least a portion of the dialog can be the text representation generated at block 812. In examples where the dialog includes text, the text representation of the at least a portion of the dialog can include at least a portion of the text. The at least a portion of the text can be the entire text of the dialog. Alternatively, the at least a portion of the text can be less than the entire text of the dialog. In some examples, the at least a portion of the text can include text associated with the user of the second electronic device, but not text associated with the user of the electronic device. In some examples, the at least a portion of the text can correspond to the portion of text defined by the user input of block 808.


The plurality of types of information can include types of information that are likely of interest to the user, such as, for example, contact information (e.g., phone numbers, email addresses, names, etc.), location information (e.g., addresses, points of interest, landmarks, restaurants, etc.), event information, time information, transit information (e.g., flight information, transit schedule information, transit vessel information, etc.), media information (e.g., movies, music, video games, books, etc.), or the like. In some examples, one or more of the plurality of types of information can be associated with a text pattern or a grammar structure. For example, a sequence of seven or more numbers can be associated with a telephone number. In another example, a sequence of text characters that includes the character “@” can be associated with an email address. In yet another example, a sequence of text characters beginning with “www” or ending with “.com” can be associated with web address information. Thus, the determination at block 814 can include analyzing the text representation to identify such text patterns or grammar structures that correspond to one of the plurality of types of information.


In some examples, one or more of the plurality of types of information can be associated with certain keywords. For example, the keywords “road,” “boulevard,” or “street” can be associated with location information. In another example, the keywords “Monday,” “yesterday,” “next week,” or “o'clock” can be associated with time information. Thus, the determination at block 814 can include analyzing the text representation to identifying one or more such keywords that correspond to one of the plurality of types of information.


In some examples, one or more of the plurality of types of information can be associated with one or more domains of an ontology. In these examples, block 814 can include performing natural language processing on the text representation (e.g., using natural language processing 732) to determine a domain corresponding to the text representation. The domain can be one of a plurality of domains that are part of an ontology (e.g., ontology 760). In one such example, the text representation can include the phrase “We have reserved seats 20C on your flight to New York.” Based on analyzing the words in this phrase (e.g., “reserved,” “seats,” “flight,” “New York”), it can be determined that the text representation corresponds to a travel-related domain or a transit-related domain. Thus, the determination at block 814 can include determining whether the text representation corresponds to a domain that is associated with one of the plurality of types of information.


Additional examples for identifying relevant information contained in text (e.g., the text representation) are described in U.S. Pat. No. 5,946,647, the contents of which are incorporated herein by reference in its entirety for all purposes.


In some examples, upon determining that the text representation contains information corresponding to one of a plurality of types of information, block 814 can further include determining whether the information is complete. For example, the text representation can include the text “ . . . street, San Francisco, Calif.” Based on the text representation, it can be determined that the text representation includes location information. In addition, it can be determined that the location information is incomplete because it is missing a street name and a street number. In these examples, a larger portion of dialog of block 804 can be analyzed to obtain the missing information. In examples where the dialog includes text, a larger portion of the text can be analyzed. In particular, second information from a second portion of the text that is different from the portion of the text can be obtained. In examples where the dialog includes a stream of audio, a larger portion of the stream of audio data can be converted to text, which can then be analyzed to obtain the missing information. In particular, in response to determining that the information is not complete, a second text representation of speech contained in a second portion of the stream of audio data can be generated. The second portion can be different from the first portion of the stream of audio data. For example, the second portion of the stream of audio data can be prior to (e.g., older or less recent) than the first portion of the stream of audio data. Second information from the second portion of the stream of audio data can then be obtained. For instance, in the previous example, the second information can include the missing street name and street number (e.g., 100 Market). Further, in these examples, the one or more tasks of block 816 can be based on both the information and the second information.


In response to determining that the text representation contains information corresponding to one of a plurality of types of information, block 816 can be performed. At block 816, one or more tasks can be performed. The one or more tasks can be based on the information of block 814. Further, in examples where a domain corresponding to the text representation is determined, the one or more tasks can be based on the domain. The one or more tasks can be performed while dialog communication is established or after dialog communication has ended. In some examples, a portion of the one or more tasks can be performed while dialog communication is established and a portion of the one or more tasks can be performed after dialog communication has ended.


The one or more tasks can serve to notify the user that relevant information was identified from the stream of audio data at block 814. In particular, the one or more tasks can include causing an indicia associated with the information to be provided. In some examples, the indicia can be a notification that is displayed on the electronic device. The notification can be a graphic or text notification indicating that relevant information was identified. Further, the notification can include details of the type of information identified. In other examples, the indicia can be a sound or voice notification provided at the electronic device. In yet other examples, the indicia can be a haptic output (e.g., vibration or tap) provided at the electronic device.


In some examples, the indicia associated with the information can be provided on the third electronic device (e.g., device 122). As discussed above, the third electronic device can be, for example, a personal computer or a watch that is communicatively coupled to the electronic device and used by the user of the electronic device. In these examples, the electronic device can display the indicia on the third electronic device. For example, the electronic device can display a notification regarding the identified information on the third electronic device. Additionally or alternatively, the notification can be in the form of a sound/voice notification or a haptic (e.g., vibration or tap) notification on the third electronic device. Utilizing a third electronic device to provide the indicia can be desirable since the electronic device may not be accessible to the user while dialog communication is established between the electronic device and the second electronic device. For example, user may place the electronic device against his or her ear during a telephone call and would be unable to view any notification displayed on the electronic device. Thus, providing the indicia on the third electronic device can enable the user to recognize the indicia and in turn, view the identified information associated with the indicia.


In some examples, the indicia can be provided via a user interface of the electronic device while the electronic device is in a locked state. For example, with reference to FIG. 9A, user interface 902 can be displayed while electronic device 900 is in a locked state. In particular, most of the features of electronic device 900 may not be accessible to the user while in the locked state without successfully authenticating the user (e.g., providing a password, finger print, etc.). As shown, icons 904 and 906 are displayed via user interface 902 while electronic device 900 is in a locked state. Icons 904 and 906 can be indicia associated with the information of block 814. In particular, icons 904 and 906 can inform the user that relevant information is identified in the received dialog. In this example, icons 904 and 906 can indicate that event information and phone number information, respectively, are identified in the dialog. In some examples, icons 904 and 906 can be user selectable. In response to detecting a user selection of icon 904 or 906, a corresponding action can be performed. For example, the corresponding action can include displaying the respective information on the electronic device (e.g., via user interface 902). In a specific example, the phone number information can be displayed or a phone call based on the phone number information can be initiated in response to detecting a user selection of icon 906.


In some examples, the one or more tasks performed can include displaying the information of block 814. The information can be displayed on a display (e.g., touchscreen 212) of the electronic device or on a display of the third electronic device. In an illustrative example shown in FIG. 9B, telephone user interface 910 can be displayed while voice communication is established between electronic device 900 and the second electronic device. In this example, the information of block 814 can include telephone number 908. As shown in FIG. 9B, telephone number 908 can be displayed on the display of electronic device 900 at block 816. Telephone number 908 can be displayed on telephone user interface 910 or on a separate banner that overlaps on telephone user interface 910. In some examples, telephone number 908 can be displayed only during the duration of the voice communication and can cease to display upon ending the voice communication between electronic device 900 and the second electronic device. In other examples, the display of telephone number 908 can persist on electronic device 900 for a predetermined duration after ending the voice communication between electronic device 900 and the second electronic device. Displaying telephone number 908 can indicate to the user that the digital assistant of the electronic device has recognized the phone number as relevant information and has stored phone number 908. This can be desirable to allow the user to conveniently save the phone number that was provided by the user of the second electronic device without having to find pen and paper to write down the phone number or manually enter the information into the electronic device while attending to the call.


The displayed information can be user selectable where selection of the displayed information can cause additional action(s) to be performed. The additional action(s) can be automatically performed in response to detecting the user selection of the displayed information. Alternatively, a prompt can be displayed to the user to confirm performance of the additional action(s). The additional action(s) can then be performed upon receiving user confirmation responsive to the prompt. The additional action(s) can be performed while dialog communication is established or after ending the dialog communication between the electronic device and the second electronic device.


With reference back to FIG. 9B, a user selection of displayed telephone number 908 can be detected. In response to detecting the user selection of displayed telephone number 908, a voice call can be initiated based on telephone number 908. It should be recognized that the voice call can be a telephone call, a VoIP call, a videotelephony call, or the like. In another example, in response to detecting the user selection of displayed telephone number 908, displayed telephone number 908 can be stored in association with an address book (e.g., address book of contacts module 237) of the electronic device. Specifically, telephone number 908 can be stored in a contact of the address book. In yet another example, in response to detecting the user selection of displayed telephone number 908, composition of a text message can be initiated. In particular, the recipient field of the text message can be auto-populated with telephone number 908, and thus the text message can be sent to an electronic device associated with telephone number 908.


In some examples, the information of block 814 can be displayed via a user interface. For example, with reference to FIG. 9C, user interface 912 can be displayed in response to detecting second user input. User interface 912 can be configured to display information identified from the currently established dialog communication between electronic device 900 and the second electronic device as well as information identified from previously established dialog communications. As shown, telephone number 908 can be displayed via user interface 912. Similar to FIG. 9A, telephone number 908 can be user selectable via user interface 912 where, in response to detecting a user selection of the telephone number 908, additional action(s) can be performed. In some examples, the information (e.g., telephone number 908) can remain on user interface 912 after ending the dialog communication between the electronic device and the second electronic device. This can provide the user an opportunity to permanently save the information after ending the dialog communication, if desired. In particular, the user would be able to refer to the information and perform actions associated with the information after ending the dialog communication. Further, in some examples, the information (e.g., telephone number 908) can be removed from user interface 912 a predetermined time after ending the dialog communication between the electronic device and the second electronic device. This can serve to preserve the privacy of the user where information extracted based on the dialog communication (and not subsequently saved by the user) can be automatically purged after a predetermined amount of time.


In some examples, the one or more tasks performed can include storing the information of block 814. The information can be stored locally in the memory (e.g., memory 202) of the electronic device. Alternatively, the information can be stored remotely on a server. In particular, the information can be stored in a database. The database can include a collection of past and current information extracted from dialog communication between the electronic device and a remote electronic device. In a specific example, the information can be stored in a database associated with a digital assistant implemented on the electronic device. The database can be utilized by the digital assistant as a knowledge base for responding to user requests. For example, a telephone number identified from at least a portion of the received dialog can be stored in the database that is associated with the digital assistant. Upon receiving from a user a voice command associated with the telephone number (e.g., “What was that phone number just now?”), the electronic device can retrieve the telephone number from the database associated with the digital assistant.


In some examples, the one or more tasks performed at block 816 can be specific to an application of the electronic device. In particular, the one or more tasks can include identifying, based on the information of block 814, a corresponding application of the electronic device. Upon identifying the application corresponding to the information, the information can be displayed on a user interface of the application. Further, in response to detecting a user input associated with the information on the user interface of the application, a corresponding action can be executed using the application. For example, with reference to FIG. 9D, the information of block 814 can include the location information “100 Market Street, San Francisco, Calif.” Based on this location information, the maps application (e.g., maps application maps module 254) of the electronic device can be identified. Upon identifying the maps application, the location information can be displayed on user interface 914 of the maps application. As shown, user interface 914 can include search field 916 for entering locations or addresses to be searched using the maps application. User interface 914 can further include list 918 with locations or addresses. List 918 can include locations that were previously entered or searched via search field 916. Additionally, location information 920 (“100 Market Street, San Francisco, Calif.) identified in the dialog received at block 804 can be displayed in list 918 on user interface 914. In this example, location information 920 can be user selectable. In response to detecting a user selection of location information 920, a corresponding action can be executed. In particular, location information 920 can be automatically entered into search field 916 and the map application can perform a search based on location information 920. A map indicating the location associated with location information 920 can be displayed on the electronic device.


As discussed above in block 806, at least a portion of the dialog can be stored in a buffer or memory of the electronic device. Further, in examples where the dialog includes a stream of audio, the text representation of block 812 can also be stored in the memory of the electronic device. To preserve the privacy of the user, the at least a portion of the stored dialog and/or the text representation can be removed from the memory a predetermined time after being stored or a predetermined time after performing the one or more tasks at block 816. The information of block 814 can remain stored in the memory of the electronic device after performing the one or more tasks at block 816. In some examples, the information can be automatically removed from the memory a predetermined time after performing the one or more tasks, unless otherwise instructed by the user.


Additional illustrative examples of proactively performing tasks based on information obtained from dialog communication between devices are provided below. In each of the examples, the electronic device, implementing process 800, can proactively anticipate and perform actions that the user may wish to perform based on the information obtained from the dialog communication. In some examples, the user of the second electronic device may wish to provide the user of the electronic device with his new email address. The dialog of block 804 can thus include an email address and the information of block 814 can include the email address. In these examples, the one or more tasks of block 816 can include displaying the email address (or an affordance representing the email address) on the electronic device. Further, in response to detecting a user selection of the displayed email address, composition of an email message can be initiated. A recipient of the email message can be based on the email address. In particular, the email address can be auto-populated into the recipient field of the email message. Alternatively, in response to detecting a user selection of the displayed email address, the email address can be added into a contact of the address book of the electronic device.


In some examples, the user of the second electronic device can provide a location to meet during dialog communication with the user of the electronic device. The dialog of block 804 can thus include a location (e.g., “100 Market St., San Francisco, Calif.”) and the information of block 814 can include the location. In this example, the one or more tasks can include displaying a map indicating the location. In addition, the one or more tasks can include providing directions to the location. In particular, a current location of the electronic device can be obtained (e.g., using a GPS sensor of the electronic device), and directions from the obtained current location to the location in the dialog can then be determined. The directions can be displayed on the map. Further, the one or more tasks can include providing a travel distance or an estimated travel time. In particular, the one or more tasks can include determining the distance or the estimated travel time between the current location and the location. The distance or the estimated travel time can be displayed on the electronic device. In some examples, the one or more tasks can further include determining one or more points of interest associated with the location. The points of interest can be determined by performing a search for restaurants, gas stations, popular landmarks, or the like in the vicinity (e.g., within a predetermine distance) of the location. The one or more points of interest can be displayed on the map.


In some examples, the dialog of block 804 can include time information. For example, the user of the second device can propose a time to meet for lunch. The information of block 814 can thus include time information. In these examples, the one or more tasks can include displaying a user schedule corresponding to the time information. The user schedule can be stored on the electronic device in association with the calendar application (e.g., the calendar application of calendar module 248) of the electronic device. This can be desirable to allow the user of the electronic device to quickly and conveniently check his or her schedule and thus provide a quick response to the user of the second electronic device regarding the proposed time.


In some examples, the dialog of block 804 can include event information. For example, the user of the second electronic device can invite the user of the electronic device to a birthday party at a future date. The event information can be associated with time information (e.g., the time and date of the event) and can include additional information such as the venue for the event and a description of the event. In these examples, the one or more tasks can include displaying the event information. In addition, the electronic device can enable the user to conveniently add the event information into the user's calendar. In particular, in response to detecting a user selection of the displayed event information, a calendar event can be generated in the calendar application of the electronic device. The calendar event can be based on the event information and the time information. Further, additional relevant tasks can be provided to proactively assist the user based on the event information. For example, information regarding the event or the venue for the event (e.g., restaurant reviews, admission costs, reservation information, driving directions, etc.) can be displayed.


In some examples, the dialog of block 804 can include transit information. For example, the user of the second electronic device can provide flight numbers, airport names, destination names, train line information, transit schedules, bus numbers, train station names, or the like. The information of block 814 can thus include such transit information. In these examples, the one or more tasks can include obtaining and displaying additional information associated with the transit information. In particular, the additional information associated with the transit information can include schedule information, route information, vessel information, or seating arrangement information. In a specific example where the transit information is a destination name, the additional information can include various flight options for flying from the current location to the destination. In particular, a flight reservation website can be provided and a search of the various flight options can be performed and displayed.


In some examples, the dialog of block 804 can include contact information. For example, the user of the second electronic device can provide contact information or request contact information from the user of the electronic device (e.g., “What is John's phone number?”). The information of block 814 can thus include a name corresponding to a contact in an address book of the electronic device. In these examples, the one or more tasks can include displaying (e.g., on the electronic device or on the third electronic device) the contact information (e.g., John's phone number) of the contact in the address book. Further, in response to receiving a user input (at the electronic device or at the third electronic device) associated with the displayed contact information, the contact information can be sent to the second electronic device.


In some examples, the dialog of block 804 can include an attribute of a media item. For example, the user of the second electronic device can provide a title name, an actor name, or a character name of a media item (e.g., “Want to go watch Mission Impossible?”). The media item can be a song, movie, video game, television show, video clip, book, publication, or the like. The information of block 814 can thus include the attribute of the media item. In these examples, the one or more tasks can include displaying the attribute of the media item. Further, the one or more tasks can include performing an additional action associated with the media item. In particular, media information associated with the media item can be obtained and displayed. The media information can include showtimes, reviews, plot summaries, purchasing information, or the like. For example, the showtimes and the list of cinemas showing “Mission Impossible—Rogue Nation” near the current location of the electronic device can be obtained and displayed.


In examples where the dialog of block 804 includes a stream of audio data, process 800 can further include determining whether a portion of the stream of audio data includes a prompt to leave a voice mail message. For example, the text representation of block 812 can be analyzed to determine whether it contains keywords or phrases associated with a voice mail prompt (e.g., “I'm unable to answer” or “leave a message”). Additionally, the stream of audio data can be analyzed to determine whether it contains a particular sound or tone (e.g., a “beep”) that is associated with a voice mail prompt. In response to determining that the portion of the stream of audio data comprises a prompt to leave a voice mail message, composition of a text message can be initiated. The text message can be addressed to the second electronic device. For example, the phone number used to establish dialog communication (e.g., telephone call) with the second electronic device can be obtained and the phone number can be auto-populated in the recipient field of the text message. Such proactive actions can be desirable since typically, users tend to send a text message rather than leave a voice message. The electronic device can thus proactively assist the user to provide an improved user experience.


In some examples, the second electronic device can be associated with an automated answering service. In these examples, process 800 can include determining whether a portion of the stream of audio data includes a portion of an automated voice menu. The determination can be based on identifying keywords or phrases such as “press one to,” “menu options,” or “automated.” Additionally or alternatively, the determination can be based on the telephone number used to establish the dialog communication (e.g., telephone call) at block 802. For example, the telephone number can be determined to be associated with an automated banking service. Further, the determination can be based on a domain of an ontology corresponding to the text representation of the portion of the stream of audio data. In response to determining that the portion of the stream of audio data includes a portion of an automated voice menu, a visual representation of the automated voice menu can be displayed. The visual representation can be generated based on previous voice interactions with the automated answering service and can be desirable to help the user navigate through the voice menu without having to first listen to all the options in the automated voice menu.


In some examples, relevant user data can be proactively provided to the user based on the user or entity associated with the second electronic device. In particular, process 800 can include identifying a business entity associated with the portion of the stream of audio data. The identification can be based on the telephone number used to establish dialog communication with the second electronic device. For text based communication, the identification can be based on the email address or other addressing information associated with the second electronic device. In response to identifying the business entity, user data associated with the business entity can be retrieved. The user data can include any information that is associated with the user of the electronic device and accessible by the electronic device. For example, the user data can be based on emails addressed to or sent by the user or any user input received at the electronic device. In one example, if the business entity is a courier company (e.g., FedEx or UPS), then the user data can include the tracking number of a package that the user recently sent or is expecting based on a recent purchase. In another example, if the business entity is a bank for which the user of the electronic device is a customer, then the user data can include the bank account number of the user. The user data can be displayed while voice communication is established between the electronic device and the second electronic device. This enables the user to readily access relevant information required to communicate with the business entity.


5. Other Electronic Devices



FIG. 10 shows a functional block diagram of electronic device 1000 configured in accordance with the principles of the various described examples. The functional blocks of the device can be optionally implemented by hardware, software, or a combination of hardware and software to carry out the principles of the various described examples. It is understood by persons of skill in the art that the functional blocks described in FIG. 10 can be optionally combined or separated into sub-blocks to implement the principles of the various described examples. Therefore, the description herein optionally supports any possible combination, separation, or further definition of the functional blocks described herein.


As shown in FIG. 10, electronic device 1000 can include touch screen display unit 1002 configured to display information and to receive input from the user, audio input unit 1004 configured to receive audio input (e.g., speech input), sensor unit 1005 configured to sense user input, and communication unit 1006 configured to transmit and receive information (e.g., dialog communication such as voice data or text data). Electronic device 1000 can further include processing unit 1008 coupled to touch screen display unit 1002, audio input unit 1004, sensor unit 1005, and communication unit 1006. In some examples, processing unit 1008 can include communication enabling unit 1010, receiving unit 1012, detecting unit 1014, generating unit 1016, determining unit 1018, performing unit 1020, display enabling unit 1022, obtaining unit 1024, removing unit 1026, executing unit 1028, retrieving unit 1030, initiating unit 1032, storing unit 1034, identifying unit 1036, and selecting unit 1038.


In accordance with some embodiments, processing unit 1008 is configured to establish (e.g., with communication unit 1006 and/or communication enabling unit 1010) voice communication between electronic device 1000 and a second electronic device. Processing unit 1008 is further configured to receive (e.g., with receiving unit 1012 and via communication unit 1006) a stream of audio data associated with the second electronic device. Processing unit 1008 is further configured to detect (e.g., with detecting unit 1014) a user input. Processing unit 1008 is further configured to, in response to detecting the user input, generate (e.g., with generating unit 1016) a text representation of speech contained in a portion of the stream of audio data. Processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether the text representation contains information corresponding to one of a plurality of types of information. Processing unit 1008 is further configured to, in response to determining that the text representation contains information corresponding to one of a plurality of types of information, perform (e.g., with performing unit 1020) one or more tasks based on the information. In some examples, receiving unit 1012, detecting unit 1014, generating unit 1016, determining unit 1018, and performing unit 1020 can be configured to respectively receive, detect, generate, determine, and perform, while voice communication is established between the electronic device and a second electronic device.


In some examples, the user input is detected by a physical sensor (e.g., sensor unit 1005) of the electronic device.


In some examples, electronic device 1000 can further comprise a proximity sensor (e.g., sensor unit 1005). The proximity sensor is positioned less than a threshold distance from a surface and the user input includes changing a position of electronic device 900 such that the proximity sensor is positioned greater than the threshold distance from the surface.


In some examples, the user input is detected by an accelerometer (sensor unit 1005) of the electronic device, and the user input includes positioning electronic device 900 for a user to view a display (e.g., touch screen display unit 1002) of electronic device 900.


In some examples, the user input includes selecting an affordance on electronic device 900. In some examples, detecting the user input causes a user interface to be displayed on a display (e.g., touch screen display unit 1002) of electronic device 900.


In some examples, processing unit 1008 is further configured to display (e.g., with display enabling unit 1022 and on touch screen display unit 1002) the information via the user interface.


In some examples, the user input includes a user utterance, and detecting the user input includes detecting one or more trigger words in the user utterance.


In some examples, the user input includes a voice command, and detecting the user input includes determining that the voice command corresponds to a user intent of extracting information from the stream of audio data.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether the information is complete. Processing unit 1008 is further configured to, in response to determining that the information is not complete, generate (e.g., with generating unit 1016) a text representation of speech contained in a second portion of the stream of audio data that is different from the first portion of the stream of audio data. Processing unit 1008 is further configured to obtain (e.g., with obtaining unit 1024) second information from the second portion of the stream of audio data, where the one or more tasks are based on the second information.


In some examples, the one or more tasks include storing the information, and providing an indicia associated with the information.


In some examples, the indicia associated with the information is provided on a third electronic device.


In some examples, processing unit 1008 is further configured to display (e.g., with display enabling unit 1022 and on touch screen display unit 1002) a second user interface while electronic device 900 is in a locked state. Providing the indicia associated with the information includes displaying the indicia on the second user interface while electronic device 900 is in a locked state.


In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the indicia on the second user interface, display (e.g., with display enabling unit 1022 the information on touch screen display unit 1002.


In some examples, the one or more tasks include displaying the information.


In some examples, the information is displayed via a third user interface of the electronic device.


In some examples, the information remains on the third user interface of the electronic device after ending the voice communication between the electronic device and the second electronic device.


In some examples, processing unit 1008 is further configured to remove (e.g., with removing unit 1026) the information from the third user interface of electronic device 900 a predetermined time after ending the voice communication between the electronic device and the second electronic device.


In some examples, the one or more tasks include identifying, based on the information, an application of the electronic device, and displaying the information on a user interface of the application.


In some examples, processing unit 1008 is further configured to, in response to detecting a second user input associated with the information on the user interface of the application, execute (e.g., with executing unit 1028) a corresponding action using the application.


In some examples, the one or more tasks include storing the information in a database associated with a digital assistant implemented on the electronic device. Processing unit 1008 is further configured to, upon receiving a voice command associated with the information, retrieve (e.g., with retrieving unit 1030) the information from the database.


In some examples, the information includes a telephone number, and the one or more tasks include displaying the telephone number.


In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the displayed telephone number, initiate (e.g., with initiating unit 1032) a voice call based on the telephone number.


In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the displayed telephone number, store (e.g., with storing unit 1034) the telephone number in association with an address book of the electronic device. In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the displayed telephone number, initiate (e.g., with initiating unit 1032) a composition of a text message, where a recipient of the text message is based on the telephone number.


In some examples, the information includes an email address, and wherein the one or more tasks include displaying the email address. In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the displayed email address, initiate (e.g., with initiating unit 1032) a composition of an email message, where a recipient of the email message is based on the email address.


In some examples, the information includes a location, and the one or more tasks include displaying a map indicating the location. In some examples, processing unit 1008 is further configured to obtain (e.g., with obtaining unit 1024) a current location of the electronic device. Processing unit 1008 is further configured to determine (e.g., with determining unit 1018) directions from the current location of the electronic device to the location in the information. Processing unit 1008 is further configured to display (e.g., with display enabling unit 1022 and on touch screen display unit 1002) the directions on the map.


In some examples, the one or more tasks further include determining one or more points of interest associated with the location in the information, and displaying the one or more points of interest on the map.


In some examples, the one or more tasks further include determining an estimated travel time between a current location of the electronic device and the location in the information, and displaying the estimated travel time.


In some examples, the information includes time information, the one or more tasks include displaying a user schedule corresponding to the time information, and the user schedule is stored on the electronic device in association with a calendar application of the electronic device.


In some examples, the information includes event information associated with time information, where the one or more tasks include displaying the event information. In some examples, processing unit 1008 is further configured to, in response to detecting a user selection of the displayed event information, generate (e.g., with generating unit 1016) a calendar event in a calendar application of the electronic device, where the calendar event is based on the event information and the time information.


In some examples, the information includes transit information, where the one or more tasks include obtaining additional information associated with the transit information. The additional information associated with the transit information includes schedule information, route information, vessel information, or seating arrangement information.


In some examples, the information includes a name corresponding to a contact in an address book of the electronic device, and the one or more tasks include displaying contact information of the contact.


In some examples, processing unit 1008 is further configured to, in response to receiving a third user input associated with the displayed contact information, send (e.g., with communication enabling unit 1010 and via communication unit 1008) the contact information to the second electronic device.


In some examples, the information includes an attribute of a media item, where the one or more tasks include displaying the attribute of the media item. In some examples, processing unit 1008 is further configured to obtain (e.g., with obtaining unit 1024) media information associated with the media item. Processing unit 1008 is further configured to display (e.g., with display enabling unit 1022 and on touch screen display unit 1002) the media information associated with the media item.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether the portion of the stream of audio data comprises a prompt to leave a voice mail message. Processing unit 1008 is further configured to, in response to determining that the portion of the stream of audio data comprises a prompt to leave a voice mail message, initiate (e.g., with initiating unit 1032) a composition of a text message addressed to the second electronic device.


In some examples, the voice communication between the electronic device and the second electronic device is established based on a phone number, and the text message is addressed to the phone number.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether the portion of the stream of audio data comprises a portion of an automated voice menu. Processing unit 1008 is further configured to, in response to determining that the portion of the stream of audio data comprises a portion of an automated voice menu, display (e.g., with display enabling unit 1022 and on touch screen display unit 1002) a visual representation of the automated voice menu.


In some examples, processing unit 1008 is further configured to identify (e.g., with identifying unit 1036) a business entity based on the portion of the stream of audio data. Processing unit 1008 is further configured to, in response to identifying the business entity, retrieve (e.g., with retrieving unit 1030) user data associated with the business entity, and display (e.g., display enabling unit 1022 and on touch screen display unit 1002) the user data while voice communication is established between the electronic device and the second electronic device.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) a domain corresponding to the text representation. The domain is part of an ontology, and wherein the one or more tasks is based on the domain.


In some examples, processing unit 1008 is further configured to store (e.g., with storing unit 1034) the portion of the stream of audio data and the text representation in memory of the electronic device, and delete (e.g., with removing unit 1026) the portion of the stream of audio data and the text representation from the memory after performing the one or more tasks.


In some examples, the portion of the stream of audio data is less than the entire stream of audio data. In some examples, the portion of the stream of audio data comprises a predetermined duration of the stream of audio data prior to detecting the user input.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) a sentence boundary in the stream of audio data, where the portion of the stream of audio data is based on the sentence boundary.


In some examples, the stream of audio data includes voice data of a user of the second electronic device and does not include voice data of a user of the electronic device


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether an audio quality of the stream of audio data is greater than a threshold value, where the text representation is generated in response to determining that the audio quality of the stream of audio data is greater than the threshold value.


In some examples, the text representation is generated using a speech recognition model that is trained with GSM-encoded digital speech data. In some examples, the text representation is generated using a speech recognition model that is trained with user data stored on the electronic device. In some examples, the text representation is generated using a second speech recognition model that is optimized to recognize addresses, phone numbers, names of people, or dates.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) a country code associated with the second electronic device, and select (e.g., with selecting unit 1038) a third speech recognition model based on the country code, where the text transcription is generated using the third speech recognition model.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) a first confidence score associated with processing the portion of the stream of audio data using a fourth speech recognition model, and determine (e.g., with determining unit 1018) a second confidence score associated with processing the portion of the stream of audio data using a fifth speech recognition model, where the text representation is generated using the fifth speech recognition model in accordance with determining that the second confidence score is greater than the first confidence score.


In some examples, processing unit 1008 is further configured to store (e.g., with storing unit 1034) the stream of audio data in a circular buffer. In some examples, processing unit 1008 is further configured to store (e.g., with storing unit 1034) the stream of audio data in memory without deleting any portion of the stream of audio data from the memory prior to ending the voice communication between the electronic device and the second electronic device.


In accordance with some embodiments, processing unit 1008 is configured to establish (e.g., with communication unit 1006 and/or communication enabling unit 1010) dialog communication with a second electronic device. Processing unit 1008 is further configured to received (e.g., with receiving unit 1012) text associated with a second electronic device. Processing unit 1008 is further configured to detect (e.g., with detecting unit 1014) a user input. Processing unit 1008 is further configured to, in response to detecting the user input, determine (e.g., with determining unit 1018) whether a portion of the text contains information corresponding to one of a plurality of types of information. Processing unit 1008 is further configured to, in response to determining that the portion of the text contains information corresponding to one of a plurality of types of information, perform (e.g., with performing unit 1020) one or more tasks based on the information.


In some examples, the user input defines the portion of the text. In some examples, processing unit 1008 is further configured to display (e.g., with display enabling unit 1022 and via touch screen display unit 1002) the information via the user interface.


In some examples, the user input includes a voice command, and detecting the user input includes determining that the voice command corresponds to a user intent of extracting information from the text.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) whether the information is complete. Processing unit 1008 is further configured to, in response to determining that the information is not complete, obtain (e.g., with obtaining unit 1024) second information from a second portion of the text that is different from the portion of the text, where the one or more tasks are based on the second information.


In some examples, processing unit 1008 is further configured to identify (e.g., with identifying unit 1036) a business entity associated with the text. Processing unit 1008 is further configured to, in response to identifying the business entity, retrieve (e.g., with retrieving unit 1030) user data associated with the business entity, and display (e.g., with display enabling unit 1022 and via touch screen display unit 1002) the user data.


In some examples, processing unit 1008 is further configured to determine (e.g., with determining unit 1018) a domain corresponding to the portion of text, where the domain is part of an ontology, and where the one or more tasks is based on the domain. In some examples, the portion of the text is less than the entire text.


The operations described above with reference to FIG. 8 can be optionally implemented by components depicted in FIGS. 1-4, 6A-B, and 7A. For example, the operations of process 800 may be implemented by one or more of operating system 718, applications module 724, I/O processing module 728, STT processing module 730, natural language processing module 732, task flow processing module 736, service processing module 738, or processor(s) 220, 410, 704. It would be clear to a person having ordinary skill in the art how other processes can be implemented based on the components depicted in FIGS. 1-4, 6A-B, and 7A.


In accordance with some implementations, a computer-readable storage medium (e.g., a non-transitory computer readable storage medium) is provided, the computer-readable storage medium storing one or more programs for execution by one or more processors of an electronic device, the one or more programs including instructions for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises means for performing any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises a processing unit configured to perform any of the methods or processes described herein.


In accordance with some implementations, an electronic device (e.g., a portable electronic device) is provided that comprises one or more processors and memory storing one or more programs for execution by the one or more processors, the one or more programs including instructions for performing any of the methods or processes described herein.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the techniques and their practical applications. Others skilled in the art are thereby enabled to best utilize the techniques and various embodiments with various modifications as are suited to the particular use contemplated.


Although the disclosure and examples have been fully described with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the disclosure and examples as defined by the claims.


As described above, one aspect of the present technology is the gathering and use of data available from various sources to improve the delivery to users of invitational content or any other content that may be of interest to them. The present disclosure contemplates that in some instances, this gathered data may include personal information data that uniquely identifies or can be used to contact or locate a specific person. Such personal information data can include demographic data, location-based data, telephone numbers, email addresses, home addresses, or any other identifying information.


The present disclosure recognizes that the use of such personal information data, in the present technology, can be used to the benefit of users. For example, the personal information data can be used to deliver targeted content that is of greater interest to the user. Accordingly, use of such personal information data enables calculated control of the delivered content. Further, other uses for personal information data that benefit the user are also contemplated by the present disclosure.


The present disclosure further contemplates that the entities responsible for the collection, analysis, disclosure, transfer, storage, or other use of such personal information data will comply with well-established privacy policies and/or privacy practices. In particular, such entities should implement and consistently use privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining personal information data private and secure. For example, personal information from users should be collected for legitimate and reasonable uses of the entity and not shared or sold outside of those legitimate uses. Further, such collection should occur only after receiving the informed consent of the users. Additionally, such entities would take any needed steps for safeguarding and securing access to such personal information data and ensuring that others with access to the personal information data adhere to their privacy policies and procedures. Further, such entities can subject themselves to evaluation by third parties to certify their adherence to widely accepted privacy policies and practices.


Despite the foregoing, the present disclosure also contemplates embodiments in which users selectively block the use of, or access to, personal information data. That is, the present disclosure contemplates that hardware and/or software elements can be provided to prevent or block access to such personal information data. For example, in the case of advertisement delivery services, the present technology can be configured to allow users to select to “opt in” or “opt out” of participation in the collection of personal information data during registration for services. In another example, users can select not to provide location information for targeted content delivery services. In yet another example, users can select to not provide precise location information, but permit the transfer of location zone information.


Therefore, although the present disclosure broadly covers use of personal information data to implement one or more various disclosed embodiments, the present disclosure also contemplates that the various embodiments can also be implemented without the need for accessing such personal information data. That is, the various embodiments of the present technology are not rendered inoperable due to the lack of all or a portion of such personal information data. For example, content can be selected and delivered to users by inferring preferences based on non-personal information data or a bare minimum amount of personal information, such as the content being requested by the device associated with a user, other non-personal information available to the content delivery services, or publically available information.

Claims
  • 1. A non-transitory computer-readable medium storing instructions for providing proactive assistance based on dialog communication between devices, the instructions, when executed by one or more processors, cause the one or more processors to: while voice communication is established between an electronic device and a second electronic device: receive a stream of audio data associated with the second electronic device;identify, based on at least one sentence boundary, a plurality of portions of the stream of audio data;store the plurality of portions of the stream of audio data;detect a user input;in response to detecting the user input, generate a text representation of speech contained in a first portion of the plurality of portions of the stored audio data;determine whether the text representation contains information corresponding to one of a plurality of types of information;in response to determining that the text representation contains information corresponding to one of a plurality of types of information, determine whether the information is complete;in response to determining that the information is not complete: generate a text representation of speech contained in a second portion of the plurality of portions of the stored audio data; andobtain second information from the second portion of the plurality of portions of the stored audio data;perform one or more tasks based on at least the information and the second information.
  • 2. The computer-readable medium of claim 1, wherein the second portion of stored audio data corresponds to audio that is less recent that the first portion of the stored audio data.
  • 3. The computer-readable medium of claim 1, wherein performing one or more tasks based on at least the information and the second information comprises performing one or more tasks based on both the information and the second information.
  • 4. The computer-readable medium of claim 1, wherein determining whether the information is complete comprises: determining whether the information is missing at least one parameter.
  • 5. The computer-readable medium of claim 1, wherein the information includes a telephone number, wherein the one or more tasks include displaying the telephone number, and wherein the instructions further cause the one or more processors to: in response to detecting a user selection of the displayed telephone number, initiate a voice call based on the telephone number.
  • 6. The computer-readable medium of claim 1, wherein the information includes a telephone number, wherein the one or more tasks include displaying the telephone number, and wherein the instructions further cause the one or more processors to: in response to detecting a user selection of the displayed telephone number, store the telephone number in association with an address book of the electronic device.
  • 7. The computer-readable medium of claim 1, wherein the information includes an email address, wherein the one or more tasks include displaying the email address, and wherein the instructions further cause the one or more processors to: in response to detecting a user selection of the displayed email address, initiate a composition of an email message, wherein a recipient of the email message is based on the email address.
  • 8. The computer-readable medium of claim 1, wherein the information includes a location, and wherein the one or more tasks include displaying a map indicating the location.
  • 9. The computer-readable medium of claim 1, wherein the one or more tasks are performed after dialog communication has ended.
  • 10. The computer-readable medium of claim 1, wherein the one or more tasks includes a plurality of tasks, and performing one or more tasks based on at least the information and the second information comprises: performing at least a first task of the plurality of tasks while dialog communication is established; andperforming at least a second task of the plurality of tasks after dialog communication has ended.
  • 11. The computer-readable medium of claim 1, wherein performing one or more tasks based on at least the information and the second information comprises providing at least one sound output.
  • 12. The computer-readable medium of claim 1, wherein performing one or more tasks based on at least the information and the second information comprises providing at least one haptic output.
  • 13. The computer-readable medium of claim 1, wherein identifying, based on at least one sentence boundary, a plurality of portions of the stream of audio data comprises: detecting an audio amplitude of the stream of audio data; andidentifying a first sentence boundary based on the audio amplitude decreasing below a first threshold level.
  • 14. The computer-readable medium of claim 13, wherein identifying a first sentence boundary based on the audio amplitude decreasing below a first threshold level comprises: within a predetermined time interval: detecting the audio amplitude decrease from above the first threshold level; anddetecting the audio amplitude decrease to below a second threshold level.
  • 15. An electronic device, comprising: one or more processors;a memory; andone or more programs, wherein the one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including instructions for: while voice communication is established between the electronic device and a second electronic device: receiving a stream of audio data associated with the second electronic device;identifying, based on at least one sentence boundary, a plurality of portions of the stream of audio data;storing the plurality of portions of the stream of audio data;detecting a user input;in response to detecting the user input, generating a text representation of speech contained in a first portion of the plurality of portions of the stored audio data;determining whether the text representation contains information corresponding to one of a plurality of types of information;in response to determining that the text representation contains information corresponding to one of a plurality of types of information, determining whether the information is complete;in response to determining that the information is not complete: generating a text representation of speech contained in a second portion of the plurality of portions of the stored audio data; andobtaining second information from the second portion of the plurality of portions of the stored audio data;performing one or more tasks based on at least the information and the second information.
  • 16. A method, comprising: at an electronic device with one or more processors and memory: while voice communication is established between the electronic device and a second electronic device: receiving a stream of audio data associated with the second electronic device;identifying, based on at least one sentence boundary, a plurality of portions of the stream of audio data;storing the plurality of portions of the stream of audio data;detecting a user input;in response to detecting the user input, generating a text representation of speech contained in a first portion of the plurality of portions of the stored audio data;determining whether the text representation contains information corresponding to one of a plurality of types of information;in response to determining that the text representation contains information corresponding to one of a plurality of types of information, determining whether the information is complete;in response to determining that the information is not complete: generating a text representation of speech contained in a second portion of the plurality of portions of the stored audio data; andobtaining second information from the second portion of the plurality of portions of the stored audio data;performing one or more tasks based on at least the information and the second information.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/169,348, filed on May 31, 2016, now U.S. Pat. No. 10,223,066, issued on Mar. 5, 2019, entitled PROACTIVE ASSISTANCE BASED ON DIALOG COMMUNICATION BETWEEN DEVICES, which claims priority from U.S. Provisional Ser. No. 62/387,547, filed on Dec. 23, 2015, entitled PROACTIVE ASSISTANCE BASED ON DIALOG COMMUNICATION BETWEEN DEVICES, which are hereby incorporated by reference in their entirety for all purposes.

US Referenced Citations (2568)
Number Name Date Kind
4752958 Cavazza Jun 1988 A
7277857 Balaji et al. Oct 2007 B1
7475010 Chao Jan 2009 B2
7475015 Epstein et al. Jan 2009 B2
7475063 Datta et al. Jan 2009 B2
7477238 Fux et al. Jan 2009 B2
7477240 Yanagisawa Jan 2009 B2
7478037 Strong Jan 2009 B2
7478091 Mojsilovic et al. Jan 2009 B2
7478129 Chemtob Jan 2009 B1
7479948 Kim et al. Jan 2009 B2
7479949 Jobs et al. Jan 2009 B2
7483832 Tischer Jan 2009 B2
7483894 Cao Jan 2009 B2
7487089 Mozer Feb 2009 B2
7487093 Mutsuno et al. Feb 2009 B2
7490034 Finnigan et al. Feb 2009 B2
7490039 Shaffer et al. Feb 2009 B1
7493251 Gao et al. Feb 2009 B2
7493560 Kipnes et al. Feb 2009 B1
7496498 Chu et al. Feb 2009 B2
7496512 Zhao et al. Feb 2009 B2
7499923 Kawatani Mar 2009 B2
7502738 Kennewick et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508324 Suraqui Mar 2009 B2
7508373 Lin et al. Mar 2009 B2
7516123 Betz et al. Apr 2009 B2
7519327 White Apr 2009 B2
7519398 Hirose Apr 2009 B2
7522927 Fitch et al. Apr 2009 B2
7523036 Akabane et al. Apr 2009 B2
7523108 Cao Apr 2009 B2
7526466 Au Apr 2009 B2
7526738 Ording et al. Apr 2009 B2
7528713 Singh et al. May 2009 B2
7529671 Rockenbeck et al. May 2009 B2
7529676 Koyama May 2009 B2
7529677 Wittenberg May 2009 B1
7535997 McQuaide, Jr. et al. May 2009 B1
7536029 Choi et al. May 2009 B2
7536565 Girish et al. May 2009 B2
7538685 Cooper et al. May 2009 B1
7539619 Seligman et al. May 2009 B1
7539656 Fratkina et al. May 2009 B2
7541940 Upton Jun 2009 B2
7542967 Hurst-Hiller et al. Jun 2009 B2
7542971 Thione et al. Jun 2009 B2
7543232 Easton, Jr. et al. Jun 2009 B2
7546382 Healey et al. Jun 2009 B2
7546529 Reynar et al. Jun 2009 B2
7548895 Pulsipher Jun 2009 B2
7552045 Barliga et al. Jun 2009 B2
7552055 Lecoeuche Jun 2009 B2
7555431 Bennett Jun 2009 B2
7555496 Lantrip et al. Jun 2009 B1
7558381 Ali et al. Jul 2009 B1
7558730 Davis et al. Jul 2009 B2
7559026 Girish et al. Jul 2009 B2
7561069 Horstemeyer Jul 2009 B2
7562007 Hwang Jul 2009 B2
7562032 Abbosh et al. Jul 2009 B2
7565104 Brown et al. Jul 2009 B1
7565380 Venkatachary Jul 2009 B1
7568151 Bargeron et al. Jul 2009 B2
7571092 Nieh Aug 2009 B1
7571106 Cao et al. Aug 2009 B2
7577522 Rosenberg Aug 2009 B2
7580551 Srihari et al. Aug 2009 B1
7580576 Wang et al. Aug 2009 B2
7580839 Tamura et al. Aug 2009 B2
7584092 Brockett et al. Sep 2009 B2
7584093 Potter et al. Sep 2009 B2
7584278 Rajarajan et al. Sep 2009 B2
7584429 Fabritius Sep 2009 B2
7593868 Margiloff et al. Sep 2009 B2
7596269 King et al. Sep 2009 B2
7596499 Anguera et al. Sep 2009 B2
7596606 Codignotto Sep 2009 B2
7596765 Almas Sep 2009 B2
7599918 Shen et al. Oct 2009 B2
7603349 Kraft et al. Oct 2009 B1
7603381 Burke et al. Oct 2009 B2
7606444 Erol et al. Oct 2009 B1
7606712 Smith et al. Oct 2009 B1
7607083 Gong et al. Oct 2009 B2
7609179 Diaz-Gutierrez et al. Oct 2009 B2
7610258 Yuknewicz et al. Oct 2009 B2
7613264 Wells et al. Nov 2009 B2
7614008 Ording Nov 2009 B2
7617094 Aoki et al. Nov 2009 B2
7620407 Donald et al. Nov 2009 B1
7620549 Di Cristo et al. Nov 2009 B2
7620894 Kahn Nov 2009 B1
7623119 Autio et al. Nov 2009 B2
7624007 Bennett Nov 2009 B2
7627481 Kuo et al. Dec 2009 B1
7630900 Strom Dec 2009 B1
7630901 Omi Dec 2009 B2
7633076 Huppi et al. Dec 2009 B2
7634409 Kennewick et al. Dec 2009 B2
7634413 Kuo et al. Dec 2009 B1
7634718 Nakajima Dec 2009 B2
7634732 Blagsvedt et al. Dec 2009 B1
7636657 Ju et al. Dec 2009 B2
7640158 Detlef et al. Dec 2009 B2
7640160 Di Cristo et al. Dec 2009 B2
7643990 Bellegarda Jan 2010 B1
7647225 Bennett et al. Jan 2010 B2
7649454 Singh et al. Jan 2010 B2
7649877 Vieri et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7656393 King et al. Feb 2010 B2
7657424 Bennett Feb 2010 B2
7657828 Lucas et al. Feb 2010 B2
7657844 Gibson et al. Feb 2010 B2
7657849 Chaudhri et al. Feb 2010 B2
7660715 Thambiratnam Feb 2010 B1
7663607 Hotelling et al. Feb 2010 B2
7664558 Lindahl et al. Feb 2010 B2
7664638 Cooper et al. Feb 2010 B2
7668710 Doyle Feb 2010 B2
7669134 Christie et al. Feb 2010 B1
7672841 Bennett Mar 2010 B2
7672952 Isaacson et al. Mar 2010 B2
7673238 Girish et al. Mar 2010 B2
7673251 Wibisono Mar 2010 B1
7673340 Cohen et al. Mar 2010 B1
7676026 Baxter, Jr. Mar 2010 B1
7676365 Hwang et al. Mar 2010 B2
7676463 Thompson et al. Mar 2010 B2
7679534 Kay et al. Mar 2010 B2
7680649 Park Mar 2010 B2
7681126 Roose Mar 2010 B2
7683886 Willey Mar 2010 B2
7683893 Kim Mar 2010 B2
7684985 Dominach et al. Mar 2010 B2
7684990 Caskey et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7689245 Cox et al. Mar 2010 B2
7689408 Chen et al. Mar 2010 B2
7689409 Heinecke Mar 2010 B2
7689412 Wu et al. Mar 2010 B2
7689421 Li et al. Mar 2010 B2
7693715 Hwang et al. Apr 2010 B2
7693717 Kahn et al. Apr 2010 B2
7693719 Chu et al. Apr 2010 B2
7693720 Kennewick et al. Apr 2010 B2
7698131 Bennett Apr 2010 B2
7702500 Blaedow Apr 2010 B2
7702508 Bennett Apr 2010 B2
7703091 Martin et al. Apr 2010 B1
7706510 Ng Apr 2010 B2
7707026 Liu Apr 2010 B2
7707027 Balchandran et al. Apr 2010 B2
7707032 Wang et al. Apr 2010 B2
7707221 Dunning et al. Apr 2010 B1
7707226 Tonse Apr 2010 B1
7707267 Lisitsa et al. Apr 2010 B2
7710262 Ruha May 2010 B2
7711129 Lindahl et al. May 2010 B2
7711550 Feinberg et al. May 2010 B1
7711565 Gazdzinski May 2010 B1
7711672 Au May 2010 B2
7712053 Bradford et al. May 2010 B2
7716056 Weng et al. May 2010 B2
7716216 Harik et al. May 2010 B1
7720674 Kaiser et al. May 2010 B2
7720683 Vermeulen et al. May 2010 B1
7721226 Barabe et al. May 2010 B2
7721301 Wong et al. May 2010 B2
7724242 Hillis et al. May 2010 B2
7724696 Parekh May 2010 B1
7725307 Bennett May 2010 B2
7725318 Gavalda et al. May 2010 B2
7725320 Bennett May 2010 B2
7725321 Bennett May 2010 B2
7725838 Williams May 2010 B2
7729904 Bennett Jun 2010 B2
7729916 Coffman et al. Jun 2010 B2
7734461 Kwak et al. Jun 2010 B2
7735012 Naik Jun 2010 B2
7739588 Reynar et al. Jun 2010 B2
7742953 King et al. Jun 2010 B2
7743188 Haitani et al. Jun 2010 B2
7747616 Yamada et al. Jun 2010 B2
7752152 Paek et al. Jul 2010 B2
7756707 Gamer et al. Jul 2010 B2
7756708 Cohen et al. Jul 2010 B2
7756868 Lee Jul 2010 B2
7756871 Yacoub et al. Jul 2010 B2
7757173 Beaman Jul 2010 B2
7757176 Vakil et al. Jul 2010 B2
7757182 Elliott et al. Jul 2010 B2
7761296 Bakis et al. Jul 2010 B1
7763842 Hsu et al. Jul 2010 B2
7774202 Spengler et al. Aug 2010 B2
7774204 Mozer et al. Aug 2010 B2
7774388 Runchey Aug 2010 B1
7777717 Fux et al. Aug 2010 B2
7778432 Larsen Aug 2010 B2
7778595 White et al. Aug 2010 B2
7778632 Kurlander et al. Aug 2010 B2
7778830 Davis et al. Aug 2010 B2
7779353 Grigoriu et al. Aug 2010 B2
7779356 Griesmer Aug 2010 B2
7779357 Naik Aug 2010 B2
7783283 Kuusinen et al. Aug 2010 B2
7783486 Rosser et al. Aug 2010 B2
7788590 Taboada et al. Aug 2010 B2
7788663 Illowsky et al. Aug 2010 B2
7796980 McKinney et al. Sep 2010 B1
7797265 Brinker et al. Sep 2010 B2
7797269 Rieman et al. Sep 2010 B2
7797331 Theimer et al. Sep 2010 B2
7797629 Fux et al. Sep 2010 B2
7801721 Rosart et al. Sep 2010 B2
7801728 Ben-David et al. Sep 2010 B2
7801729 Mozer Sep 2010 B2
7805299 Coifman Sep 2010 B2
7809550 Barrows Oct 2010 B1
7809565 Coifman Oct 2010 B2
7809569 Attwater et al. Oct 2010 B2
7809570 Kennewick et al. Oct 2010 B2
7809610 Cao Oct 2010 B2
7809744 Nevidomski et al. Oct 2010 B2
7818165 Carlgren et al. Oct 2010 B2
7818176 Freeman et al. Oct 2010 B2
7818215 King et al. Oct 2010 B2
7818291 Ferguson et al. Oct 2010 B2
7818672 Mccormack et al. Oct 2010 B2
7822608 Cross, Jr. et al. Oct 2010 B2
7823123 Sabbouh Oct 2010 B2
7826945 Zhang et al. Nov 2010 B2
7827047 Anderson et al. Nov 2010 B2
7831246 Smith et al. Nov 2010 B1
7831423 Schubert Nov 2010 B2
7831426 Bennett Nov 2010 B2
7831432 Bodin et al. Nov 2010 B2
7835504 Donald et al. Nov 2010 B1
7836437 Kacmarcik et al. Nov 2010 B2
7840348 Kim et al. Nov 2010 B2
7840400 Lavi et al. Nov 2010 B2
7840447 Kleinrock et al. Nov 2010 B2
7840581 Ross et al. Nov 2010 B2
7840912 Elias et al. Nov 2010 B2
7844394 Kim Nov 2010 B2
7848924 Nurminen et al. Dec 2010 B2
7848926 Goto et al. Dec 2010 B2
7853444 Wang et al. Dec 2010 B2
7853445 Bachenko et al. Dec 2010 B2
7853574 Kraenzel et al. Dec 2010 B2
7853577 Sundaresan et al. Dec 2010 B2
7853664 Wang et al. Dec 2010 B1
7853900 Nguyen et al. Dec 2010 B2
7865817 Ryan et al. Jan 2011 B2
7869998 Di Fabbrizio et al. Jan 2011 B1
7869999 Amato et al. Jan 2011 B2
7870118 Jiang et al. Jan 2011 B2
7870133 Krishnamoorthy et al. Jan 2011 B2
7873149 Schultz et al. Jan 2011 B2
7873519 Bennett Jan 2011 B2
7873654 Bernard Jan 2011 B2
7877705 Chambers et al. Jan 2011 B2
7880730 Robinson et al. Feb 2011 B2
7881283 Cormier et al. Feb 2011 B2
7881936 Longe et al. Feb 2011 B2
7885390 Chaudhuri et al. Feb 2011 B2
7885844 Cohen et al. Feb 2011 B1
7886233 Rainisto et al. Feb 2011 B2
7889101 Yokota Feb 2011 B2
7889184 Blumenberg et al. Feb 2011 B2
7889185 Blumenberg et al. Feb 2011 B2
7890330 Ozkaragoz et al. Feb 2011 B2
7890652 Bull et al. Feb 2011 B2
7895039 Braho et al. Feb 2011 B2
7895531 Radtke et al. Feb 2011 B2
7899666 Varone Mar 2011 B2
7904297 Mirkovic et al. Mar 2011 B2
7908287 Katragadda Mar 2011 B1
7912289 Kansal et al. Mar 2011 B2
7912699 Saraclar et al. Mar 2011 B1
7912702 Bennett Mar 2011 B2
7912720 Hakkani-Tur et al. Mar 2011 B1
7912828 Bonnet et al. Mar 2011 B2
7913185 Benson et al. Mar 2011 B1
7916979 Simmons Mar 2011 B2
7917367 Di Cristo et al. Mar 2011 B2
7917497 Harrison et al. Mar 2011 B2
7920678 Cooper et al. Apr 2011 B2
7920682 Byrne et al. Apr 2011 B2
7920857 Lau et al. Apr 2011 B2
7925525 Chin Apr 2011 B2
7925610 Elbaz et al. Apr 2011 B2
7929805 Wang et al. Apr 2011 B2
7930168 Weng et al. Apr 2011 B2
7930183 Odell et al. Apr 2011 B2
7930197 Ozzie et al. Apr 2011 B2
7936339 Marggraff et al. May 2011 B2
7936861 Martin et al. May 2011 B2
7936863 John et al. May 2011 B2
7937075 Zellner May 2011 B2
7941009 Li et al. May 2011 B2
7945294 Zhang et al. May 2011 B2
7945470 Cohen et al. May 2011 B1
7949529 Weider et al. May 2011 B2
7949534 Davis et al. May 2011 B2
7949752 Lange et al. May 2011 B2
7953679 Chidlovskii et al. May 2011 B2
7957975 Burns et al. Jun 2011 B2
7958136 Curtis et al. Jun 2011 B1
7962179 Huang Jun 2011 B2
7974835 Balchandran et al. Jul 2011 B2
7974844 Sumita Jul 2011 B2
7974972 Cao Jul 2011 B2
7975216 Woolf et al. Jul 2011 B2
7983478 Liu et al. Jul 2011 B2
7983915 Knight et al. Jul 2011 B2
7983917 Kennewick et al. Jul 2011 B2
7983919 Conkie Jul 2011 B2
7983997 Allen et al. Jul 2011 B2
7984062 Dunning et al. Jul 2011 B2
7986431 Emori et al. Jul 2011 B2
7987151 Schott et al. Jul 2011 B2
7987244 Lewis et al. Jul 2011 B1
7991614 Washio et al. Aug 2011 B2
7992085 Wang-Aryattanwanich et al. Aug 2011 B2
7996228 Miller et al. Aug 2011 B2
7996589 Schultz et al. Aug 2011 B2
7996769 Fux et al. Aug 2011 B2
7996792 Anzures et al. Aug 2011 B2
7999669 Singh et al. Aug 2011 B2
8000453 Cooper et al. Aug 2011 B2
8005664 Hanumanthappa Aug 2011 B2
8005679 Jordan et al. Aug 2011 B2
8006180 Tunning et al. Aug 2011 B2
8014308 Gates et al. Sep 2011 B2
8015006 Kennewick et al. Sep 2011 B2
8015011 Nagano et al. Sep 2011 B2
8015144 Zheng et al. Sep 2011 B2
8018431 Zehr et al. Sep 2011 B1
8019271 Izdepski Sep 2011 B1
8019604 Ma Sep 2011 B2
8020104 Robarts et al. Sep 2011 B2
8024195 Mozer et al. Sep 2011 B2
8024415 Horvitz et al. Sep 2011 B2
8027836 Baker et al. Sep 2011 B2
8031943 Chen et al. Oct 2011 B2
8032383 Bhardwaj et al. Oct 2011 B1
8036901 Mozer Oct 2011 B2
8037034 Plachta et al. Oct 2011 B2
8041557 Liu Oct 2011 B2
8041570 Mirkovic et al. Oct 2011 B2
8041611 Kleinrock et al. Oct 2011 B2
8042053 Darwish et al. Oct 2011 B2
8046363 Cha et al. Oct 2011 B2
8046374 Bromwich et al. Oct 2011 B1
8050500 Batty et al. Nov 2011 B1
8054180 Scofield et al. Nov 2011 B1
8055502 Clark et al. Nov 2011 B2
8055708 Chitsaz et al. Nov 2011 B2
8056070 Goller et al. Nov 2011 B2
8060824 Brownrigg, Jr. et al. Nov 2011 B2
8064753 Freeman Nov 2011 B2
8065143 Yanagihara Nov 2011 B2
8065155 Gazdzinski Nov 2011 B1
8065156 Gazdzinski Nov 2011 B2
8068604 Leeds et al. Nov 2011 B2
8069046 Kennewick et al. Nov 2011 B2
8069422 Sheshagiri et al. Nov 2011 B2
8073681 Baldwin et al. Dec 2011 B2
8073695 Hendricks et al. Dec 2011 B1
8077153 Benko et al. Dec 2011 B2
8078473 Gazdzinski Dec 2011 B1
8082153 Coffman et al. Dec 2011 B2
8082498 Salamon et al. Dec 2011 B2
8090571 Elshishiny et al. Jan 2012 B2
8095364 Longe et al. Jan 2012 B2
8099289 Mozer et al. Jan 2012 B2
8099395 Pabla et al. Jan 2012 B2
8099418 Inoue et al. Jan 2012 B2
8103510 Sato Jan 2012 B2
8107401 John et al. Jan 2012 B2
8112275 Kennewick et al. Feb 2012 B2
8112280 Lu Feb 2012 B2
8117037 Gazdzinski Feb 2012 B2
8117542 Radtke et al. Feb 2012 B2
8121413 Hwang et al. Feb 2012 B2
8121837 Agapi et al. Feb 2012 B2
8122094 Kotab Feb 2012 B1
8122353 Bouta Feb 2012 B2
8130929 Wilkes et al. Mar 2012 B2
8131557 Davis et al. Mar 2012 B2
8135115 Hogg, Jr. et al. Mar 2012 B1
8138912 Singh et al. Mar 2012 B2
8140330 Cevik et al. Mar 2012 B2
8140335 Kennewick et al. Mar 2012 B2
8140567 Padovitz et al. Mar 2012 B2
8145489 Freeman et al. Mar 2012 B2
8150694 Kennewick et al. Apr 2012 B2
8150700 Shin et al. Apr 2012 B2
8155956 Cho et al. Apr 2012 B2
8156005 Vieri Apr 2012 B2
8160877 Nucci et al. Apr 2012 B1
8160883 Lecoeuche Apr 2012 B2
8165321 Paquier et al. Apr 2012 B2
8165886 Gagnon et al. Apr 2012 B1
8166019 Lee et al. Apr 2012 B1
8166032 Sommer et al. Apr 2012 B2
8170790 Lee et al. May 2012 B2
8175872 Kristjansson et al. May 2012 B2
8175876 Bou-Ghazale et al. May 2012 B2
8179370 Yamasani et al. May 2012 B1
8188856 Singh et al. May 2012 B2
8190359 Bourne May 2012 B2
8190596 Nambiar et al. May 2012 B2
8195467 Mozer et al. Jun 2012 B2
8195468 Kennewick et al. Jun 2012 B2
8200489 Baggenstoss Jun 2012 B1
8200495 Braho et al. Jun 2012 B2
8201109 Van Os et al. Jun 2012 B2
8204238 Mozer Jun 2012 B2
8205788 Gazdzinski et al. Jun 2012 B1
8209183 Patel et al. Jun 2012 B1
8213911 Williams et al. Jul 2012 B2
8219115 Nelissen Jul 2012 B1
8219406 Yu et al. Jul 2012 B2
8219407 Roy et al. Jul 2012 B1
8219608 alSafadi et al. Jul 2012 B2
8224649 Chaudhari et al. Jul 2012 B2
8224757 Bohle Jul 2012 B2
8228299 Maloney et al. Jul 2012 B1
8233919 Haag et al. Jul 2012 B2
8234111 Lloyd et al. Jul 2012 B2
8239206 LeBeau et al. Aug 2012 B1
8239207 Seligman et al. Aug 2012 B2
8244712 Serlet et al. Aug 2012 B2
8250071 Killalea et al. Aug 2012 B1
8254829 Kindred et al. Aug 2012 B1
8255216 White Aug 2012 B2
8255217 Stent et al. Aug 2012 B2
8260247 Lazaridis et al. Sep 2012 B2
8260617 Dhanakshirur et al. Sep 2012 B2
8270933 Riemer et al. Sep 2012 B2
8271287 Kermani Sep 2012 B1
8275621 Alewine et al. Sep 2012 B2
8279171 Hirai et al. Oct 2012 B2
8280438 Barbera Oct 2012 B2
8285546 Reich Oct 2012 B2
8285551 Gazdzinski Oct 2012 B2
8285553 Gazdzinski Oct 2012 B2
8285737 Lynn et al. Oct 2012 B1
8290777 Nguyen et al. Oct 2012 B1
8290778 Gazdzinski Oct 2012 B2
8290781 Gazdzinski Oct 2012 B2
8296124 Holsztynska et al. Oct 2012 B1
8296145 Clark et al. Oct 2012 B2
8296146 Gazdzinski Oct 2012 B2
8296153 Gazdzinski Oct 2012 B2
8296380 Kelly et al. Oct 2012 B1
8296383 Lindahl Oct 2012 B2
8300776 Davies et al. Oct 2012 B2
8300801 Sweeney et al. Oct 2012 B2
8301456 Gazdzinski Oct 2012 B2
8311189 Champhn et al. Nov 2012 B2
8311834 Gazdzinski Nov 2012 B1
8311835 Lecoeuche Nov 2012 B2
8311838 Lindahl et al. Nov 2012 B2
8312017 Martin et al. Nov 2012 B2
8321786 Lunati et al. Nov 2012 B2
8326627 Kennewick et al. Dec 2012 B2
8332205 Krishnan et al. Dec 2012 B2
8332218 Cross et al. Dec 2012 B2
8332224 Di Cristo et al. Dec 2012 B2
8332748 Karam Dec 2012 B1
8335689 Wittenstein et al. Dec 2012 B2
8340975 Rosenberger Dec 2012 B1
8345665 Vieri et al. Jan 2013 B2
8346563 Hjelm et al. Jan 2013 B1
8346757 Lamping et al. Jan 2013 B1
8352183 Thota et al. Jan 2013 B2
8352268 Naik et al. Jan 2013 B2
8352272 Rogers et al. Jan 2013 B2
8355919 Silverman et al. Jan 2013 B2
8359234 Vieri Jan 2013 B2
8370145 Endo et al. Feb 2013 B2
8370158 Gazdzinski Feb 2013 B2
8371503 Gazdzinski Feb 2013 B2
8374871 Ehsani et al. Feb 2013 B2
8375320 Kotler et al. Feb 2013 B2
8380504 Peden et al. Feb 2013 B1
8380507 Herman et al. Feb 2013 B2
8381107 Rottler et al. Feb 2013 B2
8381135 Hotelling et al. Feb 2013 B2
8386485 Kerschberg et al. Feb 2013 B2
8386926 Matsuoka Feb 2013 B1
8391844 Lamiraux et al. Mar 2013 B2
8396714 Rogers et al. Mar 2013 B2
8401163 Kirchhoff et al. Mar 2013 B1
8406745 Upadhyay et al. Mar 2013 B1
8423288 Stahl et al. Apr 2013 B2
8428758 Naik et al. Apr 2013 B2
8433572 Caskey et al. Apr 2013 B2
8433778 Shreesha et al. Apr 2013 B1
8442821 Vanhoucke May 2013 B1
8447612 Gazdzinski May 2013 B2
8452597 Bringert et al. May 2013 B2
8457959 Kaiser Jun 2013 B2
8458115 Cai et al. Jun 2013 B2
8458278 Christie et al. Jun 2013 B2
8464150 Davidson et al. Jun 2013 B2
8473289 Jitkoff et al. Jun 2013 B2
8479122 Hotelling et al. Jul 2013 B2
8484027 Murphy Jul 2013 B1
8489599 Bellotti Jul 2013 B2
8498857 Kopparapu et al. Jul 2013 B2
8514197 Shahraray et al. Aug 2013 B2
8515750 Lei et al. Aug 2013 B1
8521513 Millett et al. Aug 2013 B2
8521531 Kim Aug 2013 B1
8527276 Senior et al. Sep 2013 B1
8537033 Gueziec Sep 2013 B2
8539342 Lewis Sep 2013 B1
8543375 Hong Sep 2013 B2
8543397 Nguyen Sep 2013 B1
8543398 Strope et al. Sep 2013 B1
8560229 Park et al. Oct 2013 B1
8571851 Tickner et al. Oct 2013 B1
8583416 Huang et al. Nov 2013 B2
8583511 Hendrickson Nov 2013 B2
8589869 Wolfram Nov 2013 B2
8589911 Sharkey et al. Nov 2013 B1
8595004 Koshinaka Nov 2013 B2
8600743 Lindahl et al. Dec 2013 B2
8600746 Lei et al. Dec 2013 B1
8600930 Sata et al. Dec 2013 B2
8606090 Eyer Dec 2013 B2
8606568 Tickner et al. Dec 2013 B1
8606576 Barr et al. Dec 2013 B1
8620659 Di Cristo et al. Dec 2013 B2
8620662 Bellegarda Dec 2013 B2
8626681 Jurca et al. Jan 2014 B1
8638363 King et al. Jan 2014 B2
8639516 Lindahl et al. Jan 2014 B2
8645137 Bellegarda et al. Feb 2014 B2
8645138 Weinstein et al. Feb 2014 B1
8654936 Tofighbakhsh et al. Feb 2014 B1
8655646 Lee et al. Feb 2014 B2
8655901 Li et al. Feb 2014 B1
8660843 Falcon et al. Feb 2014 B2
8660849 Gruber et al. Feb 2014 B2
8660970 Fiedorowicz Feb 2014 B1
8661112 Creamer et al. Feb 2014 B2
8661340 Goldsmith et al. Feb 2014 B2
8670979 Gruber et al. Mar 2014 B2
8675084 Bolton et al. Mar 2014 B2
8676904 Lindahl et al. Mar 2014 B2
8677377 Cheyer et al. Mar 2014 B2
8681950 Vlack et al. Mar 2014 B2
8682667 Haughay et al. Mar 2014 B2
8687777 Lavian et al. Apr 2014 B1
8688446 Yanagihara et al. Apr 2014 B2
8688453 Joshi et al. Apr 2014 B1
8695074 Saraf et al. Apr 2014 B2
8696364 Cohen Apr 2014 B2
8706472 Ramerth et al. Apr 2014 B2
8706474 Blume et al. Apr 2014 B2
8706503 Cheyer et al. Apr 2014 B2
8713119 Lindahl et al. Apr 2014 B2
8713418 King et al. Apr 2014 B2
8719006 Bellegarda et al. May 2014 B2
8719014 Wagner et al. May 2014 B2
8719039 Sharifi May 2014 B1
8731610 Appaji May 2014 B2
8731912 Tickner et al. May 2014 B1
8731942 Cheyer et al. May 2014 B2
8739208 Rodriguez et al. May 2014 B2
8744852 Seymour et al. Jun 2014 B1
8760537 Johnson et al. Jun 2014 B2
8762145 Ouchi et al. Jun 2014 B2
8762156 Chen et al. Jun 2014 B2
8762469 Lindahl et al. Jun 2014 B2
8768693 Lempel et al. Jul 2014 B2
8768702 Boettcher et al. Jul 2014 B2
8775154 Clinchant et al. Jul 2014 B2
8775931 Fux et al. Jul 2014 B2
8781456 Prociw Jul 2014 B2
8781841 Wang Jul 2014 B1
8798255 Lubowich et al. Aug 2014 B2
8798995 Edara et al. Aug 2014 B1
8799000 Guzzoni et al. Aug 2014 B2
8805690 LeBeau et al. Aug 2014 B1
8812302 Xiao et al. Aug 2014 B2
8838457 Cerra et al. Sep 2014 B2
8855915 Furuhata et al. Oct 2014 B2
8861925 Ohme Oct 2014 B1
8862252 Rottler et al. Oct 2014 B2
8868409 Mengibar et al. Oct 2014 B1
8880405 Cerra et al. Nov 2014 B2
8886534 Nakano et al. Nov 2014 B2
8886540 Cerra et al. Nov 2014 B2
8886541 Friedlander Nov 2014 B2
8892446 Cheyer et al. Nov 2014 B2
8893023 Perry et al. Nov 2014 B2
8898568 Bull et al. Nov 2014 B2
8903716 Chen et al. Dec 2014 B2
8909693 Frissora et al. Dec 2014 B2
8930176 Li et al. Jan 2015 B2
8930191 Gruber et al. Jan 2015 B2
8938394 Faaborg et al. Jan 2015 B1
8938450 Spivack et al. Jan 2015 B2
8938688 Bradford et al. Jan 2015 B2
8942986 Cheyer et al. Jan 2015 B2
8943423 Merrill et al. Jan 2015 B2
8972240 Brockett et al. Mar 2015 B2
8972432 Shaw et al. Mar 2015 B2
8972878 Mohler et al. Mar 2015 B2
8983383 Haskin Mar 2015 B1
8989713 Doulton Mar 2015 B2
8990235 King et al. Mar 2015 B2
8994660 Neels et al. Mar 2015 B2
8996350 Dub et al. Mar 2015 B1
8996376 Fleizach et al. Mar 2015 B2
8996381 Mozer et al. Mar 2015 B2
8996639 Faaborg et al. Mar 2015 B1
9009046 Stewart Apr 2015 B1
9020804 Barbaiani et al. Apr 2015 B2
9026425 Nikoulina et al. May 2015 B2
9031834 Coorman et al. May 2015 B2
9037967 Al-Jefri et al. May 2015 B1
9043208 Koch et al. May 2015 B2
9043211 Haiut et al. May 2015 B2
9049255 MacFarlane et al. Jun 2015 B2
9049295 Cooper et al. Jun 2015 B1
9053706 Jitkoff et al. Jun 2015 B2
9058811 Wang et al. Jun 2015 B2
9063979 Chiu et al. Jun 2015 B2
9064495 Torok et al. Jun 2015 B1
9070366 Mathias et al. Jun 2015 B1
9071701 Donaldson et al. Jun 2015 B2
9076448 Bennett et al. Jul 2015 B2
9076450 Sadek et al. Jul 2015 B1
9081411 Kalns et al. Jul 2015 B2
9081482 Zhai et al. Jul 2015 B1
9082402 Yadgar et al. Jul 2015 B2
9083581 Addepalli et al. Jul 2015 B1
9098467 Blanksteen et al. Aug 2015 B1
9101279 Ritchey et al. Aug 2015 B2
9112984 Sejnoha et al. Aug 2015 B2
9117447 Gruber et al. Aug 2015 B2
9123338 Sanders et al. Sep 2015 B1
9159319 Hoffmeister Oct 2015 B1
9164983 Liu et al. Oct 2015 B2
9171541 Kennewick et al. Oct 2015 B2
9171546 Pike Oct 2015 B1
9183845 Gopalakrishnan et al. Nov 2015 B1
9190062 Haughay Nov 2015 B2
9208153 Zaven et al. Dec 2015 B1
9218809 Bellegarda Dec 2015 B2
9218819 Stekkelpak et al. Dec 2015 B1
9223537 Brown et al. Dec 2015 B2
9236047 Rasmussen Jan 2016 B2
9255812 Maeoka et al. Feb 2016 B2
9258604 Bilobrov et al. Feb 2016 B1
9262612 Cheyer Feb 2016 B2
9280535 Varma et al. Mar 2016 B2
9286910 Li et al. Mar 2016 B1
9292487 Weber Mar 2016 B1
9292489 Sak et al. Mar 2016 B1
9299344 Braho et al. Mar 2016 B2
9300718 Khanna Mar 2016 B2
9305543 Fleizach et al. Apr 2016 B2
9305548 Kennewick et al. Apr 2016 B2
9311912 Swietlinski et al. Apr 2016 B1
9313317 LeBeau et al. Apr 2016 B1
9318108 Gruber et al. Apr 2016 B2
9325809 Barros et al. Apr 2016 B1
9330659 Ju et al. May 2016 B2
9330720 Lee May 2016 B2
9338493 Van Os et al. May 2016 B2
9349368 LeBeau et al. May 2016 B1
9361084 Costa Jun 2016 B1
9367541 Servan et al. Jun 2016 B1
9377871 Waddell et al. Jun 2016 B2
9378740 Rosen et al. Jun 2016 B1
9380155 Reding et al. Jun 2016 B1
9383827 Faaborg et al. Jul 2016 B1
9390726 Smus et al. Jul 2016 B1
9396722 Chuncg et al. Jul 2016 B2
9401147 Jitkoff et al. Jul 2016 B2
9406224 Sanders et al. Aug 2016 B1
9412392 Lindahl Aug 2016 B2
9418650 Bharadwaj Aug 2016 B2
9423266 Clark et al. Aug 2016 B2
9424840 Hart et al. Aug 2016 B1
9436918 Pantel et al. Sep 2016 B2
9437186 Liu et al. Sep 2016 B1
9437189 Epstein et al. Sep 2016 B2
9454957 Mathias et al. Sep 2016 B1
9465833 Aravamudan et al. Oct 2016 B2
9471566 Zhang et al. Oct 2016 B1
9484021 Mairesse et al. Nov 2016 B1
9495129 Fleizach et al. Nov 2016 B2
9501741 Cheyer et al. Nov 2016 B2
9502025 Kennewick et al. Nov 2016 B2
9508028 Bannister et al. Nov 2016 B2
9510044 Pereira et al. Nov 2016 B1
9519453 Perkuhn et al. Dec 2016 B2
9524355 Forbes et al. Dec 2016 B2
9535906 Lee et al. Jan 2017 B2
9536527 Carlson Jan 2017 B1
9547647 Badaskar Jan 2017 B2
9548050 Gruber et al. Jan 2017 B2
9569549 Jenkins et al. Feb 2017 B1
9575964 Yadgar et al. Feb 2017 B2
9578173 Sanghavi et al. Feb 2017 B2
9607612 Deleeuw Mar 2017 B2
9620113 Kennewick et al. Apr 2017 B2
9620126 Chiba Apr 2017 B2
9626955 Fleizach et al. Apr 2017 B2
9633004 Giuli et al. Apr 2017 B2
9633660 Haughay Apr 2017 B2
9652453 Mathur et al. May 2017 B2
9658746 Cohn et al. May 2017 B2
9665567 Liu et al. May 2017 B2
9668121 Naik et al. May 2017 B2
9672725 Dotan-Cohen et al. Jun 2017 B2
9691378 Meyers et al. Jun 2017 B1
9697827 Lilly et al. Jul 2017 B1
9698999 Mutagi Jul 2017 B2
9720907 Bangalore et al. Aug 2017 B2
9721566 Newendorp et al. Aug 2017 B2
9734817 Putrycz Aug 2017 B1
9734839 Adams Aug 2017 B1
9741343 Miles et al. Aug 2017 B1
9747083 Roman et al. Aug 2017 B1
9755605 Li et al. Sep 2017 B1
9818400 Paulik et al. Nov 2017 B2
9842584 Hart et al. Dec 2017 B1
9858927 Williams et al. Jan 2018 B2
9934785 Hulaud Apr 2018 B1
9948728 Linn et al. Apr 2018 B2
9966068 Cash et al. May 2018 B2
9967381 Kashimba et al. May 2018 B1
9990176 Gray Jun 2018 B1
10037758 Jing et al. Jul 2018 B2
10049663 Orr et al. Aug 2018 B2
10049668 Huang et al. Aug 2018 B2
10074360 Kim Sep 2018 B2
10096319 Jin et al. Oct 2018 B1
10102359 Cheyer Oct 2018 B2
10127901 Zhao et al. Nov 2018 B2
10170123 Orr et al. Jan 2019 B2
10223066 Martel Mar 2019 B2
20020059071 Lewis May 2002 A1
20040006480 Ehlen Jan 2004 A1
20040019488 Portillo Jan 2004 A1
20050094782 Kim May 2005 A1
20080201434 Holmes et al. Aug 2008 A1
20090003115 Lindahl et al. Jan 2009 A1
20090005012 Van Heugten Jan 2009 A1
20090005891 Batson et al. Jan 2009 A1
20090006096 Li et al. Jan 2009 A1
20090006097 Etezadi et al. Jan 2009 A1
20090006099 Sharpe et al. Jan 2009 A1
20090006100 Badger et al. Jan 2009 A1
20090006343 Platt et al. Jan 2009 A1
20090006345 Platt et al. Jan 2009 A1
20090006488 Lindahl et al. Jan 2009 A1
20090006671 Batson et al. Jan 2009 A1
20090007001 Morin et al. Jan 2009 A1
20090011709 Akasaka et al. Jan 2009 A1
20090012748 Beish et al. Jan 2009 A1
20090012775 El Hady et al. Jan 2009 A1
20090018828 Nakadai et al. Jan 2009 A1
20090018829 Kuperstein Jan 2009 A1
20090018834 Cooper et al. Jan 2009 A1
20090018835 Cooper et al. Jan 2009 A1
20090018839 Cooper et al. Jan 2009 A1
20090018840 Lutz et al. Jan 2009 A1
20090022329 Mahowald Jan 2009 A1
20090024595 Chen Jan 2009 A1
20090028435 Wu et al. Jan 2009 A1
20090030685 Cerra et al. Jan 2009 A1
20090030800 Grois Jan 2009 A1
20090030978 Johnson et al. Jan 2009 A1
20090043580 Mozer et al. Feb 2009 A1
20090043583 Agapi et al. Feb 2009 A1
20090043763 Peng Feb 2009 A1
20090044094 Rapp et al. Feb 2009 A1
20090048821 Yam et al. Feb 2009 A1
20090048841 Pallet et al. Feb 2009 A1
20090048845 Burckart et al. Feb 2009 A1
20090049067 Murray Feb 2009 A1
20090055168 Wu et al. Feb 2009 A1
20090055175 Terrell et al. Feb 2009 A1
20090055179 Cho et al. Feb 2009 A1
20090055186 Lance et al. Feb 2009 A1
20090055380 Peng et al. Feb 2009 A1
20090055381 Wu et al. Feb 2009 A1
20090055648 Kim et al. Feb 2009 A1
20090058823 Kocienda Mar 2009 A1
20090058860 Fong et al. Mar 2009 A1
20090060351 Li et al. Mar 2009 A1
20090060472 Bull et al. Mar 2009 A1
20090063974 Bull et al. Mar 2009 A1
20090064031 Bull et al. Mar 2009 A1
20090070097 Wu et al. Mar 2009 A1
20090070102 Maegawa Mar 2009 A1
20090070109 Didcock et al. Mar 2009 A1
20090070114 Staszak Mar 2009 A1
20090074214 Bradford et al. Mar 2009 A1
20090076792 Lawson-Tancred Mar 2009 A1
20090076796 Daraselia Mar 2009 A1
20090076798 Oh et al. Mar 2009 A1
20090076819 Wouters et al. Mar 2009 A1
20090076821 Brenner et al. Mar 2009 A1
20090076825 Bradford et al. Mar 2009 A1
20090077047 Cooper et al. Mar 2009 A1
20090077165 Rhodes et al. Mar 2009 A1
20090077464 Goldsmith et al. Mar 2009 A1
20090079622 Seshadri et al. Mar 2009 A1
20090083034 Hernandez et al. Mar 2009 A1
20090083035 Huang et al. Mar 2009 A1
20090083036 Zhao et al. Mar 2009 A1
20090083037 Gleason et al. Mar 2009 A1
20090083047 Lindahl et al. Mar 2009 A1
20090089058 Bellegarda Apr 2009 A1
20090091537 Huang et al. Apr 2009 A1
20090092239 Macwan et al. Apr 2009 A1
20090092260 Powers Apr 2009 A1
20090092261 Bard Apr 2009 A1
20090092262 Costa et al. Apr 2009 A1
20090093903 Donaldson et al. Apr 2009 A1
20090094029 Koch et al. Apr 2009 A1
20090094033 Mozer et al. Apr 2009 A1
20090097634 Nambiar et al. Apr 2009 A1
20090097637 Boscher et al. Apr 2009 A1
20090100049 Cao Apr 2009 A1
20090100454 Weber Apr 2009 A1
20090104898 Harris Apr 2009 A1
20090106026 Ferrieux Apr 2009 A1
20090106376 Tom et al. Apr 2009 A1
20090106397 O'Keefe Apr 2009 A1
20090112572 Thorn Apr 2009 A1
20090112576 Jackson et al. Apr 2009 A1
20090112592 Candelore et al. Apr 2009 A1
20090112596 Syrdal et al. Apr 2009 A1
20090112677 Rhett Apr 2009 A1
20090112892 Cardie et al. Apr 2009 A1
20090119587 Allen et al. May 2009 A1
20090123021 Jung et al. May 2009 A1
20090123071 Iwasaki May 2009 A1
20090125477 Lu et al. May 2009 A1
20090125602 Bhatia et al. May 2009 A1
20090125813 Shen et al. May 2009 A1
20090125947 Ibaraki May 2009 A1
20090128505 Partridge et al. May 2009 A1
20090132253 Bellegarda May 2009 A1
20090132255 Lu May 2009 A1
20090137286 Luke et al. May 2009 A1
20090138263 Shozakai et al. May 2009 A1
20090138430 Nambiar et al. May 2009 A1
20090138736 Chin May 2009 A1
20090138828 Schultz et al. May 2009 A1
20090144036 Jorgensen et al. Jun 2009 A1
20090144049 Haddad et al. Jun 2009 A1
20090144428 Bowater et al. Jun 2009 A1
20090144609 Liang et al. Jun 2009 A1
20090146848 Ghassabian Jun 2009 A1
20090150147 Jacoby et al. Jun 2009 A1
20090150156 Kennewick et al. Jun 2009 A1
20090152349 Bonev et al. Jun 2009 A1
20090153288 Hope et al. Jun 2009 A1
20090154669 Wood et al. Jun 2009 A1
20090157382 Bar Jun 2009 A1
20090157384 Toutanova et al. Jun 2009 A1
20090157401 Bennett Jun 2009 A1
20090158200 Palahnuk et al. Jun 2009 A1
20090158323 Bober et al. Jun 2009 A1
20090158423 Orlassino et al. Jun 2009 A1
20090160761 Moosavi et al. Jun 2009 A1
20090160803 Hashimoto Jun 2009 A1
20090163243 Barbera Jun 2009 A1
20090164301 O'Sullivan et al. Jun 2009 A1
20090164441 Cheyer Jun 2009 A1
20090164655 Pettersson et al. Jun 2009 A1
20090164937 Alviar et al. Jun 2009 A1
20090167508 Fadell et al. Jul 2009 A1
20090167509 Fadell et al. Jul 2009 A1
20090171578 Kim et al. Jul 2009 A1
20090171662 Huang et al. Jul 2009 A1
20090171664 Kennewick et al. Jul 2009 A1
20090172108 Singh Jul 2009 A1
20090172542 Girish et al. Jul 2009 A1
20090174667 Kocienda et al. Jul 2009 A1
20090174677 Gehani et al. Jul 2009 A1
20090177300 Lee Jul 2009 A1
20090177461 Ehsani et al. Jul 2009 A1
20090177966 Chaudhri Jul 2009 A1
20090182445 Girish et al. Jul 2009 A1
20090182549 Anisimovich et al. Jul 2009 A1
20090182702 Miller Jul 2009 A1
20090183070 Robbins Jul 2009 A1
20090187402 Scholl Jul 2009 A1
20090187577 Reznik et al. Jul 2009 A1
20090187950 Nicas et al. Jul 2009 A1
20090190774 Wang et al. Jul 2009 A1
20090191895 Singh et al. Jul 2009 A1
20090192782 Drewes Jul 2009 A1
20090192787 Roon Jul 2009 A1
20090192798 Basson et al. Jul 2009 A1
20090198497 Kwon Aug 2009 A1
20090204402 Marhawa et al. Aug 2009 A1
20090204409 Mozer et al. Aug 2009 A1
20090204478 Kaib et al. Aug 2009 A1
20090204596 Brun et al. Aug 2009 A1
20090204601 Grasset Aug 2009 A1
20090204620 Thione et al. Aug 2009 A1
20090210230 Schwarz et al. Aug 2009 A1
20090210232 Sanchez et al. Aug 2009 A1
20090213134 Stephanick et al. Aug 2009 A1
20090215466 Ahl et al. Aug 2009 A1
20090215503 Zhang et al. Aug 2009 A1
20090216396 Yamagata Aug 2009 A1
20090216528 Gemello et al. Aug 2009 A1
20090216540 Tessel et al. Aug 2009 A1
20090216704 Zheng et al. Aug 2009 A1
20090219166 MacFarlane et al. Sep 2009 A1
20090221274 Venkatakrishnan et al. Sep 2009 A1
20090222257 Sumita et al. Sep 2009 A1
20090222270 Likens et al. Sep 2009 A2
20090222488 Boerries et al. Sep 2009 A1
20090224867 O'Shaughnessy Sep 2009 A1
20090228126 Spielberg et al. Sep 2009 A1
20090228273 Wang et al. Sep 2009 A1
20090228277 Bonforte et al. Sep 2009 A1
20090228281 Singleton et al. Sep 2009 A1
20090228439 Manolescu et al. Sep 2009 A1
20090228792 Van Os et al. Sep 2009 A1
20090228842 Westerman et al. Sep 2009 A1
20090233264 Rogers et al. Sep 2009 A1
20090234638 Ranjan et al. Sep 2009 A1
20090234651 Basir et al. Sep 2009 A1
20090234655 Kwon Sep 2009 A1
20090235280 Tannier et al. Sep 2009 A1
20090239202 Stone Sep 2009 A1
20090239552 Churchill et al. Sep 2009 A1
20090240485 Dalal et al. Sep 2009 A1
20090241054 Hendricks Sep 2009 A1
20090241760 Georges Oct 2009 A1
20090247237 Mittleman et al. Oct 2009 A1
20090248182 Logan et al. Oct 2009 A1
20090248395 Alewine et al. Oct 2009 A1
20090248402 Ito et al. Oct 2009 A1
20090248420 Basir et al. Oct 2009 A1
20090248422 Li et al. Oct 2009 A1
20090248456 Fahmy et al. Oct 2009 A1
20090249198 Davis et al. Oct 2009 A1
20090249247 Tseng et al. Oct 2009 A1
20090252350 Seguin Oct 2009 A1
20090253457 Seguin Oct 2009 A1
20090253463 Shin et al. Oct 2009 A1
20090254339 Seguin Oct 2009 A1
20090254345 Fleizach et al. Oct 2009 A1
20090254819 Song et al. Oct 2009 A1
20090254823 Barrett Oct 2009 A1
20090259472 Schroeter Oct 2009 A1
20090259475 Yamagami et al. Oct 2009 A1
20090259969 Pallakoff Oct 2009 A1
20090265171 Davis Oct 2009 A1
20090265368 Crider et al. Oct 2009 A1
20090271109 Lee et al. Oct 2009 A1
20090271175 Bodin et al. Oct 2009 A1
20090271176 Bodin et al. Oct 2009 A1
20090271178 Bodin et al. Oct 2009 A1
20090271188 Agapi et al. Oct 2009 A1
20090271189 Agapi et al. Oct 2009 A1
20090274315 Carnes et al. Nov 2009 A1
20090274376 Selvaraj et al. Nov 2009 A1
20090278804 Rubanovich et al. Nov 2009 A1
20090281789 Waibel et al. Nov 2009 A1
20090284471 Longe et al. Nov 2009 A1
20090284482 Chin Nov 2009 A1
20090286514 Lichorowic et al. Nov 2009 A1
20090287583 Holmes Nov 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090292987 Sorenson Nov 2009 A1
20090296552 Hicks et al. Dec 2009 A1
20090298474 George Dec 2009 A1
20090298529 Mahajan Dec 2009 A1
20090299745 Kennewick et al. Dec 2009 A1
20090299849 Cao et al. Dec 2009 A1
20090300391 Jessup et al. Dec 2009 A1
20090300488 Salamon et al. Dec 2009 A1
20090304198 Herre et al. Dec 2009 A1
20090305203 Okumura et al. Dec 2009 A1
20090306967 Nicolov et al. Dec 2009 A1
20090306969 Goud et al. Dec 2009 A1
20090306979 Jaiswal et al. Dec 2009 A1
20090306980 Shin Dec 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090306985 Roberts et al. Dec 2009 A1
20090306988 Chen et al. Dec 2009 A1
20090306989 Kaji Dec 2009 A1
20090307162 Bui et al. Dec 2009 A1
20090307201 Dunning et al. Dec 2009 A1
20090307584 Davidson et al. Dec 2009 A1
20090307594 Kosonen et al. Dec 2009 A1
20090309352 Walker et al. Dec 2009 A1
20090313014 Shin et al. Dec 2009 A1
20090313020 Koivunen Dec 2009 A1
20090313023 Jones Dec 2009 A1
20090313026 Coffman et al. Dec 2009 A1
20090313544 Wood et al. Dec 2009 A1
20090313564 Rottler et al. Dec 2009 A1
20090316943 Frigola Munoz et al. Dec 2009 A1
20090318119 Basir et al. Dec 2009 A1
20090318198 Carroll Dec 2009 A1
20090319257 Blume et al. Dec 2009 A1
20090319266 Brown et al. Dec 2009 A1
20090319342 Shilman et al. Dec 2009 A1
20090326923 Yan et al. Dec 2009 A1
20090326936 Nagashima Dec 2009 A1
20090326938 Marila et al. Dec 2009 A1
20090326949 Douthitt et al. Dec 2009 A1
20090327977 Bachfischer et al. Dec 2009 A1
20100004918 Lee et al. Jan 2010 A1
20100004930 Strope et al. Jan 2010 A1
20100004931 Ma et al. Jan 2010 A1
20100005081 Bennett Jan 2010 A1
20100010803 Ishikawa et al. Jan 2010 A1
20100010814 Patel Jan 2010 A1
20100010948 Ito et al. Jan 2010 A1
20100013760 Hirai et al. Jan 2010 A1
20100013796 Abileah et al. Jan 2010 A1
20100017212 Attwater et al. Jan 2010 A1
20100017382 Katragadda et al. Jan 2010 A1
20100019834 Zerbe et al. Jan 2010 A1
20100020035 Ryu et al. Jan 2010 A1
20100023318 Lemoine Jan 2010 A1
20100023320 Di Cristo et al. Jan 2010 A1
20100023331 Duta et al. Jan 2010 A1
20100026526 Yokota Feb 2010 A1
20100030549 Lee et al. Feb 2010 A1
20100030928 Conroy et al. Feb 2010 A1
20100031143 Rao et al. Feb 2010 A1
20100036653 Kim et al. Feb 2010 A1
20100036655 Cecil et al. Feb 2010 A1
20100036660 Bennett Feb 2010 A1
20100036829 Leyba Feb 2010 A1
20100036928 Granito et al. Feb 2010 A1
20100037183 Miyashita et al. Feb 2010 A1
20100042400 Block et al. Feb 2010 A1
20100042576 Roettger et al. Feb 2010 A1
20100046842 Conwell et al. Feb 2010 A1
20100049498 Cao et al. Feb 2010 A1
20100049514 Kennewick et al. Feb 2010 A1
20100050064 Liu et al. Feb 2010 A1
20100054512 Solum Mar 2010 A1
20100057435 Kent et al. Mar 2010 A1
20100057443 Di Cristo et al. Mar 2010 A1
20100057457 Ogata et al. Mar 2010 A1
20100057461 Neubacher et al. Mar 2010 A1
20100057643 Yang Mar 2010 A1
20100058200 Jablokov et al. Mar 2010 A1
20100060646 Unsal et al. Mar 2010 A1
20100063804 Sato et al. Mar 2010 A1
20100063825 Williams et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100064113 Lindahl et al. Mar 2010 A1
20100064218 Bull et al. Mar 2010 A1
20100064226 Stefaniak et al. Mar 2010 A1
20100066546 Aaron Mar 2010 A1
20100066684 Shahraray et al. Mar 2010 A1
20100067723 Bergmann et al. Mar 2010 A1
20100067867 Lin et al. Mar 2010 A1
20100070281 Conkie et al. Mar 2010 A1
20100070517 Ghosh et al. Mar 2010 A1
20100070521 Clinchant et al. Mar 2010 A1
20100070899 Hunt et al. Mar 2010 A1
20100071003 Bychkov et al. Mar 2010 A1
20100076760 Kraenzel et al. Mar 2010 A1
20100076993 Klawitter et al. Mar 2010 A1
20100077350 Lim et al. Mar 2010 A1
20100079501 Ikeda et al. Apr 2010 A1
20100079508 Hodge et al. Apr 2010 A1
20100080398 Waldmann Apr 2010 A1
20100080470 Deluca et al. Apr 2010 A1
20100081456 Singh et al. Apr 2010 A1
20100081487 Chen et al. Apr 2010 A1
20100082286 Leung Apr 2010 A1
20100082327 Rogers et al. Apr 2010 A1
20100082328 Rogers et al. Apr 2010 A1
20100082329 Silverman et al. Apr 2010 A1
20100082333 Al-Shammari Apr 2010 A1
20100082343 Levit et al. Apr 2010 A1
20100082346 Rogers et al. Apr 2010 A1
20100082347 Rogers et al. Apr 2010 A1
20100082348 Silverman et al. Apr 2010 A1
20100082349 Bellegarda et al. Apr 2010 A1
20100082376 Levitt Apr 2010 A1
20100082567 Rosenblatt et al. Apr 2010 A1
20100082970 Lindahl et al. Apr 2010 A1
20100086152 Rank et al. Apr 2010 A1
20100086153 Hagen et al. Apr 2010 A1
20100086156 Rank et al. Apr 2010 A1
20100088020 Sano et al. Apr 2010 A1
20100088093 Lee et al. Apr 2010 A1
20100088100 Lindahl Apr 2010 A1
20100094632 Davis et al. Apr 2010 A1
20100098231 Wohlert et al. Apr 2010 A1
20100100212 Lindahl et al. Apr 2010 A1
20100100384 Ju et al. Apr 2010 A1
20100100385 Davis et al. Apr 2010 A1
20100100816 McCloskey et al. Apr 2010 A1
20100103776 Chan Apr 2010 A1
20100106486 Hua et al. Apr 2010 A1
20100106498 Morrison et al. Apr 2010 A1
20100106500 McKee et al. Apr 2010 A1
20100106503 Farrell et al. Apr 2010 A1
20100114856 Kuboyama May 2010 A1
20100114887 Conway et al. May 2010 A1
20100121637 Roy et al. May 2010 A1
20100125456 Weng et al. May 2010 A1
20100125458 Franco et al. May 2010 A1
20100125460 Mellott et al. May 2010 A1
20100125811 Moore et al. May 2010 A1
20100128701 Nagaraja May 2010 A1
20100131265 Boda et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100131273 Aley-Raz et al. May 2010 A1
20100131498 Linthicum et al. May 2010 A1
20100131899 Hubert May 2010 A1
20100138215 Williams Jun 2010 A1
20100138224 Bedingfield, Sr. Jun 2010 A1
20100138416 Bellotti Jun 2010 A1
20100138680 Brisebois et al. Jun 2010 A1
20100138759 Roy Jun 2010 A1
20100138798 Wilson et al. Jun 2010 A1
20100142740 Roerup Jun 2010 A1
20100145694 Ju et al. Jun 2010 A1
20100145700 Kennewick et al. Jun 2010 A1
20100145707 Ljoije et al. Jun 2010 A1
20100146442 Nagasaka et al. Jun 2010 A1
20100150321 Harris et al. Jun 2010 A1
20100153114 Shih et al. Jun 2010 A1
20100153115 Klee et al. Jun 2010 A1
20100153448 Harpur et al. Jun 2010 A1
20100161311 Massuh Jun 2010 A1
20100161313 Karttunen Jun 2010 A1
20100161337 Pulz et al. Jun 2010 A1
20100161554 Datuashvili et al. Jun 2010 A1
20100164897 Morin et al. Jul 2010 A1
20100169075 Raffa et al. Jul 2010 A1
20100169093 Washio Jul 2010 A1
20100169097 Nachman et al. Jul 2010 A1
20100169098 Patch Jul 2010 A1
20100171713 Kwok et al. Jul 2010 A1
20100174544 Heifets Jul 2010 A1
20100175066 Paik Jul 2010 A1
20100179932 Yoon et al. Jul 2010 A1
20100179991 Lorch et al. Jul 2010 A1
20100180218 Boston et al. Jul 2010 A1
20100185448 Meisel Jul 2010 A1
20100185949 Jaeger Jul 2010 A1
20100191520 Gruhn et al. Jul 2010 A1
20100197359 Harris Aug 2010 A1
20100198821 Loritz et al. Aug 2010 A1
20100199180 Brichter et al. Aug 2010 A1
20100199215 Seymour et al. Aug 2010 A1
20100204986 Kennewick et al. Aug 2010 A1
20100211199 Naik et al. Aug 2010 A1
20100211379 Gorman et al. Aug 2010 A1
20100211644 Lavoie et al. Aug 2010 A1
20100216509 Riemer et al. Aug 2010 A1
20100217604 Baldwin et al. Aug 2010 A1
20100222033 Scott et al. Sep 2010 A1
20100222098 Garg Sep 2010 A1
20100223055 Mclean Sep 2010 A1
20100223056 Kadirkamanathan et al. Sep 2010 A1
20100223131 Scott et al. Sep 2010 A1
20100225599 Danielsson Sep 2010 A1
20100225809 Connors et al. Sep 2010 A1
20100227642 Kim et al. Sep 2010 A1
20100228540 Bennett Sep 2010 A1
20100228549 Herman et al. Sep 2010 A1
20100228691 Yang et al. Sep 2010 A1
20100229082 Karmarkar et al. Sep 2010 A1
20100229100 Miller et al. Sep 2010 A1
20100231474 Yamagajo et al. Sep 2010 A1
20100235167 Bourdon Sep 2010 A1
20100235341 Bennett Sep 2010 A1
20100235729 Kocienda et al. Sep 2010 A1
20100235732 Bergman Sep 2010 A1
20100235770 Ording et al. Sep 2010 A1
20100235780 Westerman et al. Sep 2010 A1
20100241418 Maeda et al. Sep 2010 A1
20100250542 Fujimaki Sep 2010 A1
20100250599 Schmidt et al. Sep 2010 A1
20100255858 Juhasz Oct 2010 A1
20100257160 Cao Oct 2010 A1
20100257478 Longe et al. Oct 2010 A1
20100262599 Nitz Oct 2010 A1
20100263015 Pandey et al. Oct 2010 A1
20100268537 Al-Telmissani Oct 2010 A1
20100268539 Xu et al. Oct 2010 A1
20100269040 Lee Oct 2010 A1
20100274753 Liberty et al. Oct 2010 A1
20100277579 Cho et al. Nov 2010 A1
20100278320 Arsenault et al. Nov 2010 A1
20100278453 King Nov 2010 A1
20100280983 Cho et al. Nov 2010 A1
20100281034 Petrou et al. Nov 2010 A1
20100286984 Wandinger et al. Nov 2010 A1
20100286985 Kennewick et al. Nov 2010 A1
20100287514 Cragun et al. Nov 2010 A1
20100290632 Lin Nov 2010 A1
20100293460 Budelli Nov 2010 A1
20100295645 Falldin et al. Nov 2010 A1
20100299133 Kopparapu et al. Nov 2010 A1
20100299138 Kim Nov 2010 A1
20100299142 Freeman et al. Nov 2010 A1
20100302056 Dutton et al. Dec 2010 A1
20100304342 Zilber Dec 2010 A1
20100304705 Hursey et al. Dec 2010 A1
20100305807 Basir et al. Dec 2010 A1
20100305947 Schwarz et al. Dec 2010 A1
20100312547 Van Os et al. Dec 2010 A1
20100312566 Odinak et al. Dec 2010 A1
20100318366 Sullivan et al. Dec 2010 A1
20100318576 Kim Dec 2010 A1
20100322438 Siotis Dec 2010 A1
20100324709 Starmen Dec 2010 A1
20100324895 Kurzweil et al. Dec 2010 A1
20100324896 Attwater et al. Dec 2010 A1
20100324905 Kurzweil et al. Dec 2010 A1
20100325131 Dumais et al. Dec 2010 A1
20100325158 Oral et al. Dec 2010 A1
20100325573 Estrada et al. Dec 2010 A1
20100325588 Reddy et al. Dec 2010 A1
20100330908 Maddern et al. Dec 2010 A1
20100332003 Yaguez Dec 2010 A1
20100332220 Hursey et al. Dec 2010 A1
20100332224 Mäkelä et al. Dec 2010 A1
20100332235 David Dec 2010 A1
20100332236 Tan Dec 2010 A1
20100332280 Bradley et al. Dec 2010 A1
20100332348 Cao Dec 2010 A1
20100332428 Mchenry et al. Dec 2010 A1
20100332976 Fux et al. Dec 2010 A1
20100333030 Johns Dec 2010 A1
20100333163 Daly Dec 2010 A1
20110002487 Panther et al. Jan 2011 A1
20110004475 Bellegarda Jan 2011 A1
20110006876 Moberg et al. Jan 2011 A1
20110009107 Guba et al. Jan 2011 A1
20110010178 Lee et al. Jan 2011 A1
20110010644 Merrill et al. Jan 2011 A1
20110015928 Odell et al. Jan 2011 A1
20110016150 Engstrom et al. Jan 2011 A1
20110016421 Krupka et al. Jan 2011 A1
20110018695 Bells et al. Jan 2011 A1
20110021211 Ohki Jan 2011 A1
20110021213 Carr Jan 2011 A1
20110022292 Shen Jan 2011 A1
20110022388 Wu et al. Jan 2011 A1
20110022393 Waller et al. Jan 2011 A1
20110022394 Wide et al. Jan 2011 A1
20110022472 Zon et al. Jan 2011 A1
20110022952 Wu et al. Jan 2011 A1
20110029616 Wang et al. Feb 2011 A1
20110030067 Wilson Feb 2011 A1
20110033064 Johnson et al. Feb 2011 A1
20110034183 Haag et al. Feb 2011 A1
20110035144 Okamoto et al. Feb 2011 A1
20110035434 Lockwood Feb 2011 A1
20110038489 Visser et al. Feb 2011 A1
20110039584 Merrett Feb 2011 A1
20110040707 Theisen et al. Feb 2011 A1
20110045841 Kuhlke et al. Feb 2011 A1
20110047072 Ciurea Feb 2011 A1
20110047149 Vaananen Feb 2011 A1
20110047161 Myaeng et al. Feb 2011 A1
20110047266 Yu et al. Feb 2011 A1
20110047605 Sontag et al. Feb 2011 A1
20110050591 Kim et al. Mar 2011 A1
20110050592 Kim et al. Mar 2011 A1
20110054647 Chipchase Mar 2011 A1
20110054894 Phillips et al. Mar 2011 A1
20110054901 Qin et al. Mar 2011 A1
20110055256 Phillips et al. Mar 2011 A1
20110060584 Ferrucci et al. Mar 2011 A1
20110060587 Phillips et al. Mar 2011 A1
20110060589 Weinberg et al. Mar 2011 A1
20110060807 Martin et al. Mar 2011 A1
20110060812 Middleton Mar 2011 A1
20110064387 Mendeloff et al. Mar 2011 A1
20110065456 Brennan et al. Mar 2011 A1
20110066366 Ellanti et al. Mar 2011 A1
20110066436 Bezar Mar 2011 A1
20110066468 Huang et al. Mar 2011 A1
20110066634 Phillips et al. Mar 2011 A1
20110072033 White et al. Mar 2011 A1
20110072492 Mohler et al. Mar 2011 A1
20110076994 Kim et al. Mar 2011 A1
20110077943 Miki et al. Mar 2011 A1
20110080260 Wang et al. Apr 2011 A1
20110081889 Gao et al. Apr 2011 A1
20110082688 Kim et al. Apr 2011 A1
20110083079 Farrell et al. Apr 2011 A1
20110087491 Wittenstein et al. Apr 2011 A1
20110087685 Lin et al. Apr 2011 A1
20110090078 Kim et al. Apr 2011 A1
20110092187 Miller Apr 2011 A1
20110093261 Angott Apr 2011 A1
20110093265 Stent et al. Apr 2011 A1
20110093271 Bernard et al. Apr 2011 A1
20110093272 Isobe et al. Apr 2011 A1
20110099000 Rai et al. Apr 2011 A1
20110099157 Lebeau et al. Apr 2011 A1
20110102161 Heubel May 2011 A1
20110103682 Chidlovskii et al. May 2011 A1
20110105097 Tadayon et al. May 2011 A1
20110106736 Aharonson et al. May 2011 A1
20110106892 Nelson et al. May 2011 A1
20110110502 Daye et al. May 2011 A1
20110111724 Baptiste May 2011 A1
20110112825 Bellegarda May 2011 A1
20110112827 Kennewick et al. May 2011 A1
20110112837 Kurki-Suonio et al. May 2011 A1
20110112838 Adibi May 2011 A1
20110112921 Kennewick et al. May 2011 A1
20110116610 Shaw et al. May 2011 A1
20110119049 Ylonen May 2011 A1
20110119051 Li et al. May 2011 A1
20110119623 Kim May 2011 A1
20110119715 Chang et al. May 2011 A1
20110123004 Chang et al. May 2011 A1
20110125498 Pickering et al. May 2011 A1
20110125540 Jang et al. May 2011 A1
20110125701 Nair et al. May 2011 A1
20110130958 Stahl et al. Jun 2011 A1
20110131036 DiCristo et al. Jun 2011 A1
20110131038 Oyaizu et al. Jun 2011 A1
20110131045 Cristo et al. Jun 2011 A1
20110137636 Srihari et al. Jun 2011 A1
20110137664 Kilo et al. Jun 2011 A1
20110141141 Kankainen Jun 2011 A1
20110143726 de Silva Jun 2011 A1
20110143811 Rodriguez Jun 2011 A1
20110144857 Wingrove et al. Jun 2011 A1
20110144901 Wang Jun 2011 A1
20110144973 Bocchieri et al. Jun 2011 A1
20110144999 Jang et al. Jun 2011 A1
20110145718 Ketola et al. Jun 2011 A1
20110151830 Blanda et al. Jun 2011 A1
20110153209 Geelen Jun 2011 A1
20110153322 Kwak et al. Jun 2011 A1
20110153324 Ballinger et al. Jun 2011 A1
20110153329 Moorer Jun 2011 A1
20110153330 Yazdani et al. Jun 2011 A1
20110153373 Dantzig et al. Jun 2011 A1
20110154193 Creutz et al. Jun 2011 A1
20110157029 Tseng Jun 2011 A1
20110161072 Terao et al. Jun 2011 A1
20110161076 Davis et al. Jun 2011 A1
20110161079 Gruhn et al. Jun 2011 A1
20110161309 Lung et al. Jun 2011 A1
20110161852 Vainio et al. Jun 2011 A1
20110166851 LeBeau et al. Jul 2011 A1
20110166855 Vermeulen et al. Jul 2011 A1
20110167350 Hoellwarth Jul 2011 A1
20110175810 Markovic et al. Jul 2011 A1
20110178804 Inoue et al. Jul 2011 A1
20110179002 Dumitru et al. Jul 2011 A1
20110179372 Moore et al. Jul 2011 A1
20110183627 Ueda et al. Jul 2011 A1
20110183650 Mckee et al. Jul 2011 A1
20110184721 Subramanian et al. Jul 2011 A1
20110184730 LeBeau et al. Jul 2011 A1
20110184736 Slotznick Jul 2011 A1
20110184737 Nakano et al. Jul 2011 A1
20110184768 Norton et al. Jul 2011 A1
20110185288 Gupta et al. Jul 2011 A1
20110191108 Friedlander Aug 2011 A1
20110191271 Baker et al. Aug 2011 A1
20110191344 Jin et al. Aug 2011 A1
20110195758 Damale et al. Aug 2011 A1
20110196670 Dang et al. Aug 2011 A1
20110197128 Assadollahi et al. Aug 2011 A1
20110199312 Okuta Aug 2011 A1
20110201385 Higginbotham et al. Aug 2011 A1
20110201387 Paek et al. Aug 2011 A1
20110202526 Lee et al. Aug 2011 A1
20110205149 Tom et al. Aug 2011 A1
20110208511 Sikstrom et al. Aug 2011 A1
20110208524 Haughay Aug 2011 A1
20110209088 Hinckley et al. Aug 2011 A1
20110212717 Rhoads et al. Sep 2011 A1
20110216093 Griffin Sep 2011 A1
20110218806 Alewine et al. Sep 2011 A1
20110218855 Cao et al. Sep 2011 A1
20110219018 Bailey et al. Sep 2011 A1
20110223893 Lau et al. Sep 2011 A1
20110224972 Millett et al. Sep 2011 A1
20110228913 Cochinwala et al. Sep 2011 A1
20110231182 Weider et al. Sep 2011 A1
20110231184 Kerr Sep 2011 A1
20110231188 Kennewick et al. Sep 2011 A1
20110231218 Tovar Sep 2011 A1
20110231432 Sata et al. Sep 2011 A1
20110231474 Locker et al. Sep 2011 A1
20110238191 Kristjansson et al. Sep 2011 A1
20110238407 Kent Sep 2011 A1
20110238408 Larcheveque et al. Sep 2011 A1
20110238676 Liu et al. Sep 2011 A1
20110239111 Grover Sep 2011 A1
20110242007 Gray et al. Oct 2011 A1
20110244888 Ohki Oct 2011 A1
20110246471 Rakib et al. Oct 2011 A1
20110249144 Chang Oct 2011 A1
20110250570 Mack et al. Oct 2011 A1
20110257966 Rychlik Oct 2011 A1
20110258188 Abdalmageed et al. Oct 2011 A1
20110260829 Lee Oct 2011 A1
20110260861 Singh et al. Oct 2011 A1
20110264643 Cao Oct 2011 A1
20110264999 Bells et al. Oct 2011 A1
20110274303 Filson et al. Nov 2011 A1
20110276595 Kirkland et al. Nov 2011 A1
20110276598 Kozempel Nov 2011 A1
20110276944 Bergman et al. Nov 2011 A1
20110279368 Klein et al. Nov 2011 A1
20110280143 Li et al. Nov 2011 A1
20110282663 Talwar et al. Nov 2011 A1
20110282888 Koperski et al. Nov 2011 A1
20110282906 Wong Nov 2011 A1
20110283189 McCarty Nov 2011 A1
20110283866 Rasmussen Nov 2011 A1
20110288852 Dymetman et al. Nov 2011 A1
20110288855 Roy Nov 2011 A1
20110288861 Kurzweil et al. Nov 2011 A1
20110288863 Rasmussen Nov 2011 A1
20110298585 Barry Dec 2011 A1
20110301943 Patch Dec 2011 A1
20110302162 Xiao et al. Dec 2011 A1
20110302645 Headley Dec 2011 A1
20110306426 Novak et al. Dec 2011 A1
20110307241 Waibel et al. Dec 2011 A1
20110307254 Hunt et al. Dec 2011 A1
20110307491 Fisk et al. Dec 2011 A1
20110307810 Hilerio et al. Dec 2011 A1
20110313775 Laligand et al. Dec 2011 A1
20110313803 Friend et al. Dec 2011 A1
20110314003 Ju et al. Dec 2011 A1
20110314032 Bennett et al. Dec 2011 A1
20110314404 Kotler et al. Dec 2011 A1
20110314539 Horton Dec 2011 A1
20110320187 Motik et al. Dec 2011 A1
20120002820 Leichter Jan 2012 A1
20120005602 Anttila et al. Jan 2012 A1
20120008754 Mukherjee et al. Jan 2012 A1
20120010886 Razavilar Jan 2012 A1
20120011138 Dunning et al. Jan 2012 A1
20120013609 Reponen et al. Jan 2012 A1
20120015629 Olsen et al. Jan 2012 A1
20120016658 Wu et al. Jan 2012 A1
20120016678 Gruber et al. Jan 2012 A1
20120019400 Patel et al. Jan 2012 A1
20120020490 Leichter Jan 2012 A1
20120022787 LeBeau et al. Jan 2012 A1
20120022857 Baldwin et al. Jan 2012 A1
20120022860 Lloyd et al. Jan 2012 A1
20120022868 LeBeau et al. Jan 2012 A1
20120022869 Lloyd et al. Jan 2012 A1
20120022870 Kristjansson et al. Jan 2012 A1
20120022872 Gruber et al. Jan 2012 A1
20120022874 Lloyd et al. Jan 2012 A1
20120022876 LeBeau et al. Jan 2012 A1
20120022967 Bachman et al. Jan 2012 A1
20120023088 Cheng et al. Jan 2012 A1
20120023095 Wadycki et al. Jan 2012 A1
20120023462 Rosing et al. Jan 2012 A1
20120029661 Jones et al. Feb 2012 A1
20120029910 Medlock et al. Feb 2012 A1
20120034904 LeBeau et al. Feb 2012 A1
20120035907 Lebeau et al. Feb 2012 A1
20120035908 Lebeau et al. Feb 2012 A1
20120035924 Jitkoff et al. Feb 2012 A1
20120035925 Friend et al. Feb 2012 A1
20120035926 Ambler Feb 2012 A1
20120035931 LeBeau et al. Feb 2012 A1
20120035932 Jitkoff et al. Feb 2012 A1
20120035935 Park et al. Feb 2012 A1
20120036556 LeBeau et al. Feb 2012 A1
20120039539 Boiman et al. Feb 2012 A1
20120041752 Wang et al. Feb 2012 A1
20120041756 Hanazawa et al. Feb 2012 A1
20120042014 Desai et al. Feb 2012 A1
20120042343 Laligand et al. Feb 2012 A1
20120053815 Montanan et al. Mar 2012 A1
20120053829 Agarwal et al. Mar 2012 A1
20120053945 Gupta et al. Mar 2012 A1
20120056815 Mehra Mar 2012 A1
20120059655 Cartales Mar 2012 A1
20120059813 Sejnoha et al. Mar 2012 A1
20120060052 White et al. Mar 2012 A1
20120062473 Xiao et al. Mar 2012 A1
20120066212 Jennings Mar 2012 A1
20120066581 Spalink Mar 2012 A1
20120073611 Soltani et al. Mar 2012 A1
20120075054 Ge et al. Mar 2012 A1
20120077479 Sabotta et al. Mar 2012 A1
20120078624 Yook et al. Mar 2012 A1
20120078627 Wagner Mar 2012 A1
20120078635 Rothkopf et al. Mar 2012 A1
20120078747 Chakrabarti et al. Mar 2012 A1
20120082317 Pance et al. Apr 2012 A1
20120083286 Kim et al. Apr 2012 A1
20120084086 Gilbert et al. Apr 2012 A1
20120084634 Wong et al. Apr 2012 A1
20120088219 Briscoe et al. Apr 2012 A1
20120089331 Schmidt et al. Apr 2012 A1
20120101823 Weng et al. Apr 2012 A1
20120108166 Hymel May 2012 A1
20120108221 Thomas et al. May 2012 A1
20120109997 Sparks et al. May 2012 A1
20120110456 Larco et al. May 2012 A1
20120116770 Chen et al. May 2012 A1
20120117499 Mori et al. May 2012 A1
20120124126 Alcazar et al. May 2012 A1
20120124177 Sparks May 2012 A1
20120124178 Sparks May 2012 A1
20120128322 Shaffer et al. May 2012 A1
20120130709 Bocchieri et al. May 2012 A1
20120136572 Norton May 2012 A1
20120136649 Freising et al. May 2012 A1
20120136855 Ni et al. May 2012 A1
20120136985 Popescu et al. May 2012 A1
20120137367 Dupont et al. May 2012 A1
20120149342 Cohen et al. Jun 2012 A1
20120149394 Singh et al. Jun 2012 A1
20120150544 McLoughlin et al. Jun 2012 A1
20120150580 Norton Jun 2012 A1
20120158293 Burnham Jun 2012 A1
20120158399 Tremblay et al. Jun 2012 A1
20120158422 Burnham et al. Jun 2012 A1
20120159380 Kocienda et al. Jun 2012 A1
20120163710 Skaff et al. Jun 2012 A1
20120166196 Ju et al. Jun 2012 A1
20120166959 Hilerio et al. Jun 2012 A1
20120173222 Wang et al. Jul 2012 A1
20120173244 Kwak et al. Jul 2012 A1
20120173464 Tur et al. Jul 2012 A1
20120174121 Treat et al. Jul 2012 A1
20120179457 Newman et al. Jul 2012 A1
20120179467 Williams Jul 2012 A1
20120185237 Gajic et al. Jul 2012 A1
20120185480 Ni et al. Jul 2012 A1
20120185781 Guzman et al. Jul 2012 A1
20120191461 Lin et al. Jul 2012 A1
20120192096 Bowman et al. Jul 2012 A1
20120197743 Grigg et al. Aug 2012 A1
20120197995 Caruso Aug 2012 A1
20120197998 Kessel et al. Aug 2012 A1
20120201362 Crossan et al. Aug 2012 A1
20120209654 Romagnino et al. Aug 2012 A1
20120209853 Desai et al. Aug 2012 A1
20120209874 Wong et al. Aug 2012 A1
20120210266 Jiang et al. Aug 2012 A1
20120214141 Raya et al. Aug 2012 A1
20120214517 Singh et al. Aug 2012 A1
20120215762 Hall et al. Aug 2012 A1
20120221339 Wang et al. Aug 2012 A1
20120221552 Reponen et al. Aug 2012 A1
20120223889 Medlock et al. Sep 2012 A1
20120223936 Aughey et al. Sep 2012 A1
20120232885 Barbosa et al. Sep 2012 A1
20120232886 Capuozzo et al. Sep 2012 A1
20120232906 Lindahl et al. Sep 2012 A1
20120233207 Mohajer Sep 2012 A1
20120233266 Hassan et al. Sep 2012 A1
20120239661 Giblin Sep 2012 A1
20120239761 Linner et al. Sep 2012 A1
20120242482 Elumalai et al. Sep 2012 A1
20120245719 Story, Jr. et al. Sep 2012 A1
20120245939 Braho et al. Sep 2012 A1
20120245941 Cheyer Sep 2012 A1
20120245944 Gruber et al. Sep 2012 A1
20120246064 Balkow Sep 2012 A1
20120250858 Iqbal et al. Oct 2012 A1
20120252367 Gaglio et al. Oct 2012 A1
20120252540 Kirigaya Oct 2012 A1
20120253785 Hamid et al. Oct 2012 A1
20120253791 Heck et al. Oct 2012 A1
20120254143 Varma et al. Oct 2012 A1
20120254152 Park et al. Oct 2012 A1
20120254290 Naaman Oct 2012 A1
20120259615 Morin et al. Oct 2012 A1
20120262296 Bezar Oct 2012 A1
20120265482 Grokop et al. Oct 2012 A1
20120265528 Gruber et al. Oct 2012 A1
20120265535 Bryant-Rich et al. Oct 2012 A1
20120265806 Blanchflower et al. Oct 2012 A1
20120271625 Bernard Oct 2012 A1
20120271634 Lenke Oct 2012 A1
20120271635 Ljolje Oct 2012 A1
20120271640 Basir Oct 2012 A1
20120271676 Aravamudan et al. Oct 2012 A1
20120275377 Lehane et al. Nov 2012 A1
20120278744 Kozitsyn et al. Nov 2012 A1
20120284015 Drewes Nov 2012 A1
20120284027 Mallett et al. Nov 2012 A1
20120290291 Shelley et al. Nov 2012 A1
20120290300 Lee et al. Nov 2012 A1
20120295708 Hernandez-Abrego et al. Nov 2012 A1
20120296638 Patwa Nov 2012 A1
20120296649 Bansal et al. Nov 2012 A1
20120296654 Hendrickson et al. Nov 2012 A1
20120296891 Rangan Nov 2012 A1
20120297348 Santoro Nov 2012 A1
20120303369 Brush et al. Nov 2012 A1
20120303371 Labsky et al. Nov 2012 A1
20120304124 Chen et al. Nov 2012 A1
20120309363 Gruber et al. Dec 2012 A1
20120310642 Cao et al. Dec 2012 A1
20120310649 Cannistraro et al. Dec 2012 A1
20120310652 O'Sullivan Dec 2012 A1
20120310922 Johnson et al. Dec 2012 A1
20120311478 Van Os et al. Dec 2012 A1
20120311583 Gruber et al. Dec 2012 A1
20120311584 Gruber et al. Dec 2012 A1
20120311585 Gruber et al. Dec 2012 A1
20120316862 Sultan et al. Dec 2012 A1
20120316875 Nyquist et al. Dec 2012 A1
20120316878 Singleton et al. Dec 2012 A1
20120317194 Tian Dec 2012 A1
20120317498 Logan et al. Dec 2012 A1
20120321112 Schubert et al. Dec 2012 A1
20120324391 Tocci et al. Dec 2012 A1
20120327009 Fleizach Dec 2012 A1
20120329529 van der Raadt Dec 2012 A1
20120330660 Jaiswal Dec 2012 A1
20120330661 Lindahl Dec 2012 A1
20120330990 Chen et al. Dec 2012 A1
20130002716 Walker et al. Jan 2013 A1
20130005405 Prociw Jan 2013 A1
20130006633 Grokop et al. Jan 2013 A1
20130006637 Kanevsky et al. Jan 2013 A1
20130006638 Lindahl Jan 2013 A1
20130007240 Qiu et al. Jan 2013 A1
20130007648 Gamon et al. Jan 2013 A1
20130009858 Lacey Jan 2013 A1
20130010575 He et al. Jan 2013 A1
20130013313 Shechtman et al. Jan 2013 A1
20130013319 Grant et al. Jan 2013 A1
20130014026 Beringer et al. Jan 2013 A1
20130018659 Chi Jan 2013 A1
20130024576 Dishneau et al. Jan 2013 A1
20130027875 Zhu et al. Jan 2013 A1
20130030787 Cancedda et al. Jan 2013 A1
20130030789 Dalce Jan 2013 A1
20130030804 Zavaliagko et al. Jan 2013 A1
20130030815 Madhvanath et al. Jan 2013 A1
20130030913 Zhu et al. Jan 2013 A1
20130030955 David Jan 2013 A1
20130031162 Willis et al. Jan 2013 A1
20130031476 Coin et al. Jan 2013 A1
20130033643 Kim et al. Feb 2013 A1
20130035086 Chardon et al. Feb 2013 A1
20130035942 Kim et al. Feb 2013 A1
20130035961 Yegnanarayanan Feb 2013 A1
20130041647 Ramerth et al. Feb 2013 A1
20130041654 Walker et al. Feb 2013 A1
20130041661 Lee et al. Feb 2013 A1
20130041665 Jang et al. Feb 2013 A1
20130041667 Longe et al. Feb 2013 A1
20130041968 Cohen et al. Feb 2013 A1
20130046544 Kay et al. Feb 2013 A1
20130050089 Neels Feb 2013 A1
20130054550 Bolohan Feb 2013 A1
20130054609 Rajput et al. Feb 2013 A1
20130054613 Bishop Feb 2013 A1
20130054675 Jenkins et al. Feb 2013 A1
20130054706 Graham et al. Feb 2013 A1
20130055099 Yao et al. Feb 2013 A1
20130055147 Vasudev et al. Feb 2013 A1
20130063611 Papakipos Mar 2013 A1
20130066832 Sheehan et al. Mar 2013 A1
20130067307 Tian et al. Mar 2013 A1
20130073286 Bastea-Forte et al. Mar 2013 A1
20130073346 Chun et al. Mar 2013 A1
20130078930 Chen et al. Mar 2013 A1
20130080152 Brun et al. Mar 2013 A1
20130080162 Chang et al. Mar 2013 A1
20130080167 Mozer Mar 2013 A1
20130080177 Chen Mar 2013 A1
20130080251 Dempski Mar 2013 A1
20130082967 Hillis et al. Apr 2013 A1
20130085755 Bringert et al. Apr 2013 A1
20130085761 Bringert et al. Apr 2013 A1
20130090921 Liu et al. Apr 2013 A1
20130091090 Spivack et al. Apr 2013 A1
20130095805 Lebeau et al. Apr 2013 A1
20130096909 Brun et al. Apr 2013 A1
20130096917 Edgar et al. Apr 2013 A1
20130097566 Berglund Apr 2013 A1
20130097682 Zeljkovic et al. Apr 2013 A1
20130100268 Mihailidis et al. Apr 2013 A1
20130103391 Millmore et al. Apr 2013 A1
20130103405 Namba et al. Apr 2013 A1
20130106742 Lee et al. May 2013 A1
20130110505 Gruber et al. May 2013 A1
20130110515 Guzzoni et al. May 2013 A1
20130110518 Gruber et al. May 2013 A1
20130110519 Cheyer et al. May 2013 A1
20130110520 Cheyer et al. May 2013 A1
20130110943 Menon et al. May 2013 A1
20130111330 Staikos et al. May 2013 A1
20130111348 Gruber et al. May 2013 A1
20130111365 Chen et al. May 2013 A1
20130111487 Cheyer et al. May 2013 A1
20130111581 Griffin et al. May 2013 A1
20130115927 Gruber et al. May 2013 A1
20130117022 Chen et al. May 2013 A1
20130124189 Baldwin et al. May 2013 A1
20130125168 Agnihotri et al. May 2013 A1
20130132084 Stonehocker et al. May 2013 A1
20130132089 Fanty et al. May 2013 A1
20130132871 Zeng et al. May 2013 A1
20130141551 Kim Jun 2013 A1
20130142317 Reynolds Jun 2013 A1
20130142345 Waldmann Jun 2013 A1
20130144594 Bangalore et al. Jun 2013 A1
20130144616 Bangalore et al. Jun 2013 A1
20130151339 Kim et al. Jun 2013 A1
20130152092 Yadgar et al. Jun 2013 A1
20130154811 Ferren et al. Jun 2013 A1
20130157629 Lee et al. Jun 2013 A1
20130158977 Senior Jun 2013 A1
20130159847 Banke et al. Jun 2013 A1
20130165232 Nelson et al. Jun 2013 A1
20130166303 Chancg et al. Jun 2013 A1
20130166442 Nakajima et al. Jun 2013 A1
20130170738 Capuozzo et al. Jul 2013 A1
20130172022 Seymour et al. Jul 2013 A1
20130173258 Liu et al. Jul 2013 A1
20130174034 Brown et al. Jul 2013 A1
20130176244 Yamamoto et al. Jul 2013 A1
20130176592 Sasaki Jul 2013 A1
20130179172 Nakamura et al. Jul 2013 A1
20130179440 Gordon Jul 2013 A1
20130183944 Mozer et al. Jul 2013 A1
20130185059 Riccardi et al. Jul 2013 A1
20130185074 Gruber et al. Jul 2013 A1
20130185081 Cheyer et al. Jul 2013 A1
20130185336 Singh et al. Jul 2013 A1
20130187850 Schulz et al. Jul 2013 A1
20130187857 Griffin et al. Jul 2013 A1
20130191117 Atti et al. Jul 2013 A1
20130197911 Wei et al. Aug 2013 A1
20130204813 Master et al. Aug 2013 A1
20130204897 McDougall Aug 2013 A1
20130207898 Sullivan et al. Aug 2013 A1
20130218553 Fujii et al. Aug 2013 A1
20130218560 Hsiao et al. Aug 2013 A1
20130219333 Palwe et al. Aug 2013 A1
20130222249 Pasquero et al. Aug 2013 A1
20130225128 Gomar Aug 2013 A1
20130226935 Bal et al. Aug 2013 A1
20130231917 Naik Sep 2013 A1
20130233326 Kim et al. Sep 2013 A1
20130234947 Kristensson et al. Sep 2013 A1
20130235987 Arroniz-Escobar et al. Sep 2013 A1
20130238647 Thompson Sep 2013 A1
20130244615 Miller et al. Sep 2013 A1
20130246048 Nagase et al. Sep 2013 A1
20130246050 Yu et al. Sep 2013 A1
20130246329 Pasquero et al. Sep 2013 A1
20130253911 Petri et al. Sep 2013 A1
20130253912 Medlock et al. Sep 2013 A1
20130268263 Park et al. Oct 2013 A1
20130275117 Winer Oct 2013 A1
20130275138 Gruber et al. Oct 2013 A1
20130275164 Gruber et al. Oct 2013 A1
20130275199 Proctor, Jr. et al. Oct 2013 A1
20130275625 Taivalsaari et al. Oct 2013 A1
20130275875 Gruber et al. Oct 2013 A1
20130275899 Schubert et al. Oct 2013 A1
20130282709 Zhu et al. Oct 2013 A1
20130283168 Brown et al. Oct 2013 A1
20130285913 Griffin et al. Oct 2013 A1
20130289991 Eshwar et al. Oct 2013 A1
20130289993 Rao et al. Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130291015 Pan Oct 2013 A1
20130297317 Lee et al. Nov 2013 A1
20130297319 Kim Nov 2013 A1
20130297348 Cardoza et al. Nov 2013 A1
20130300645 Fedorov Nov 2013 A1
20130300648 Kim et al. Nov 2013 A1
20130303106 Martin Nov 2013 A1
20130304479 Teller et al. Nov 2013 A1
20130304758 Gruber et al. Nov 2013 A1
20130304815 Puente et al. Nov 2013 A1
20130305119 Kern et al. Nov 2013 A1
20130307855 Lamb et al. Nov 2013 A1
20130307997 O'Keefe et al. Nov 2013 A1
20130308922 Sano et al. Nov 2013 A1
20130311184 Badavne et al. Nov 2013 A1
20130311997 Gruber et al. Nov 2013 A1
20130316746 Miller et al. Nov 2013 A1
20130322634 Bennett et al. Dec 2013 A1
20130325436 Wang et al. Dec 2013 A1
20130325443 Begeja et al. Dec 2013 A1
20130325447 Levien et al. Dec 2013 A1
20130325448 Levien et al. Dec 2013 A1
20130325481 Van Os et al. Dec 2013 A1
20130325484 Chakladar et al. Dec 2013 A1
20130325967 Parks et al. Dec 2013 A1
20130325970 Roberts et al. Dec 2013 A1
20130325979 Mansfield et al. Dec 2013 A1
20130328809 Smith Dec 2013 A1
20130329023 Suplee, III et al. Dec 2013 A1
20130331127 Sabatelli et al. Dec 2013 A1
20130332159 Federighi et al. Dec 2013 A1
20130332162 Keen Dec 2013 A1
20130332164 Nalk Dec 2013 A1
20130332168 Kim et al. Dec 2013 A1
20130332172 Prakash et al. Dec 2013 A1
20130332400 González Dec 2013 A1
20130339256 Shroff Dec 2013 A1
20130343721 Abecassis Dec 2013 A1
20130346068 Solem et al. Dec 2013 A1
20130346347 Patterson et al. Dec 2013 A1
20130347117 Parks et al. Dec 2013 A1
20140006012 Zhou et al. Jan 2014 A1
20140006025 Krishnan et al. Jan 2014 A1
20140006027 Kim et al. Jan 2014 A1
20140006030 Fleizach et al. Jan 2014 A1
20140006153 Thangam et al. Jan 2014 A1
20140006483 Garmark et al. Jan 2014 A1
20140006947 Garmark et al. Jan 2014 A1
20140012574 Pasupalak et al. Jan 2014 A1
20140012580 Ganong et al. Jan 2014 A1
20140012586 Rubin et al. Jan 2014 A1
20140012587 Park Jan 2014 A1
20140019116 Lundberg et al. Jan 2014 A1
20140019133 Bao et al. Jan 2014 A1
20140019460 Sambrani et al. Jan 2014 A1
20140028735 Williams et al. Jan 2014 A1
20140032453 Eustice et al. Jan 2014 A1
20140033071 Gruber et al. Jan 2014 A1
20140035823 Khoe et al. Feb 2014 A1
20140039888 Taubman et al. Feb 2014 A1
20140039893 Weiner Feb 2014 A1
20140039894 Shostak Feb 2014 A1
20140040274 Aravamudan et al. Feb 2014 A1
20140040748 Lemay et al. Feb 2014 A1
20140040801 Patel Feb 2014 A1
20140040918 Li et al. Feb 2014 A1
20140046934 Zhou et al. Feb 2014 A1
20140047001 Phillips et al. Feb 2014 A1
20140052680 Nitz et al. Feb 2014 A1
20140052791 Chakra et al. Feb 2014 A1
20140053082 Park et al. Feb 2014 A1
20140053210 Cheong et al. Feb 2014 A1
20140057610 Olincy et al. Feb 2014 A1
20140059030 Hakkani-Tur et al. Feb 2014 A1
20140067361 Nikoulina et al. Mar 2014 A1
20140067371 Liensberger Mar 2014 A1
20140067402 Kim Mar 2014 A1
20140068751 Last et al. Mar 2014 A1
20140074454 Brown et al. Mar 2014 A1
20140074466 Sharifi et al. Mar 2014 A1
20140074470 Jansche et al. Mar 2014 A1
20140074472 Lin et al. Mar 2014 A1
20140074483 Van Os Mar 2014 A1
20140074815 Plimton Mar 2014 A1
20140078065 Akkok et al. Mar 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140080428 Rhoads et al. Mar 2014 A1
20140081619 Solntseva et al. Mar 2014 A1
20140081633 Badaskar et al. Mar 2014 A1
20140082501 Bae et al. Mar 2014 A1
20140086458 Rogers et al. Mar 2014 A1
20140087711 Geyer et al. Mar 2014 A1
20140088961 Woodward et al. Mar 2014 A1
20140095171 Lynch et al. Apr 2014 A1
20140095172 Cabaco et al. Apr 2014 A1
20140095173 Lynch et al. Apr 2014 A1
20140096209 Saraf et al. Apr 2014 A1
20140098247 Rao et al. Apr 2014 A1
20140108017 Mason et al. Apr 2014 A1
20140114554 Lagassey Apr 2014 A1
20140115062 Liu et al. Apr 2014 A1
20140115114 Garmark et al. Apr 2014 A1
20140118155 Bowers et al. May 2014 A1
20140122059 Patel et al. May 2014 A1
20140122086 Kapur et al. May 2014 A1
20140122136 Jayanthi May 2014 A1
20140122153 Truitt May 2014 A1
20140131865 Koganei et al. May 2014 A1
20140132935 Kim et al. May 2014 A1
20140134983 Jung et al. May 2014 A1
20140135036 Bonanni et al. May 2014 A1
20140136187 Wolverton et al. May 2014 A1
20140136195 Abdossalami et al. May 2014 A1
20140136212 Kwon et al. May 2014 A1
20140136946 Matas May 2014 A1
20140136987 Rodriguez May 2014 A1
20140142922 Liang et al. May 2014 A1
20140142923 Jones et al. May 2014 A1
20140142935 Lindahl et al. May 2014 A1
20140142953 Kim May 2014 A1
20140143550 Ganong, III et al. May 2014 A1
20140143721 Suzuki et al. May 2014 A1
20140146200 Scott et al. May 2014 A1
20140152577 Yuen et al. Jun 2014 A1
20140153709 Byrd et al. Jun 2014 A1
20140154533 Lynch et al. Jun 2014 A1
20140155031 Lee et al. Jun 2014 A1
20140156262 Yuen Jun 2014 A1
20140156279 Okamoto et al. Jun 2014 A1
20140157422 Livshits et al. Jun 2014 A1
20140163951 Nikoulina et al. Jun 2014 A1
20140163953 Parikh Jun 2014 A1
20140163954 Joshi et al. Jun 2014 A1
20140163962 Castelli et al. Jun 2014 A1
20140163976 Park et al. Jun 2014 A1
20140163977 Hoffmeister et al. Jun 2014 A1
20140163981 Cook et al. Jun 2014 A1
20140163995 Burns et al. Jun 2014 A1
20140164305 Lynch et al. Jun 2014 A1
20140164476 Thomson Jun 2014 A1
20140164532 Lynch et al. Jun 2014 A1
20140169795 Clough Jun 2014 A1
20140172878 Clark et al. Jun 2014 A1
20140173460 Kim Jun 2014 A1
20140176814 Ahn Jun 2014 A1
20140180499 Cooper et al. Jun 2014 A1
20140180689 Kim et al. Jun 2014 A1
20140180697 Torok et al. Jun 2014 A1
20140188477 Zhang Jul 2014 A1
20140195226 Yun et al. Jul 2014 A1
20140195230 Han et al. Jul 2014 A1
20140195233 Bapat Jul 2014 A1
20140195244 Cha et al. Jul 2014 A1
20140195251 Zeinstra et al. Jul 2014 A1
20140195252 Gruber et al. Jul 2014 A1
20140203939 Harrington et al. Jul 2014 A1
20140205076 Kumar et al. Jul 2014 A1
20140207439 Venkatapathy et al. Jul 2014 A1
20140207446 Klein et al. Jul 2014 A1
20140207466 Smadi et al. Jul 2014 A1
20140207468 Bartnik Jul 2014 A1
20140207582 Flinn et al. Jul 2014 A1
20140214429 Pantel Jul 2014 A1
20140214537 Yoo et al. Jul 2014 A1
20140218372 Missig et al. Aug 2014 A1
20140222436 Binder et al. Aug 2014 A1
20140222678 Sheets et al. Aug 2014 A1
20140223377 Shaw et al. Aug 2014 A1
20140223481 Fundament Aug 2014 A1
20140229184 Shires Aug 2014 A1
20140230055 Boehl Aug 2014 A1
20140232656 Pasquero et al. Aug 2014 A1
20140236595 Gray Aug 2014 A1
20140236986 Guzman Aug 2014 A1
20140237042 Ahmed et al. Aug 2014 A1
20140244248 Arisoy et al. Aug 2014 A1
20140244249 Mohamed et al. Aug 2014 A1
20140244254 Ju et al. Aug 2014 A1
20140244257 Colibro et al. Aug 2014 A1
20140244258 Song et al. Aug 2014 A1
20140244263 Pontual et al. Aug 2014 A1
20140244266 Brown et al. Aug 2014 A1
20140244268 Abdelsamie et al. Aug 2014 A1
20140244271 Lindahl Aug 2014 A1
20140244712 Walters et al. Aug 2014 A1
20140245140 Brown et al. Aug 2014 A1
20140247383 Dave et al. Sep 2014 A1
20140247926 Gainsboro et al. Sep 2014 A1
20140249817 Hart et al. Sep 2014 A1
20140249821 Kennewick et al. Sep 2014 A1
20140250046 Winn et al. Sep 2014 A1
20140257809 Goel et al. Sep 2014 A1
20140257815 Zhao et al. Sep 2014 A1
20140257902 Moore et al. Sep 2014 A1
20140258857 Dykstra-Erickson et al. Sep 2014 A1
20140267022 Kim Sep 2014 A1
20140267599 Drouin et al. Sep 2014 A1
20140272821 Pitschel et al. Sep 2014 A1
20140274005 Luna et al. Sep 2014 A1
20140274203 Ganong et al. Sep 2014 A1
20140274211 Sejnoha et al. Sep 2014 A1
20140278343 Tran Sep 2014 A1
20140278349 Grieves et al. Sep 2014 A1
20140278379 Coccaro et al. Sep 2014 A1
20140278390 Kingsbury et al. Sep 2014 A1
20140278391 Braho et al. Sep 2014 A1
20140278394 Bastyr et al. Sep 2014 A1
20140278406 Tsumura et al. Sep 2014 A1
20140278413 Pitschel et al. Sep 2014 A1
20140278429 Ganong, III Sep 2014 A1
20140278435 Ganong et al. Sep 2014 A1
20140278436 Khanna et al. Sep 2014 A1
20140278443 Gunn et al. Sep 2014 A1
20140278513 Prakash et al. Sep 2014 A1
20140280138 Li et al. Sep 2014 A1
20140280292 Skinder Sep 2014 A1
20140280353 Delaney et al. Sep 2014 A1
20140280450 Luna Sep 2014 A1
20140281983 Xian et al. Sep 2014 A1
20140282003 Gruber et al. Sep 2014 A1
20140282007 Fleizach Sep 2014 A1
20140282045 Ayanarn et al. Sep 2014 A1
20140282201 Pasquero et al. Sep 2014 A1
20140282203 Pasquero et al. Sep 2014 A1
20140282586 Shear et al. Sep 2014 A1
20140282743 Howard et al. Sep 2014 A1
20140288990 Moore et al. Sep 2014 A1
20140289508 Wang Sep 2014 A1
20140297267 Spencer et al. Oct 2014 A1
20140297281 Togawa et al. Oct 2014 A1
20140297284 Gruber et al. Oct 2014 A1
20140297288 Yu et al. Oct 2014 A1
20140304605 Ohmura et al. Oct 2014 A1
20140309996 Zhang Oct 2014 A1
20140310001 Kalns et al. Oct 2014 A1
20140310002 Nitz et al. Oct 2014 A1
20140316585 Boesveld et al. Oct 2014 A1
20140317030 Shen et al. Oct 2014 A1
20140317502 Brown et al. Oct 2014 A1
20140324884 Lindahl et al. Oct 2014 A1
20140330569 Kolavennu et al. Nov 2014 A1
20140337048 Brown et al. Nov 2014 A1
20140337266 Wolverton et al. Nov 2014 A1
20140337371 Li Nov 2014 A1
20140337438 Govande et al. Nov 2014 A1
20140337751 Um et al. Nov 2014 A1
20140337814 Kalns et al. Nov 2014 A1
20140342762 Hajdu et al. Nov 2014 A1
20140344627 Schaub et al. Nov 2014 A1
20140344687 Durrtarn et al. Nov 2014 A1
20140350924 Zurek et al. Nov 2014 A1
20140350933 Bak et al. Nov 2014 A1
20140351741 Medlock et al. Nov 2014 A1
20140351760 Skory et al. Nov 2014 A1
20140358519 Mirkin et al. Dec 2014 A1
20140358523 Sheth et al. Dec 2014 A1
20140361973 Raux et al. Dec 2014 A1
20140363074 Dolfing et al. Dec 2014 A1
20140364149 Marti et al. Dec 2014 A1
20140365209 Evermann Dec 2014 A1
20140365214 Bayley Dec 2014 A1
20140365216 Gruber et al. Dec 2014 A1
20140365226 Sinha Dec 2014 A1
20140365227 Cash et al. Dec 2014 A1
20140365407 Brown et al. Dec 2014 A1
20140365880 Bellegarda Dec 2014 A1
20140365885 Carson et al. Dec 2014 A1
20140365895 Paulson et al. Dec 2014 A1
20140365922 Yang Dec 2014 A1
20140370817 Luna Dec 2014 A1
20140370841 Roberts et al. Dec 2014 A1
20140372112 Xue et al. Dec 2014 A1
20140372356 Bilal et al. Dec 2014 A1
20140372931 Zhai et al. Dec 2014 A1
20140379334 Fry Dec 2014 A1
20140379341 Seo et al. Dec 2014 A1
20140380285 Gabel et al. Dec 2014 A1
20150003797 Schmidt Jan 2015 A1
20150006148 Goldszmit et al. Jan 2015 A1
20150006157 Andrade Silva et al. Jan 2015 A1
20150006176 Pogue et al. Jan 2015 A1
20150006178 Peng et al. Jan 2015 A1
20150006184 Marti et al. Jan 2015 A1
20150006199 Snider et al. Jan 2015 A1
20150012271 Peng et al. Jan 2015 A1
20150019219 Tzirkel-hancock et al. Jan 2015 A1
20150019221 Lee et al. Jan 2015 A1
20150019974 Doi et al. Jan 2015 A1
20150031416 Wells et al. Jan 2015 A1
20150033219 Breiner et al. Jan 2015 A1
20150033275 Natani et al. Jan 2015 A1
20150039292 Suleman et al. Feb 2015 A1
20150039299 Weinstein et al. Feb 2015 A1
20150039305 Huang Feb 2015 A1
20150039606 Salaka et al. Feb 2015 A1
20150040012 Faaborg et al. Feb 2015 A1
20150045003 Vora et al. Feb 2015 A1
20150045068 Soffer et al. Feb 2015 A1
20150046537 Rakib Feb 2015 A1
20150050633 Christmas et al. Feb 2015 A1
20150053779 Adamek et al. Feb 2015 A1
20150058013 Pakhomov et al. Feb 2015 A1
20150058018 Georges et al. Feb 2015 A1
20150058785 Ookawara Feb 2015 A1
20150065200 Namgung et al. Mar 2015 A1
20150066494 Salvador et al. Mar 2015 A1
20150066496 Deoras et al. Mar 2015 A1
20150066506 Romano et al. Mar 2015 A1
20150066516 Nishikawa et al. Mar 2015 A1
20150067485 Kim et al. Mar 2015 A1
20150067822 Randall Mar 2015 A1
20150071121 Patil et al. Mar 2015 A1
20150073788 Allauzen et al. Mar 2015 A1
20150073804 Senior et al. Mar 2015 A1
20150074524 Nicholson et al. Mar 2015 A1
20150074615 Han et al. Mar 2015 A1
20150082229 Ouyang et al. Mar 2015 A1
20150088511 Bharadwaj et al. Mar 2015 A1
20150088514 Typrin Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150088523 Schuster Mar 2015 A1
20150095031 Conkie et al. Apr 2015 A1
20150095278 Flinn et al. Apr 2015 A1
20150100316 Williams et al. Apr 2015 A1
20150100537 Grieves et al. Apr 2015 A1
20150100983 Pan Apr 2015 A1
20150106093 Weeks et al. Apr 2015 A1
20150113407 Hoffert et al. Apr 2015 A1
20150120723 Deshmukh et al. Apr 2015 A1
20150121216 Brown et al. Apr 2015 A1
20150127337 Heigold et al. May 2015 A1
20150127348 Follis May 2015 A1
20150127350 Agiomyrgiannakis May 2015 A1
20150133109 Freeman et al. May 2015 A1
20150134334 Sachidanandam et al. May 2015 A1
20150135085 Shoham et al. May 2015 A1
20150135123 Carr et al. May 2015 A1
20150142420 Sarikaya et al. May 2015 A1
20150142438 Dai et al. May 2015 A1
20150142447 Kennewick et al. May 2015 A1
20150142851 Gupta et al. May 2015 A1
20150148013 Baldwin et al. May 2015 A1
20150149177 Kalns et al. May 2015 A1
20150149182 Kalns et al. May 2015 A1
20150149354 Mccoy May 2015 A1
20150149469 Xu et al. May 2015 A1
20150154185 Waibel Jun 2015 A1
20150154976 Mutagi Jun 2015 A1
20150160855 Bi Jun 2015 A1
20150161370 North et al. Jun 2015 A1
20150161521 Shah et al. Jun 2015 A1
20150161989 Hsu et al. Jun 2015 A1
20150162001 Kar et al. Jun 2015 A1
20150163558 Wheatley Jun 2015 A1
20150169284 Quast et al. Jun 2015 A1
20150169336 Harper et al. Jun 2015 A1
20150170664 Doherty et al. Jun 2015 A1
20150172262 Ortiz, Jr. et al. Jun 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150178388 Winnemoeller et al. Jun 2015 A1
20150179176 Ryu et al. Jun 2015 A1
20150185964 Stout Jul 2015 A1
20150186012 Coleman et al. Jul 2015 A1
20150186110 Kannan Jul 2015 A1
20150186154 Brown et al. Jul 2015 A1
20150186155 Brown et al. Jul 2015 A1
20150186156 Brown et al. Jul 2015 A1
20150186351 Hicks et al. Jul 2015 A1
20150187355 Parkinson et al. Jul 2015 A1
20150187369 Dadu et al. Jul 2015 A1
20150189362 Lee et al. Jul 2015 A1
20150193379 Mehta Jul 2015 A1
20150193391 Khvostichenko et al. Jul 2015 A1
20150193392 Greenblatt et al. Jul 2015 A1
20150194152 Katuri et al. Jul 2015 A1
20150195379 Zhang et al. Jul 2015 A1
20150195606 McDevitt Jul 2015 A1
20150199077 Zuger et al. Jul 2015 A1
20150199960 Huo et al. Jul 2015 A1
20150199965 Leak et al. Jul 2015 A1
20150199967 Reddy et al. Jul 2015 A1
20150201064 Bells et al. Jul 2015 A1
20150201077 Konig et al. Jul 2015 A1
20150205858 Xie et al. Jul 2015 A1
20150208226 Kuusilinna et al. Jul 2015 A1
20150212791 Kumar et al. Jul 2015 A1
20150213796 Waltermann et al. Jul 2015 A1
20150220507 Mohajer et al. Aug 2015 A1
20150221304 Stewart Aug 2015 A1
20150221307 Shah et al. Aug 2015 A1
20150223274 Leppnen et al. Aug 2015 A1
20150227505 Morimoto Aug 2015 A1
20150227633 Shapira Aug 2015 A1
20150228281 Raniere Aug 2015 A1
20150230095 Smith et al. Aug 2015 A1
20150234636 Barnes, Jr. Aug 2015 A1
20150234800 Patrick et al. Aug 2015 A1
20150242091 Lu et al. Aug 2015 A1
20150243278 Kibre et al. Aug 2015 A1
20150243283 Halash et al. Aug 2015 A1
20150245154 Dadu et al. Aug 2015 A1
20150248651 Akutagawa et al. Sep 2015 A1
20150248886 Sarikaya et al. Sep 2015 A1
20150254057 Klein et al. Sep 2015 A1
20150254058 Klein et al. Sep 2015 A1
20150254333 Fife et al. Sep 2015 A1
20150255071 Chiba Sep 2015 A1
20150256873 Klein et al. Sep 2015 A1
20150261496 Faaborg et al. Sep 2015 A1
20150261850 Mittal Sep 2015 A1
20150269139 McAteer et al. Sep 2015 A1
20150277574 Jain et al. Oct 2015 A1
20150278370 Stratvert et al. Oct 2015 A1
20150279358 Kingsbury et al. Oct 2015 A1
20150279360 Mengibar et al. Oct 2015 A1
20150281380 Wang et al. Oct 2015 A1
20150286627 Chang et al. Oct 2015 A1
20150287401 Lee et al. Oct 2015 A1
20150287409 Jang Oct 2015 A1
20150288629 Choi et al. Oct 2015 A1
20150294086 Kare et al. Oct 2015 A1
20150294377 Chow Oct 2015 A1
20150294516 Chiang Oct 2015 A1
20150295915 Xiu Oct 2015 A1
20150302855 Kim et al. Oct 2015 A1
20150302856 Kim et al. Oct 2015 A1
20150302857 Yamada Oct 2015 A1
20150309997 Lee et al. Oct 2015 A1
20150310858 Li et al. Oct 2015 A1
20150310862 Dauphin et al. Oct 2015 A1
20150310879 Buchanan et al. Oct 2015 A1
20150312182 Langholz Oct 2015 A1
20150317069 Clements et al. Nov 2015 A1
20150317310 Eiche et al. Nov 2015 A1
20150324041 Varley et al. Nov 2015 A1
20150324334 Lee et al. Nov 2015 A1
20150331664 Osawa et al. Nov 2015 A1
20150331711 Huang et al. Nov 2015 A1
20150332667 Mason Nov 2015 A1
20150339049 Kasemset et al. Nov 2015 A1
20150339391 Kang et al. Nov 2015 A1
20150340033 Di Fabbrizio et al. Nov 2015 A1
20150340040 Mun et al. Nov 2015 A1
20150340042 Sejnoha et al. Nov 2015 A1
20150341717 Song et al. Nov 2015 A1
20150343551 Gruber et al. Dec 2015 A1
20150347086 Liedholm et al. Dec 2015 A1
20150347381 Bellegarda Dec 2015 A1
20150347382 Dolfing et al. Dec 2015 A1
20150347385 Flor et al. Dec 2015 A1
20150347393 Futrell et al. Dec 2015 A1
20150347733 Tsou et al. Dec 2015 A1
20150347985 Gross et al. Dec 2015 A1
20150348547 Paulik et al. Dec 2015 A1
20150348548 Piernot et al. Dec 2015 A1
20150348549 Giuli et al. Dec 2015 A1
20150348554 Orr et al. Dec 2015 A1
20150350031 Burks et al. Dec 2015 A1
20150350342 Thorpe et al. Dec 2015 A1
20150352999 Bando et al. Dec 2015 A1
20150355879 Beckhardt et al. Dec 2015 A1
20150356410 Faith et al. Dec 2015 A1
20150363587 Ahn et al. Dec 2015 A1
20150364128 Zhao et al. Dec 2015 A1
20150364140 Thorn Dec 2015 A1
20150370531 Faaborg Dec 2015 A1
20150370780 Wang et al. Dec 2015 A1
20150371215 Zhou et al. Dec 2015 A1
20150371529 Dolecki Dec 2015 A1
20150371639 Foerster et al. Dec 2015 A1
20150371665 Naik et al. Dec 2015 A1
20150373183 Woolsey et al. Dec 2015 A1
20150379414 Yeh et al. Dec 2015 A1
20150379993 Subhojit et al. Dec 2015 A1
20150382047 Napolitano et al. Dec 2015 A1
20150382079 Lister et al. Dec 2015 A1
20150382147 Clark et al. Dec 2015 A1
20160004690 Bangalore et al. Jan 2016 A1
20160005320 deCharms et al. Jan 2016 A1
20160012038 Edwards et al. Jan 2016 A1
20160014476 Caliendo, Jr. et al. Jan 2016 A1
20160018900 Tu et al. Jan 2016 A1
20160019886 Hong Jan 2016 A1
20160026258 Ou et al. Jan 2016 A1
20160027431 Kurzweil et al. Jan 2016 A1
20160028666 Li Jan 2016 A1
20160029316 Mohan et al. Jan 2016 A1
20160034042 Joo Feb 2016 A1
20160034811 Paulik et al. Feb 2016 A1
20160042735 Vibbert et al. Feb 2016 A1
20160042748 Jain et al. Feb 2016 A1
20160048666 Dey et al. Feb 2016 A1
20160055422 Li Feb 2016 A1
20160062605 Agarwal et al. Mar 2016 A1
20160063998 Krishnamoorthy et al. Mar 2016 A1
20160070581 Soon-Shiong Mar 2016 A1
20160071516 Lee et al. Mar 2016 A1
20160071521 Haughay Mar 2016 A1
20160072940 Cronin Mar 2016 A1
20160077794 Kim et al. Mar 2016 A1
20160078860 Paulik et al. Mar 2016 A1
20160080165 Ehsani et al. Mar 2016 A1
20160086116 Rao et al. Mar 2016 A1
20160091967 Prokofieva et al. Mar 2016 A1
20160092447 Venkataraman et al. Mar 2016 A1
20160092766 Sainath et al. Mar 2016 A1
20160093291 Kim Mar 2016 A1
20160093298 Naik et al. Mar 2016 A1
20160093301 Bellegarda et al. Mar 2016 A1
20160093304 Kim et al. Mar 2016 A1
20160094700 Lee et al. Mar 2016 A1
20160094979 Naik et al. Mar 2016 A1
20160098991 Luo et al. Apr 2016 A1
20160104486 Penilla et al. Apr 2016 A1
20160111091 Bakish Apr 2016 A1
20160117386 Ajmera et al. Apr 2016 A1
20160118048 Heide Apr 2016 A1
20160119338 Cheyer Apr 2016 A1
20160125048 Hamada May 2016 A1
20160125071 Gabbai May 2016 A1
20160132046 Beoughter et al. May 2016 A1
20160132484 Nauze et al. May 2016 A1
20160132488 Clark et al. May 2016 A1
20160133254 Vogel et al. May 2016 A1
20160139662 Dabhade May 2016 A1
20160140951 Agiomyrgiannakis et al. May 2016 A1
20160147725 Patten et al. May 2016 A1
20160148610 Kennewick, Jr. et al. May 2016 A1
20160154880 Hoarty Jun 2016 A1
20160155442 Kannan et al. Jun 2016 A1
20160155443 Khan et al. Jun 2016 A1
20160162456 Munro et al. Jun 2016 A1
20160163311 Crook et al. Jun 2016 A1
20160163312 Naik et al. Jun 2016 A1
20160170966 Kolo Jun 2016 A1
20160173578 Sharma et al. Jun 2016 A1
20160173960 Snibbe et al. Jun 2016 A1
20160179462 Bjorkengren Jun 2016 A1
20160179787 Deleeuw Jun 2016 A1
20160180844 Vanblon et al. Jun 2016 A1
20160182410 Janakiraman et al. Jun 2016 A1
20160182709 Kim et al. Jun 2016 A1
20160188181 Smith Jun 2016 A1
20160188738 Gruber et al. Jun 2016 A1
20160189717 Kannan et al. Jun 2016 A1
20160198319 Huang et al. Jul 2016 A1
20160210551 Lee et al. Jul 2016 A1
20160210981 Lee Jul 2016 A1
20160212488 Os et al. Jul 2016 A1
20160217784 Gelfenbeyn et al. Jul 2016 A1
20160224540 Stewart et al. Aug 2016 A1
20160224774 Pender Aug 2016 A1
20160225372 Cheung Aug 2016 A1
20160240187 Fleizach et al. Aug 2016 A1
20160247061 Trask et al. Aug 2016 A1
20160253312 Rhodes Sep 2016 A1
20160253528 Gao et al. Sep 2016 A1
20160259623 Sumner et al. Sep 2016 A1
20160259656 Sumner et al. Sep 2016 A1
20160259779 Labsk et al. Sep 2016 A1
20160260431 Newendorp et al. Sep 2016 A1
20160260433 Sumner et al. Sep 2016 A1
20160260434 Gelfenbeyn et al. Sep 2016 A1
20160260436 Lemay et al. Sep 2016 A1
20160266871 Schmid et al. Sep 2016 A1
20160267904 Biadsy et al. Sep 2016 A1
20160275941 Bellegarda et al. Sep 2016 A1
20160275947 Li et al. Sep 2016 A1
20160282824 Smallwood et al. Sep 2016 A1
20160282956 Ouyang et al. Sep 2016 A1
20160284005 Daniel et al. Sep 2016 A1
20160284199 Dotan-Cohen et al. Sep 2016 A1
20160286045 Shaltiel et al. Sep 2016 A1
20160293157 Chen Oct 2016 A1
20160293168 Chen Oct 2016 A1
20160299685 Zhai et al. Oct 2016 A1
20160299882 Hegerty et al. Oct 2016 A1
20160299883 Zhu et al. Oct 2016 A1
20160307566 Bellegarda Oct 2016 A1
20160313906 Kilchenko et al. Oct 2016 A1
20160314788 Jitkoff et al. Oct 2016 A1
20160314792 Alvarez et al. Oct 2016 A1
20160317924 Tanaka et al. Nov 2016 A1
20160321261 Spasojevic et al. Nov 2016 A1
20160322045 Hatfield et al. Nov 2016 A1
20160322050 Wang et al. Nov 2016 A1
20160328205 Agrawal et al. Nov 2016 A1
20160328893 Cordova et al. Nov 2016 A1
20160336007 Hanazawa Nov 2016 A1
20160336010 Lindahl Nov 2016 A1
20160336024 Choi et al. Nov 2016 A1
20160337299 Lane et al. Nov 2016 A1
20160337301 Rollins et al. Nov 2016 A1
20160342685 Basu et al. Nov 2016 A1
20160342781 Jeon Nov 2016 A1
20160351190 Binder et al. Dec 2016 A1
20160352567 Robbins et al. Dec 2016 A1
20160353598 Williams et al. Dec 2016 A1
20160357304 Hatori et al. Dec 2016 A1
20160357728 Bellegarcla et al. Dec 2016 A1
20160357861 Carinian et al. Dec 2016 A1
20160357870 Hentschel et al. Dec 2016 A1
20160358600 Nallasamy et al. Dec 2016 A1
20160358619 Ramprashad et al. Dec 2016 A1
20160359771 Sridhar Dec 2016 A1
20160360039 Sanghavi et al. Dec 2016 A1
20160360336 Gross et al. Dec 2016 A1
20160360382 Gross et al. Dec 2016 A1
20160364378 Futrell et al. Dec 2016 A1
20160365101 Foy et al. Dec 2016 A1
20160371250 Rhodes Dec 2016 A1
20160372112 Miller et al. Dec 2016 A1
20160378747 Orr et al. Dec 2016 A1
20160379091 Lin et al. Dec 2016 A1
20160379626 Deisher et al. Dec 2016 A1
20160379633 Lehman et al. Dec 2016 A1
20160379641 Liu Dec 2016 A1
20170003931 Dvortsov et al. Jan 2017 A1
20170004824 Yoo et al. Jan 2017 A1
20170011303 Annapureddy et al. Jan 2017 A1
20170011742 Jing et al. Jan 2017 A1
20170018271 Khan et al. Jan 2017 A1
20170019987 Dragone et al. Jan 2017 A1
20170025124 Mixter et al. Jan 2017 A1
20170031576 Saoji et al. Feb 2017 A1
20170032783 Lord et al. Feb 2017 A1
20170032791 Elson et al. Feb 2017 A1
20170039475 Cheyer et al. Feb 2017 A1
20170040002 Basson et al. Feb 2017 A1
20170055895 Des Jardins et al. Mar 2017 A1
20170060853 Lee et al. Mar 2017 A1
20170061423 Bryant et al. Mar 2017 A1
20170063423 Napolitano et al. Mar 2017 A1
20170068513 Stasior et al. Mar 2017 A1
20170068550 Zeitlin Mar 2017 A1
20170068670 Orr et al. Mar 2017 A1
20170076720 Gopalan et al. Mar 2017 A1
20170076721 Bargetzi et al. Mar 2017 A1
20170083179 Gruber et al. Mar 2017 A1
20170083285 Meyers et al. Mar 2017 A1
20170083504 Huang Mar 2017 A1
20170085547 De Aguiar et al. Mar 2017 A1
20170090569 Levesque Mar 2017 A1
20170091168 Bellegarda et al. Mar 2017 A1
20170092270 Newendorp et al. Mar 2017 A1
20170092278 Evermann et al. Mar 2017 A1
20170102837 Toumpelis Apr 2017 A1
20170102915 Kuscher et al. Apr 2017 A1
20170103749 Zhao et al. Apr 2017 A1
20170105190 Logan et al. Apr 2017 A1
20170116177 Walia Apr 2017 A1
20170116989 Yadgar et al. Apr 2017 A1
20170124190 Wang et al. May 2017 A1
20170125016 Wang May 2017 A1
20170127124 Wilson et al. May 2017 A9
20170131778 Iyer May 2017 A1
20170132019 Karashchuk et al. May 2017 A1
20170132199 Vescovi et al. May 2017 A1
20170140644 Hwang et al. May 2017 A1
20170154033 Lee Jun 2017 A1
20170154055 Dimson et al. Jun 2017 A1
20170155940 Ji et al. Jun 2017 A1
20170161018 Lemay et al. Jun 2017 A1
20170161268 Badaskar Jun 2017 A1
20170161293 Ionescu et al. Jun 2017 A1
20170169818 VanBlon et al. Jun 2017 A1
20170169819 Mese et al. Jun 2017 A1
20170177547 Ciereszko et al. Jun 2017 A1
20170178619 Naik et al. Jun 2017 A1
20170178626 Gruber et al. Jun 2017 A1
20170180499 Gelfenbeyn et al. Jun 2017 A1
20170185375 Martel et al. Jun 2017 A1
20170185581 Bojja et al. Jun 2017 A1
20170186429 Giuli et al. Jun 2017 A1
20170193083 Bhatt et al. Jul 2017 A1
20170195493 Kasilya Sudarsan et al. Jul 2017 A1
20170199870 Zheng et al. Jul 2017 A1
20170199874 Patel et al. Jul 2017 A1
20170200066 Wang et al. Jul 2017 A1
20170206899 Bryant et al. Jul 2017 A1
20170221486 Kurata et al. Aug 2017 A1
20170227935 Su et al. Aug 2017 A1
20170228367 Pasupalak et al. Aug 2017 A1
20170228382 Haviv et al. Aug 2017 A1
20170230429 Garmark et al. Aug 2017 A1
20170230709 Van Os et al. Aug 2017 A1
20170236512 Williams et al. Aug 2017 A1
20170242653 Lang et al. Aug 2017 A1
20170242657 Jarvis et al. Aug 2017 A1
20170243468 Dotan-Cohen et al. Aug 2017 A1
20170256256 Wang et al. Sep 2017 A1
20170263247 Kang et al. Sep 2017 A1
20170263248 Gruber et al. Sep 2017 A1
20170263249 Akbacak et al. Sep 2017 A1
20170264451 Yu et al. Sep 2017 A1
20170264711 Natarajan Sep 2017 A1
20170278514 Mathias et al. Sep 2017 A1
20170285915 Napolitano et al. Oct 2017 A1
20170286397 Gonzalez Oct 2017 A1
20170295446 Thagadur Shivappa Oct 2017 A1
20170311005 Lin Oct 2017 A1
20170316775 Le et al. Nov 2017 A1
20170316782 Haughay et al. Nov 2017 A1
20170323637 Naik Nov 2017 A1
20170329572 Shah et al. Nov 2017 A1
20170345411 Raitio et al. Nov 2017 A1
20170346949 Sanghavi et al. Nov 2017 A1
20170352346 Paulik et al. Dec 2017 A1
20170352350 Booker et al. Dec 2017 A1
20170353301 Raitio et al. Dec 2017 A1
20170357478 Piersol et al. Dec 2017 A1
20170357632 Pagallo et al. Dec 2017 A1
20170357633 Wang et al. Dec 2017 A1
20170357637 Nell et al. Dec 2017 A1
20170357640 Bellegarda et al. Dec 2017 A1
20170357716 Bellegarda et al. Dec 2017 A1
20170358300 Laurens et al. Dec 2017 A1
20170358302 Orr et al. Dec 2017 A1
20170358303 Walker, II et al. Dec 2017 A1
20170358304 Castillo et al. Dec 2017 A1
20170358305 Kudurshian et al. Dec 2017 A1
20170371885 Aggarwal et al. Dec 2017 A1
20180007060 Leblang et al. Jan 2018 A1
20180007538 Naik et al. Jan 2018 A1
20180012596 Piernot et al. Jan 2018 A1
20180033431 Newendorp et al. Feb 2018 A1
20180047406 Park Feb 2018 A1
20180054505 Hart et al. Feb 2018 A1
20180060032 Boesen Mar 2018 A1
20180060312 Won Mar 2018 A1
20180061400 Carbune et al. Mar 2018 A1
20180063624 Boesen Mar 2018 A1
20180067914 Chen et al. Mar 2018 A1
20180069743 Bakken et al. Mar 2018 A1
20180090143 Saddler et al. Mar 2018 A1
20180096683 James et al. Apr 2018 A1
20180107945 Gao et al. Apr 2018 A1
20180108346 Paulik et al. Apr 2018 A1
20180122378 Mixter et al. May 2018 A1
20180130470 Lemay et al. May 2018 A1
20180130471 Trufinescu et al. May 2018 A1
20180137856 Gilbert May 2018 A1
20180137857 Zhou et al. May 2018 A1
20180144748 Leong May 2018 A1
20180190273 Karimli et al. Jul 2018 A1
20180196683 Radebaugh et al. Jul 2018 A1
20180213448 Segal et al. Jul 2018 A1
20180213735 Hunt et al. Aug 2018 A1
20180232203 Gelfenbeyn et al. Aug 2018 A1
20180276197 Nell et al. Sep 2018 A1
20180308485 Kudurshian et al. Oct 2018 A1
20180308486 Saddler et al. Oct 2018 A1
20180322112 Bellegarda et al. Nov 2018 A1
20180329677 Gruber et al. Nov 2018 A1
20180329957 Frazzingaro et al. Nov 2018 A1
20180329982 Patel et al. Nov 2018 A1
20180330714 Paulik et al. Nov 2018 A1
20180330722 Newendorp et al. Nov 2018 A1
20180330723 Acero et al. Nov 2018 A1
20180330730 Garg et al. Nov 2018 A1
20180330731 Zeitlin et al. Nov 2018 A1
20180330737 Paulik et al. Nov 2018 A1
20180332118 Phipps et al. Nov 2018 A1
20180336184 Bellegarda et al. Nov 2018 A1
20180336275 Graham et al. Nov 2018 A1
20180336892 Kim et al. Nov 2018 A1
20180336894 Graham et al. Nov 2018 A1
20180336905 Kim et al. Nov 2018 A1
20180373487 Gruber et al. Dec 2018 A1
20190012141 Piersol et al. Jan 2019 A1
20190012449 Cheyer Jan 2019 A1
20190014450 Gruber et al. Jan 2019 A1
Foreign Referenced Citations (356)
Number Date Country
2015203483 Jul 2015 AU
2694314 Aug 2010 CA
2792412 Jul 2011 CA
2666438 Jun 2013 CA
101416471 Apr 2009 CN
101427244 May 2009 CN
101448340 Jun 2009 CN
101453498 Jun 2009 CN
101499156 Aug 2009 CN
101500041 Aug 2009 CN
101515952 Aug 2009 CN
101535983 Sep 2009 CN
101547396 Sep 2009 CN
101557432 Oct 2009 CN
101601088 Dec 2009 CN
101604521 Dec 2009 CN
101632316 Jan 2010 CN
101636736 Jan 2010 CN
101673544 Mar 2010 CN
101751387 Jun 2010 CN
101833286 Sep 2010 CN
101847405 Sep 2010 CN
101894547 Nov 2010 CN
101930789 Dec 2010 CN
101939740 Jan 2011 CN
101951553 Jan 2011 CN
101971250 Feb 2011 CN
102137193 Jul 2011 CN
102160043 Aug 2011 CN
102201235 Sep 2011 CN
102246136 Nov 2011 CN
202035047 Nov 2011 CN
102282609 Dec 2011 CN
202092650 Dec 2011 CN
102368256 Mar 2012 CN
102405463 Apr 2012 CN
102498457 Jun 2012 CN
102629246 Aug 2012 CN
102635295 Sep 2012 CN
102682769 Sep 2012 CN
102682771 Sep 2012 CN
102693725 Sep 2012 CN
102792320 Nov 2012 CN
102801853 Nov 2012 CN
102870065 Jan 2013 CN
102917004 Feb 2013 CN
102918493 Feb 2013 CN
103035240 Apr 2013 CN
103038728 Apr 2013 CN
103093334 May 2013 CN
103135916 Jun 2013 CN
103209369 Jul 2013 CN
103365279 Oct 2013 CN
103390016 Nov 2013 CN
103455234 Dec 2013 CN
103533143 Jan 2014 CN
103744761 Apr 2014 CN
103795850 May 2014 CN
103841268 Jun 2014 CN
103930945 Jul 2014 CN
104038621 Sep 2014 CN
104090652 Oct 2014 CN
104113471 Oct 2014 CN
104144377 Nov 2014 CN
104281259 Jan 2015 CN
104284257 Jan 2015 CN
104335234 Feb 2015 CN
104423625 Mar 2015 CN
104463552 Mar 2015 CN
104516522 Apr 2015 CN
104854583 Aug 2015 CN
104951077 Sep 2015 CN
104967748 Oct 2015 CN
105100356 Nov 2015 CN
105247511 Jan 2016 CN
105264524 Jan 2016 CN
105471705 Apr 2016 CN
107919123 Apr 2018 CN
102008024258 Nov 2009 DE
202016008226 May 2017 DE
1909263 Jan 2009 EP
1335620 Mar 2009 EP
2069895 Jun 2009 EP
2081185 Jul 2009 EP
2094032 Aug 2009 EP
2096840 Sep 2009 EP
2107553 Oct 2009 EP
2109295 Oct 2009 EP
1720375 Jul 2010 EP
2205010 Jul 2010 EP
2250640 Nov 2010 EP
2309491 Apr 2011 EP
2329348 Jun 2011 EP
2339576 Jun 2011 EP
2400373 Dec 2011 EP
2431842 Mar 2012 EP
2523188 Nov 2012 EP
2551784 Jan 2013 EP
2555536 Feb 2013 EP
2575128 Apr 2013 EP
2632129 Aug 2013 EP
2983065 Aug 2013 EP
2669889 Dec 2013 EP
2683175 Jan 2014 EP
2733598 May 2014 EP
2760015 Jul 2014 EP
2801890 Nov 2014 EP
2801972 Nov 2014 EP
2824564 Jan 2015 EP
2849177 Mar 2015 EP
2930715 Oct 2015 EP
2938022 Oct 2015 EP
2940556 Nov 2015 EP
2950307 Dec 2015 EP
3035329 Jun 2016 EP
3224708 Oct 2017 EP
3246916 Nov 2017 EP
3300074 Mar 2018 EP
2009-2850 Jan 2009 JP
2009-503623 Jan 2009 JP
2009-36999 Feb 2009 JP
2009-505142 Feb 2009 JP
2009-47920 Mar 2009 JP
2009-069062 Apr 2009 JP
2009-98490 May 2009 JP
2009-110300 May 2009 JP
2009-134409 Jun 2009 JP
2009-140444 Jun 2009 JP
2009-177440 Aug 2009 JP
2009-186989 Aug 2009 JP
2009-193448 Aug 2009 JP
2009-193457 Aug 2009 JP
2009-193532 Aug 2009 JP
2009-205367 Sep 2009 JP
2009-223840 Oct 2009 JP
2009-294913 Dec 2009 JP
2009-294946 Dec 2009 JP
2009-543166 Dec 2009 JP
2010-66519 Mar 2010 JP
2010-78979 Apr 2010 JP
2010-108378 May 2010 JP
2010-518475 May 2010 JP
2010-518526 May 2010 JP
2010-146347 Jul 2010 JP
2010-157207 Jul 2010 JP
2010-166478 Jul 2010 JP
2010-205111 Sep 2010 JP
2010-224236 Oct 2010 JP
4563106 Oct 2010 JP
2010-535377 Nov 2010 JP
2010-287063 Dec 2010 JP
2011-33874 Feb 2011 JP
2011-41026 Feb 2011 JP
2011-45005 Mar 2011 JP
2011-59659 Mar 2011 JP
2011-81541 Apr 2011 JP
2011-525045 Sep 2011 JP
2011-238022 Nov 2011 JP
2011-250027 Dec 2011 JP
2012-014394 Jan 2012 JP
2012-33997 Feb 2012 JP
2012-508530 Apr 2012 JP
2012-089020 May 2012 JP
2012-116442 Jun 2012 JP
2012-142744 Jul 2012 JP
2012-147063 Aug 2012 JP
2012-518847 Aug 2012 JP
2013-37688 Feb 2013 JP
2013-511214 Mar 2013 JP
2013-65284 Apr 2013 JP
2013-73240 Apr 2013 JP
2013-513315 Apr 2013 JP
2013-080476 May 2013 JP
2013-517566 May 2013 JP
2013-134430 Jul 2013 JP
2013-140520 Jul 2013 JP
2013-527947 Jul 2013 JP
2013-528012 Jul 2013 JP
2013-156349 Aug 2013 JP
2013-200423 Oct 2013 JP
2013-205999 Oct 2013 JP
2013-238936 Nov 2013 JP
2014-10688 Jan 2014 JP
2014-026629 Feb 2014 JP
2014-60600 Apr 2014 JP
2014-72586 Apr 2014 JP
2014-077969 May 2014 JP
2014-109889 Jun 2014 JP
2014-124332 Jul 2014 JP
2014-126600 Jul 2014 JP
2014-145842 Aug 2014 JP
2014-150323 Aug 2014 JP
2014-222514 Nov 2014 JP
2015-8001 Jan 2015 JP
2015-18365 Jan 2015 JP
2015-501022 Jan 2015 JP
2015-41845 Mar 2015 JP
2015-94848 May 2015 JP
2015-5198175 Jul 2015 JP
2015-524974 Aug 2015 JP
2015-526776 Sep 2015 JP
2015-528140 Sep 2015 JP
2015-528918 Oct 2015 JP
2016-119515 Jun 2016 JP
2016-151928 Aug 2016 JP
10-2009-0001716 Jan 2009 KR
10-2009-0028464 Mar 2009 KR
10-2009-0030117 Mar 2009 KR
10-2009-0086805 Aug 2009 KR
10-0920267 Oct 2009 KR
10-2009-0122944 Dec 2009 KR
10-2009-0127961 Dec 2009 KR
10-2009-0129192 Dec 2009 KR
10-2010-0015958 Feb 2010 KR
10-2010-0048571 May 2010 KR
10-2010-0053149 May 2010 KR
10-2010-0119519 Nov 2010 KR
10-2011-0043644 Apr 2011 KR
10-1032792 May 2011 KR
10-2011-0068490 Jun 2011 KR
10-2011-0072847 Jun 2011 KR
10-2011-0086492 Jul 2011 KR
10-2011-0100620 Sep 2011 KR
10-2011-0113414 Oct 2011 KR
10-2011-0115134 Oct 2011 KR
10-2012-0020164 Mar 2012 KR
10-2012-0031722 Apr 2012 KR
10-1178310 Aug 2012 KR
10-2012-0120316 Nov 2012 KR
10-2012-0137435 Dec 2012 KR
10-2012-0137440 Dec 2012 KR
10-2012-0138826 Dec 2012 KR
10-2012-0139827 Dec 2012 KR
10-1193668 Dec 2012 KR
10-2013-0035983 Apr 2013 KR
10-2013-0108563 Oct 2013 KR
10-1334342 Nov 2013 KR
10-2013-0131252 Dec 2013 KR
10-2013-0133629 Dec 2013 KR
10-2014-0031283 Mar 2014 KR
10-2014-0033574 Mar 2014 KR
10-2014-0147557 Dec 2014 KR
10-2015-0013631 Feb 2015 KR
10-2015-0038375 Apr 2015 KR
10-2015-0043512 Apr 2015 KR
10-2016-0004351 Jan 2016 KR
10-2016-0010523 Jan 2016 KR
10-2016-0040279 Apr 2016 KR
10-2017-0036805 Apr 2017 KR
2349970 Mar 2009 RU
2353068 Apr 2009 RU
2364917 Aug 2009 RU
M348993 Jan 2009 TW
200943903 Oct 2009 TW
201018258 May 2010 TW
201027515 Jul 2010 TW
201028996 Aug 2010 TW
201110108 Mar 2011 TW
2011-42823 Dec 2011 TW
201227715 Jul 2012 TW
201245989 Nov 2012 TW
201312548 Mar 2013 TW
2009009240 Jan 2009 WO
2009016631 Feb 2009 WO
2009017280 Feb 2009 WO
2009034686 Mar 2009 WO
2009075912 Jun 2009 WO
2009104126 Aug 2009 WO
2009114035 Sep 2009 WO
2009156438 Dec 2009 WO
2009156978 Dec 2009 WO
2010013369 Feb 2010 WO
2010054373 May 2010 WO
2010075623 Jul 2010 WO
2010100937 Sep 2010 WO
2010141802 Dec 2010 WO
2011057346 May 2011 WO
2011060106 May 2011 WO
2011088053 Jul 2011 WO
2011093025 Aug 2011 WO
2011116309 Sep 2011 WO
2011133543 Oct 2011 WO
2011150730 Dec 2011 WO
2011163350 Dec 2011 WO
2011088053 Jan 2012 WO
2012019637 Feb 2012 WO
2012129231 Sep 2012 WO
2012135157 Oct 2012 WO
2012154317 Nov 2012 WO
2012155079 Nov 2012 WO
2012167168 Dec 2012 WO
2013009578 Jan 2013 WO
2013022135 Feb 2013 WO
2013022223 Feb 2013 WO
2013048880 Apr 2013 WO
2013049358 Apr 2013 WO
2013163113 Oct 2013 WO
2013169842 Nov 2013 WO
2013173504 Nov 2013 WO
2013173511 Nov 2013 WO
2013176847 Nov 2013 WO
2013184953 Dec 2013 WO
2013184990 Dec 2013 WO
2014003138 Jan 2014 WO
2014021967 Feb 2014 WO
2014022148 Feb 2014 WO
2014028797 Feb 2014 WO
2014031505 Feb 2014 WO
2014047047 Mar 2014 WO
2014056352 May 2014 WO
2014070872 May 2014 WO
2014078965 May 2014 WO
2014096506 Jun 2014 WO
2014124332 Aug 2014 WO
2014137074 Sep 2014 WO
2014138604 Sep 2014 WO
2014143959 Sep 2014 WO
2014144579 Sep 2014 WO
20141159581 Oct 2014 WO
2014197336 Dec 2014 WO
2014200728 Dec 2014 WO
2014204659 Dec 2014 WO
2015018440 Feb 2015 WO
2015029379 Mar 2015 WO
2015030796 Mar 2015 WO
2015041892 Mar 2015 WO
2015084659 Jun 2015 WO
2015094169 Jun 2015 WO
2015094369 Jun 2015 WO
20151092943 Jun 2015 WO
2015099939 Jul 2015 WO
2015116151 Aug 2015 WO
2015151133 Oct 2015 WO
2015153310 Oct 2015 WO
2015157013 Oct 2015 WO
2015183401 Dec 2015 WO
2015183699 Dec 2015 WO
2015184186 Dec 2015 WO
2015200207 Dec 2015 WO
2016023946 Feb 2016 WO
2016027933 Feb 2016 WO
2016033257 Mar 2016 WO
2016054230 Apr 2016 WO
2016057268 Apr 2016 WO
2016075081 May 2016 WO
2016085775 Jun 2016 WO
2016100139 Jun 2016 WO
2016111881 Jul 2016 WO
2016144840 Sep 2016 WO
2016144982 Sep 2016 WO
2016175354 Nov 2016 WO
2016190950 Dec 2016 WO
2016209444 Dec 2016 WO
2017044260 Mar 2017 WO
2017044629 Mar 2017 WO
2017053311 Mar 2017 WO
Non-Patent Literature Citations (144)
Entry
“Alexa, Turn Up the Heat!”, Smartthings Samsung [online], Available online at https://web.archive.org/web/20160329142041/https://blog.smartthings.com/news/smartthingsupdates/alexa-turn-up-the-heat/, Mar. 3, 2016, 3 pages.
Anania, Peter, “Amazon Echo with Home Automation (Smartthings)”, Available online at https://www.youtube.com/watch?v=LMW6aXmsWNE, Dec. 20, 2015, 1 page.
Asakura et al., “What LG thinks; How the TV should be in the Living Room”, HiVi, vol. 31, No. 7 (Jul. 2013), Stereo Sound Publishing, Inc., Jun. 17, 2013, pp. 68-71 (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Ashbrook. Daniel L..; “Enabling Mobile Microinteractions”, Retrieved from the Internet: URL: “http://danielashbrook.com/wp-content/uploads/2012/06/2009-Ashbrook-Thesis.pdf”, May 2010, 186 pages.
Ashingtondctech & Gaming, “SwipeStatusBar—Reveal the Status Bar in a Fullscreen App”, Online Available at: <https://www.youtube.com/watch?v=wA_tT9IAreQ>, Jul. 1, 2013, 3 pages.
“Ask Alexa—Things That Are Smart Wiki”, Available online at <URL:http://thingsthataresmart.wiki/index.php?title=Ask_Alexa&oldid=4283>, [retrieved from internet on Aug. 2, 2017], Jun. 8, 2016, pp. 1-31.
Cambria et al.: “Jumping NLP Curves: A Review of Natural Language Processing Research”, IEEE Computational Intelligence Magazine, 2014, vol. 9, May 2014, pp. 48-57.
Deedeevuu. “Amazon Echo Alarm Feature”, Available online at https://www.youtube.com/watch?v=fdjU8eRLk7c, Feb. 16, 2015, 1 page.
“DIRECTV™ Voice”, Now Part of the DIRECTTV Mobile App for Phones, Sep. 18, 2013, 5 pages.
Earthling1984, “Samsung Galaxy Smart Stay Feature Explained”, Available online at:—“https://www.youtube.com/watch?v=RpjBNtSjupl”, May 29, 2013, 1 page.
Filipowicz, Luke, “How to use the Quick Type Keyboard in iOS 8”, available online at <https://www.imore.com/comment/568232>, Oct. 11, 2014, pp. 1-17.
Finkel et al., “Joint Parsing and Named Entity Recognition”. Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the ACL, Jun. 2009, pp. 326-334.
“Galaxy S7: How to Adjust Screen Timeout & Lock Screen Timeout”, Available online at:—“https://www.youtube.com/watch?v=n6e1WKUS2ww”, Jun. 9, 2016, 1 page.
Gomez et al., “Mouth Gesture and Voice Command Based Robot Command Interface”, IEEE International Conference on Robotics and Automation, May 12-17, 2009, pp. 333-338.
Google Developers, “Voice Search in Your App”, Available online at:—https://www.youtube.com/watch?v=PS1PbB5qWEI, Nov. 12, 2014, 1 page.
“Hey Google: How to Create a Shopping List with Your Google Assistant”, Available online at:—https://www.youtube.com/watch?v=w9NCsElax1Y, May 25, 2018, 1 page.
“How to Enable Google Assistant on Galaxy 57 and other Android Phones (No Root)”, Available online at:—“https://www.youtube.com/watch?v=HeklQbWyksE”, Mar. 20, 2017, 1 page.
“How to Use Ok Google Assistant Even Phone is Locked”, Available online at:—“https://www.youtube.com/watch?v=9B_gP4j_SP8”, Mar. 12, 2018, 1 page.
INEWS and Tech, “How to Use the QuickType Keyboard in iOS 8”, Available online at:—“http://www.inewsandtech.com/how-to-use-the-quicktype-keyboard-in-ios-8/”, Sep. 17, 2014, 6 pages.
IOS 8 Release, “Quick Type Keyboard on iOS 8 Makes Typing Easier”, Retrieved from the Internet: URL:https://www.youtube.com/watch?v=0CidLR4fhVU, [Retrieved on Nov. 23, 2018], XP054978896, Jun. 3, 2014, 1 page.
Jonsson et al, “Proximity-based Reminders Using Bluetooth”, 2014 IEEE International Conference on Pervasive Computing and Communications Demonstrations, 2014, pp. 151-153.
Karn, Ujjwal, “An Intuitive Explanation of Convolutional Neural Networks”, The Data Science Blog, Aug. 11, 2016, 23 pages.
Liou et al., “Autoencoder for Words”, Neurocomputing, vol. 139, Sep. 2014, pp. 84-96.
Majerus, Wesley, “Cell Phone Accessibility for your Blind Child”, Retrieved from the Internet <URL:https://web.archive.org/web/20100210001100/https://ntb.org/images/nfb/publications/fr/fr28/3/fr280314.htm>, 2010, pp. 1-5.
Marketing Land, “Amazon Echo: Play Music”, Online Available at: <https://www.youtube.com/watch?v=A7V5NPbsXi4>, Apr. 27, 2015. 3 pages.
Mhatre et al., “Donna Interactive Chat-bot acting as a Personal Assistant”, International Journal of Computer Applications (0975-8887), vol. 140, No. 10, Apr. 2016, 6 pages.
Mikolov et al., “Linguistic Regularities in Continuous Space Word Representations”, Proceedings of NAACL-HLT, Jun. 9-14, 2013, pp. 746-751.
Morrison, Jonathan, “iPhone 5 Siri Demo”, Online Available at <https://www.youtube.com/watch?v=_wHWwG5IhWc>, Sep. 21, 2012, 3 pages.
Nakamura, Satoshi, “Overcoming the Language Barrier with Speech Translation Technology, Science & Technology Trends”, Quarterly Review No. 31, Apr. 2009, pp. 36-49.
Nakazawa et al., “Detection and Labeling of Significant Scenes from TV program based on Twitter Analysis”, Proceedings of the 3rd Forum on Data Engineering and Information Management (DEIM 2011 proceedings), IEICE Data Engineering Technical Group. Available online at: http://db-event.jpn.org/deim2011/proceedings/pdf/f5-6.pdf, Feb. 28, 2011, 10 pages (Official Copy Only). (See Communication under 37 CFR § 1.98(a) (3)).
Nozawa et al., “iPhone 4S Perfect Manual”, vol. 1. First Edition, Nov. 11, 2011, 5 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)).
Okuno et al., “System for Japanese Input Method based on the Internet”, Technical Report of Information Processing Society of Japan, Natural Language Processing, Japan, Information Processing Society of Japan, vol. 2009, No. 36, Mar. 18, 2009, 8 pages (Official Copy Only) (See Communication under 37 CFR § 1.98(a) (3)).
Pathak et al., “Privacy-preserving Speech Processing: Cryptographic and String-Frameworks Show Promise”, In: IEEE signal processing magazine, retrieved from <http://www.merl.com/publications/docs/TR2013-063.pdf, Feb. 13, 2013, 16 pages.
Patra et al., “A Kernel-Based Approach for Biomedical Named Entity Recognition”, Scientific World Journal, vol. 2013, 2013, pp. 1-7.
Pennington et al., “GloVe: Global Vectors for Word Representation”, Proceedings of the Conference on Empirical Methods Natural Language Processing (EMNLP), Oct. 25-29, 2014, pp. 1532-1543.
Perlow, Jason, “Alexa Loop Mode With Playlist for Sleep Noise”, Online Available at: <https://www.youtube.com/watch?v=nSkSuXziJSg>, Apr. 11, 2016, 3 pages.
Routines, “SmartThings Support”, Available online at <https://web.archive.org/web/20151207165701/https://support.smartthings.com/hc/en-us/articles/205380034-Routines>, 2015, 2 pages.
Samsung Support, “Create a Qucik Command in Bixby to Launch Custom Settings by at your Command”, Retrieved from internet: https://www.facebook.com/samsungsupport/videos/10154746303151213, Nov. 13, 2017, 1 page.
Samsung, “SGH-a885 Series—Portable Quad-Band Mobile Phone-User Manual”, Retrieved from the Internet: URL: “http://web.archive.org/web/20100106113758/http://www.comparecellular.com/images/phones/userguide1896.pdf”, Jan. 1, 2009, 144 pages.
Seehafer, Brent, “Activate google assistant on Galaxy S7 with screen off”, Available online at:—“https://productforums.google.com/forum/#!topic/websearch/Ip3qIGBHLVI”, Mar. 8, 2017, 4 pages.
Selfrifge et al., “Interact: Tightly-coupling Multimodal Dialog with an Interactive Virtual Assistant”, International Conference on Multimodal Interaction, ACM, Nov. 9, 2015, pp. 381-382.
“SmartThings +Amazon Echo”, Smartthings Samsung [online], Available online at <https://web.archive.org/web/20160509231428/https://blog.smartthings.com/featured/alexa-turn-on-my-smartthings/>, Aug. 21, 2015, 3 pages.
Spivack, Nova, “Sneak Preview of Siri—Part Two—Technical Foundations—Interview with Tom Gruber, CTO of Siru”, Online Available at <https://web.archive.org/web/20100114234454/http://www.twine.com/item/12vhy39k4-22m/interview-with-tom-gruber-of-siri>, Jan. 14, 2010, 5 pages.
Sundermeyer et al., “From Feedforward to Recurrent LSTM Neural Networks for Language Modeling”, IEEE Transactions to Audio, Speech, and Language Processing, 2015, vol. 23, Mar. 2015, pp. 517-529.
Sundermeyer et al., “LSTM Neural Networks for Language Modeling”, INTERSPEECH 2012, ISCA's 13″ Annual Conference, Sep. 9-13, 2012, pp. 194-197.
Tanaka, Tatsuo, “Next Generation IT Channel Strategy Through “Experience Technology””, Intellectual Resource Creation, Japan, Nomura Research Institute Ltd. vol. 19, No. 1, Dec. 20, 2010, 17 pages. (Official Copy only) (See Communication under 37 CFR § 1.98(a) (3)).
“The world of Virtual Assistants—more SemTech . . . ”, End of Business as Usual—Glenn's External blog, Online Available at <https://web.archive.org/web/20091101840940/http://glennas.wordpress.com/2009/10/17/the-world-of-virtual-assistants-more-semtech/>, Oct. 17, 2009, 5 pages.
Vodafone Deutschland, “Samsung Galaxy S3 Tastatur Spracheingabe”, Available online at—“https://www.youtube.com/watch?v=6kOd6Gr8uFE”, Aug. 22, 2012, 1 page.
X.Ai, “How it Works”, May 2016, 6 pages.
Xu, Yuhong, “Policy optimization of dialogue management in spoken dialogue system for out-of-domain utterances”, 2016 International Conference on Asian Language Processing (IALP), IEEE, Nov. 21, 2016, pp. 10-13.
Yan et al., “A Scalable Approach to Using DNN-Derived Features in GMM-HMM Based Acoustic Modeling for LVCSR”, InInterspeech, 2013, pp. 104-108.
Yates, Michael C., “How can I exit Google Assistant after i'm finished with it”, Available online at:—“https://productforums.google.com/forum/#!msg/phone-by-google/faECnR2RJwA/gKNtOkQgAQAJ”, Jan. 11, 2016, 2 pages.
Young et al., “The Hidden Information State model: A practical framework for POMDP-based spoken dialogue management”, Computer Speech & Language, vol. 24, Issue 2, 2010, pp. 150-174.
Zangerle et al., “Recommending #-Tag in Ttter”, Proceedings of the Workshop on Semantic Adaptive Socail Web, 2011, pp. 1-12.
Office Action received for Chinese Patent Application No. 201680069794.4, dated Apr. 22, 2019, 16 pages (7 pages of English Translation and 9 pages of Official Copy).
Adium, “AboutAdium—Adium X—Trac”, available at <http://web.archive.org/web/20070819113247/http://trac.adiumx.com/wiki/AboutAdium>, retrieved on Nov. 25, 2011, 2 pages.
Advisory Action received for U.S. Appl. No. 15/169,348, dated Nov. 13, 2017, 3 pages.
Alfred App, “Alfred”, available at <http://www.alfredapp.com/>, retrieved on Feb. 8, 2012, 5 pages.
Api.Ai, “Android App Review—Speaktoit Assistant”, Available at <https://www.youtube.com/watch?v=myE498nyfGw>, Mar. 30, 2011, 3 pages.
Apple, “VoiceOver”, available at <http://www.apple.com/accessibility/voiceover/>, May 19, 2014, 3 pages.
Berry et al., “PTIME: Personalized Assistance for Calendaring”, ACM Transactions on Intelligent Systems and Technology, vol. 2, No. 4, Article 40, Jul. 2011, pp. 1-22.
Bertulucci, Jeff, “Google Adds Voice Search to Chrome Browser”, PC World, Jun. 14, 2011, 5 pages.
Bocchieri et al., “Use of Geographical Meta-Data in ASR Language and Acoustic Models”, IEEE International Conference on Acoustics Speech and Signal Processing, 2010, pp. 5118-5121.
Butcher, Mike, “EVI Arrives in Town to go Toe-to-Toe with Siri”, TechCrunch, Jan. 23, 2012, 2 pages.
Caraballo et al., “Language Identification Based on a Discriminative Text Categorization Technique”, Iberspeech 2012—Vii Jornadas En Tecnologia Del Habla and IiiIberiansl Tech Workshop, Nov. 21, 2012, pp. 1-10.
Castleos, “Whole House Voice Control Demonstration”, available online at : https://www.youtube.com/watch?v=9SRCoxrZ_W4, Jun. 2, 2012, 26 pages.
Chen, Yi, “Multimedia Siri Finds and Plays Whatever You Ask For”, PSFK Report, Feb. 9, 2012, 9 pages.
Cheyer, Adam, “About Adam Cheyer”, available at <http://www.adam.cheyer.com/about.html>, retrieved on Sep. 17, 2012, 2 pages.
Choi et al., “Acoustic and Visual Signal based Context Awareness System for Mobile Application”, IEEE Transactions on Consumer Electronics, vol. 57, No. 2, May 2011, pp. 738-746.
Colt, Sam, “Here's One Way Apple's Smartwatch Could Be Better Than Anything Else”, Business Insider, Aug. 21, 2014, pp. 1-4.
Evi, “Meet Evi: The One Mobile Application that Provides Solutions for your Everyday Problems”, Feb. 2012, 3 pages.
Exhibit 1, “Natural Language Interface Using Constrained Intermediate Dictionary of Results”, List of Publications Manually Reviewed for the Search of U.S. Pat. No. 7,177,798, Mar. 22, 2013, 1 page.
Extended European Search Report received for European Patent Application No. 16879522.7, dated Nov. 22, 2018, 7 pages.
Final Office Action received for U.S. Appl. No. 15/169,348, dated Jul. 6, 2017, 26 pages.
Findlater et al., “Beyond QWERTY: Augmenting Touch-Screen Keyboards with Multi-Touch Gestures for Non-Alphanumeric Input”, CHI '12, Austin, Texas, USA, May 5-10, 2012, 4 pages.
Gannes, Liz, “Alfred App Gives Personalized Restaurant Recommendations”, AllThingsD, Jul. 18, 2011, pp. 1-3.
Gruber, Thomas R., et al., U.S. Appl. No. 61/186,414, filed Jun. 12, 2009 titled “System and Method for Semantic Auto-Completion” 13 pages.
Gruber, Thomas R., et al., U.S. Appl. No. 61/493,201, filed Jun. 3, 2011 titled “Generating and Processing Data Items That Represent Tasks to Perform”, 68 pages.
Gruber, Thomas R., et al., Unpublished U.S. Appl. No. 61/657,744, filed Jun. 9, 2012 titled “Automatically Adapting User Interfaces for Hands-Free Interaction”, 40 pages.
Gruber, Tom, “Big Think Small Screen: How Semantic Computing in the Cloud will Revolutionize the Consumer Experience on the Phone”, Keynote Presentation at Web 3.0 Conference, Jan. 2010, 41 pages.
Gruber, Tom, “Siri, A Virtual Personal Assistant-Bringing Intelligence to the Interface”, Semantic Technologies Conference, Jun. 16, 2009, 21 pages.
Guay, Matthew, “Location-Driven Productivity with Task Ave”, available at <http://iphone.appstorm.net/reviews/productivity/location-driven-productivity-with-task-ave/>, Feb. 19, 2011, 7 pages.
Guim, Mark, “How to Set a Person-Based Reminder with Cortana”, available at <http://www.wpcentral.com/how-to-person-based-reminder-cortana>, Apr. 26, 2014, 15 pages.
Hardwar, Devindra, “Driving App Waze Builds its own Siri for Hands-Free Voice Control”, Available online at <http://venturebeat.com/2012/02/09/driving-app-waze-builds-its-own-siri-for-hands-free-voice-control/>, retrieved on Feb. 9, 2012, 4 pages.
Hashimoto, Yoshiyuki , “Simple Guide for iPhone Siri, Which Can Be Operated with Your Voice”, Shuwa System Co., Ltd., vol. 1, Jul. 5, 2012, pp. 8, 130, 131.
Headset Button Controller v7.3 APK Full App Download for Android, Blackberry, iPhone, Jan. 27, 2014, 11 pages.
Hear voice from Google translate, Available on URL:https://www.youtube.com/watch?v=18AvMhFgD28, Jan. 28, 2011, 1 page.
id3.org, “id3v2.4.0-Frames”, available at <http://id3.org/id3v2.4.0-frames?action=print>, retrieved on Jan. 22, 2015, 41 pages.
Interactive Voice, available at <http://www.helloivee.com/company/>, retrieved on Feb. 10, 2014, 2 pages.
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2016/043005, dated Jul. 5, 2018, 15 pages.
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2016/043005, dated Oct. 7, 2016, 17 pages.
Iowegian International, “FIR Filter Properties, DSPGuru, Digital Signal Processing Central”, available at <http://www.dspguru.com/dsp/faq/fir/properties> retrieved on Jul. 28, 2010, 6 pages.
Jawaid et al., “Machine Translation with Significant Word Reordering and Rich Target-Side Morphology”, WDS'11 Proceedings of Contributed Papers, Part I, 2011, pp. 161-166.
Jiang et al., “A Syllable-based Name Transliteration System”, Proc. of the 2009 Named Entities Workshop, Aug. 7, 2009, pp. 96-99.
Jouvet et al., “Evaluating Grapheme-to-phoneme Converters in Automatic Speech Recognition Context”, IEEE,, 2012,, pp. 4821-4824.
Kazmucha, Allyson, “How to Send Map Locations Using iMessage”, iMore.com, Available at <http://www.imore.com/how-use-imessage-share-your-location-your-iphone>, Aug. 2, 2012, 6 pages.
Kickstarter, “Ivee Sleek: Wi-Fi Voice-Activated Assistant”, available at <https://www.kickstarter.com/projects/ivee/ivee-sleek-wi-fi-voice-activated-assistant>, retrieved on Feb. 10, 2014, 13 pages.
Lewis, Cameron, “Task Ave for iPhone Review”, Mac Life, Available at <http://www.maclife.com/article/reviews/task_ave_iphone_review>, Mar. 3, 2011, 5 pages.
Meet Ivee, Your Wi-Fi Voice Activated Assistant, available at <http://www.helloivee.com/>, retrieved on Feb. 10, 2014, 8 pages.
Mel Scale, Wikipedia the Free Encyclopedia, Last modified on Oct. 13, 2009 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Mel_scale>, 2 pages.
Microsoft, “Turn on and Use Magnifier”, available at <http://www.microsoft.com/windowsxp/using/accessibility/magnifierturnon.mspx>, retrieved on Jun. 6, 2009.
Miller, Chance, “Google Keyboard Updated with New Personalized Suggestions Feature”, available at <http://9to5google.com/2014/03/19/google-keyboard-updated-with-new-personalized-suggestions-feature/>, Mar. 19, 2014, 4 pages.
Minimum Phase, Wikipedia the free Encyclopedia, Last modified on Jan. 12, 2010 and retrieved on Jul. 28, 2010, available at <http://en.wikipedia.org/wiki/Minimum_phase>, 8 pages.
Mobile Speech Solutions, Mobile Accessibility, SVOX AG Product Information Sheet, available at <http://www.svox.com/site/bra840604/con782768/mob965831936.aSQ?osLang=1>, Sep. 27, 2012, 1 page.
My Cool Aids, “What's New”, available at <http://www.mycoolaids.com/>, 2012, 1 page.
Myers, Brad A., “Shortcutter for Palm”, available at <http://www.cs.cmu.edu/˜pebbles/v5/shortcutter/palm/index.html>, retrieved on Jun. 18, 2014, 10 pages.
Naone, Erica, “Trio: Intelligent Software Assistant”, Technology Review, Mar.-Apr. 2009, 2 pages.
Navigli, Roberto, “Word Sense Disambiguation: A Survey”, ACM Computing Surveys, vol. 41, No. 2, Feb. 2009, 69 pages.
NDTV, “Sony SmartWatch 2 Launched in India for Rs. 14,990”, available at <http://gadgets.ndtv.com/others/news/sony-smartwatch-2-launched-in-india-for-rs-14990-420319>, Sep. 18, 2013, 4 pages.
Ng, Simon, “Google's Task List Now Comes to Iphone”, SimonBlog, Available at <http://www.simonblog.com/2009/02/04/googles-task-list-now-comes-to-iphone/>, Feb. 4, 2009, 3 pages.
Non-Final Office Action received for U.S. Appl. No. 15/169,348, dated Jan. 13, 2017, 19 pages.
Non-Final Office Action received for U.S. Appl. No. 15/169,348, dated May 17, 2018, 27 pages.
Notice of Allowance received for U.S. Appl. No. 15/169,348, dated Oct. 17, 2018, 11 pages.
Osxdaily, “Get a List of Siri Commands Directly from Siri”, Available at <http://osxdaily.com/2013/02/05/list-siri-commands/>, Feb. 5, 2013, 15 pages.
Pan et al., “Natural Language Aided Visual Query Building for Complex Data Access”, In proceeding of: Proceedings of the Twenty-Second Conference on Innovative Applications of Artificial Intelligence, XP055114607, Jul. 11, 2010, pp. 1821-1826.
Phoenix Solutions, Inc., “Declaration of Christopher Schmandt Regarding the MIT Galaxy System”, West Interactive Corp., A Delaware Corporation, Document 40, Jul. 2, 2010, 162 pages.
Powell, Josh, “Now You See Me . . . Show/Hide Performance”, available at http://www.learningjguery.com/2010/05/now-you-see-me-showhide-performance, May 4, 2010, 3 pages.
Sarawagi, Sunita, “CRF Package Page”, available at <http://crf.sourceforge.net/>, retrieved on Apr. 6, 2011, 2 pages.
Simonite, Tom, “One Easy Way to Make Siri Smarter”, Technology Review, Oct. 18, 2011, 2 pages.
Speaker Recognition, Wikipedia, The Free Enclyclopedia, Nov. 2, 2010, 4 pages.
SRI, “SRI Speech: Products: Software Development Kits: EduSpeak”, available at <http://web.archive.org/web/20090828084033/http://www.speechatsri.com/products/eduspeak>shtml, retrieved on Jun. 20, 2013, 2 pages.
Stent et al., “Geo-Centric Language Models for Local Business Voice Search”, AT&T Labs—Research, 2009, pp. 389-396.
Sullivan, Danny, “How Google Instant's Autocomplete Suggestions Work”, available at <http://searchengineland.com/how-google-instant-autocomplete-suggestions-work-62592>, Apr. 6, 2011, 12 pages.
Sundaram et al., “Latent Perceptual Mapping with Data-Driven Variable-Length Acoustic Units for Template-Based Speech Recognition”, ICASSP 2012, Mar. 2012, pp. 4125-4128.
Textndrive, “Text'nDrive App Demo-Listen and Reply to your Messages by Voice while Driving!”, YouTube Video available at <http://www.youtube.com/watch?v=WaGfzoHsAMw>, Apr. 27, 2010, 1 page.
Tofel, Kevin C., “SpeakTolt: A Personal Assistant for Older iPhones, iPads”, Apple News, Tips and Reviews, Feb. 9, 2012, 7 pages.
Tucker, Joshua, “Too Lazy to Grab Your TV Remote? Use Siri Instead”, Engadget, Nov. 30, 2011, 8 pages.
Tur et al., “The CALO Meeting Assistant System”, IEEE Transactions on Audio, Speech and Language Processing, vol. 18, No. 6, Aug. 2010, pp. 1601-1611.
Vlingo Incar, “Distracted Driving Solution with Vlingo InCar”, YouTube Video, Available online at <http://www.youtube.com/watch?v=Vgs8XfXxgz4>, Oct. 2010, 2 pages.
Voiceassist, “Send Text, Listen to and Send E-Mail by Voice”, YouTube Video, Available online at <http://www.youtube.com/watch?v=0tEU61nHHA4>, Jul. 30, 2009, 1 page.
Voiceonthego, “Voice on the Go (BlackBerry)”, YouTube Video, available online at <http://www.youtube.com/watch?v=pJgpWgQS98w>, Jul. 27, 2009, 1 page.
Wikipedia, “Acoustic Model”, available at <http://en.wikipedia.org/wiki/AcousticModel>, retrieved on Sep. 14, 2011, 2 pages.
Wikipedia, “Language Model”, available at <http://en.wikipedia.org/wiki/Language_model>, retrieved on Sep. 14, 2011, 4 pages.
Wikipedia, “Speech Recognition”, available at <http://en.wikipedia.org/wiki/Speech_recognition>, retrieved on Sep. 14, 2011, 12 pages.
Wilson, Mark, “New iPod Shuffle Moves Buttons to Headphones, Adds Text to Speech”, available at <http://gizmodo.com/5167946/new-ipod-shuffle-moves-buttons-to-headphones-adds-text-to-speech>, Mar. 11, 2009, 12 pages.
Xiang et al., “Correcting Phoneme Recognition Errors in Learning Word Pronunciation through Speech Interaction”, Speech Communication, vol. 55, No. 1, Jan. 1, 2013, pp. 190-203.
Xu et al., “Speech-Based Interactive Games for Language Learning: Reading, Translation, and Question-Answering”, Computational Linguistics and Chinese Language Processing, vol. 14, No. 2, Jun. 2009, pp. 133-160.
Zainab, “Google Input Tools Shows Onscreen Keyboard in Multiple Languages [Chrome]”, available at <http://www.addictivetips.com/internet-tips/google-input-tools-shows-multiple-language-onscreen-keyboards-chrome/>, Jan. 3, 2012, 3 pages.
Zhang et al., “Research of Text Classification Model Based on Latent Semantic Analysis and Improved HS-SVM”, Intelligent Systems and Applications (ISA), 2010 2nd International Workshop, May 22-23, 2010, 5 pages.
Zhong et al., “JustSpeak: Enabling Universal Voice Control on Android”, W4A'14, Proceedings of the 11th Web for All Conference, No. 36, Apr. 7-9, 2014, 8 pages.
Office Action received for Chinese Patent Application No. 201680069794.4, dated Dec. 5, 2019, 20 pages (10 pages of English Translation and 10 pages of Official Copy).
Office Action received for Chinese Patent Application No. 201680069794.4, dated May 15, 2020, 21 pages (10 pages of English Translation and 11 pages of Official Copy).
Office Action received for Chinese Patent Application No. 201680069794.4, dated Sep. 11, 2020, 11 pages (5 pages of English Translation and 6 pages of Official Copy).
Office Action received for European Patent Application No. 16879522.7, dated Oct. 28, 2020, 7 pages.
Related Publications (1)
Number Date Country
20190220245 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
62387547 Dec 2015 US
Continuations (1)
Number Date Country
Parent 15169348 May 2016 US
Child 16249301 US