This invention relates to an apparatus and methods for data entry, more specifically this invention relates to an apparatus and methods for a probability-based approach to data entry.
Data entry using a key board or a key pad is known. However, a user may mistakenly enter an unintended key within a neighborhood of the intended key. Therefore, it is desirable to provide a probability based scheme to determine the intended input of the user based upon the sequence of entered keys.
There is provided a method comprising the steps of: providing at least a part of keyboard having a plurality of keys; and associating a probability distribution to each key on the key board.
There is provided a method for entering data by pressing keys on a key pad, be it a key pad with physical keys or an arrangement of domains on a touch screen, comprising the steps of: providing at least a part of keyboard having a plurality of keys; and predetermining probabilities of the user striking a key among the plurality of keys, given the intended key.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present invention.
a illustrates a probability distribution associated to key 1 of
b illustrates a probability distribution associated to key 2 of
c illustrates a probability distribution associated to key 5 of
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention. In addition, the figures represent just one possible example of the method outlined in the sequel.
Before describing in detail embodiments that are in accordance with the present invention, it should be observed that the embodiments reside primarily in combinations of method steps and apparatus components related to discerning and/or using probability based method or apparatus to process user-entered data. Accordingly, the apparatus components and method steps have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
The purpose of the present invention is to describe a method and apparatus for discerning user input on portable keyboards in devices such as mobile computers and smartphones, where it is assumed that the means of input (keyboard or touch screen) is such that mistakes sometimes occur (e.g. individual keys on the keyboard are smaller than the human finger, etc.). Listed infra are a few examples. However, the present invention is contemplated for a variety of data entry scenarios including any sized or shaped key pads or key boards, as well as any suitable data entry means.
The present patent application describes two examples for expository purposes: first, typing text on a QWERTY keyboard; and second, entering UPC codes of items on a numerical keypad. We will refer to these examples as “example 1” and “example 2” respectively. It should be understood that the present invention applies to many scenarios beyond these two. The general setup is described below.
Definition of Terms:
1. The term “keyboard” comprises any means of user input. The keyboard comprises of keys, which is as previously indicated. The keyboard comprises physical keys or may simply comprise domains on a touch screen. Lowercase Greek letters are used to denote a generic key (for example α; β; etc.), while capital letter such as K will be used to denote the set of all keys.
2. The term “word” will be used to indicate an item of intended user input. If the user is writing for text input, this would be a word in the appropriate language. If, for example, the user is checking inventory by inputting UPC codes subject items in a warehouse environment, a word would be the UPC code of an item in inventory. It is assumed that the user intends on entering a word using the keyboard, and mistakes sometimes occur.
3. The term “dictionary” will be used to indicate a pre-determined set of words. In the case of text input, this will be an actual dictionary or lexicon, where in the case of numerical code input this would be a list of all items, for example, in inventory and their UPC codes.
4. The term “string” will be used in reference to the actual user input. This may or may not be a word, since part of the assumption is that the user is prone to making mistakes. However, it is assumed that each string is meant to be a word from the dictionary.
The proposed general setup is as follows. A keyboard is provided, as is a dictionary of words. It will be assumed that the user intends on entering a word from the subject dictionary using the keyboard. Dependent on the arrangement and form of the provided keyboard, there will be a number associated to each pair of keys (α,β) indicating the probability that key β will be pressed when key α is intended. Thus given a user entered string, one is able to associate to every dictionary word a number indicating the likelihood that the entered string would occur given the dictionary word was intended (see further description infra). This works by viewing each keystroke as an independent event, with probabilities given as described above. Combined with optional additional probabilities indicating the likelihood each word was intended, one gets a probability associated to each dictionary word indicating the likelihood it was intended by the user. These scores or results are then used to rank dictionary words according to the most likely outcome (see further description infra).
Referring to
Referring to
It should be noted that such probability densities are assumed to be arbitrary. We have chosen to represent the specific example of typing on a QWERTY keyboard, where we have chosen the probability densities to be roughly Gaussian. Practically, these probability densities can be preset or determined by experimental testing. The densities are directly related to the “probability matrix” described below.
Referring to
Referring to
In
In
In
As can be seen,
Probability Matrix
The qualities of the keyboard (hardware attributes, shape, number of keys, etc) determine how likely the user is to strike keys other than his intended key. Further, entrenched user typing behaviors sometimes affect the likelihood or the probabilities as well. For each pair of keys (α; β) we give a probability (a number ranging from 0 to 1 indicating a probability or likelihood) that the user strikes β when he intends on striking α. We will call this probability P (α; β). Notice since it is assumed that the user will press some key, we have the relationship
ΣβεKP(α,β)=1 for all αεK eq. 1
To account for the scenario when the user misses the keyboard entirely, we can consider the complement of the keyboard as another key in itself. This is particularly applicable to the touch screen scenario.
Once an order is assigned to the keys, this set of probabilities can be written as an n×n matrix, where n denotes the number of keys on our keyboard. We let P={pij}, where pij is the probability that the user presses the jth key when he intends on pressing the ith key. P will be referred to as the “probability matrix”. In terms of this matrix, Eq. 1 indicates that the entries in any row sum to 1.
Suppose our keyboard consists of 9 numerical keys arranged in the format as shown in
So, this matrix indicates that the user will press the “6” key 10% of the time he intends on pressing the “5” key (since p56=0.1). Notice the matrix also indicates that the user “will never” miss an intended key by a large amount or on keys not in close proximity to the intended key. For example, since p46=0, it is assumed that the user will never press “6” when “4” is intended. One should compare row 1 of P to
The probability matrix (Eq. 2) acts as the model for user input. The more accurate this model, the more efficiently our algorithm or method suitable of computer application will run. Therefore, it is likely that the values for the probability matrix (Eq. 2) associated to a fixed or particular keyboard will be obtained via testing or experiment. It is also possible that the values in the probability matrix (Eq. 2) are user customizable or user specific. It is contemplated that the device of the present invention will initiate a learning phase where the values of the probability matrix are seeded. There may also be stock customizable options (for example, a left-handed user might miss keys differently than a right-handed user).
Comparing to Dictionary Words
The probability matrix (Eq. 2) allows us to associate to every word in our dictionary a probability that the user intended on entering that word given his entered string. This works in the following manner. Suppose the user enters the string “α1α2α3”. We consider the dictionary word “β1β2β3”. We know that if the user intended on typing “β1”, he would strike “α1” with probability P (β1; α1). Similarly, if the user intended on typing “β2”, he would strike “α2” with probability P (β2; α2). Therefore, we can say that if a user intended on typing “β1β2β3”, he would type “α1α2α3” with probability P (β1; α1) P (β2; α2) P (β3; α3). In this manner, we associate a number to every dictionary word, based upon the string entered by the user. If the user has entered n letters in the string, only the first n letters of the dictionary words would be used.
Note that this number gives the probability that the user would type the string “α1α2α3” if he intended on typing the word “β1β2β3”. We would like to know the probability that the user intended on typing “β1β2β3” given that he typed “α1α2α3”. A learned reader will recognize this as a statement of conditional probability. We require an additional piece of information, namely a probability associated to each dictionary word indicating the likelihood that word will be intended. In the text entry example 1, this could be given by word frequency or more sophisticated grammatical tools based on sentence context. In the numerical code entry of example 2, this could be the proportion of each particular item in inventory. The absence of such a likelihood associated to each word can be interpreted as assigning equal likelihood to the occurrence of each dictionary word.
We continue our numerical keypad example 2 as shown in
The user then enters the string “684”. We then use these three numbers and the values inherent in our probability matrix to associate to each word a probability:
Assuming that all items exist in equal proportion in inventory, one can then say that the user was most likely trying to enter the codes “6752” or “3856” as both have the highest probability among the set. If it was know that there was a higher proportion of item number “6752” in inventory, then “6752” would then become a better guess than “3856”.
Referring to
As can been seen, the present invention describes a method and apparatus for finding the likelihood of words in dictionaries matching with the user input. There may be one or many matches with varying degree of probabilities based on the user input and the quality of the dictionary.
In the foregoing specification, specific embodiments of the present invention have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present invention. The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Number | Name | Date | Kind |
---|---|---|---|
5963666 | Fujisaki et al. | Oct 1999 | A |
7030863 | Longe et al. | Apr 2006 | B2 |
7117144 | Goodman et al. | Oct 2006 | B2 |
7129932 | Klarlund et al. | Oct 2006 | B1 |
7218249 | Chadha | May 2007 | B2 |
7259751 | Hughes et al. | Aug 2007 | B2 |
7277088 | Robinson et al. | Oct 2007 | B2 |
7319957 | Robinson et al. | Jan 2008 | B2 |
7689588 | Badr et al. | Mar 2010 | B2 |
7912700 | Bower et al. | Mar 2011 | B2 |
20020188448 | Goodman et al. | Dec 2002 | A1 |
20030195890 | Oommen | Oct 2003 | A1 |
20040140956 | Kushler et al. | Jul 2004 | A1 |
20050114115 | Karidis et al. | May 2005 | A1 |
20050169527 | Longe et al. | Aug 2005 | A1 |
20050289463 | Wu et al. | Dec 2005 | A1 |
20060176283 | Suraqui | Aug 2006 | A1 |
20070216658 | Rainisto | Sep 2007 | A1 |
20080028303 | Wu et al. | Jan 2008 | A1 |
20080133222 | Kogan et al. | Jun 2008 | A1 |
20080138135 | Gutowitz | Jun 2008 | A1 |
20080189605 | Kay et al. | Aug 2008 | A1 |
20090089666 | White et al. | Apr 2009 | A1 |
20090249198 | Davis et al. | Oct 2009 | A1 |
20100225591 | Macfarlane | Sep 2010 | A1 |
20110010648 | Rigazio et al. | Jan 2011 | A1 |
20110248924 | Bhattacharjee | Oct 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100036655 A1 | Feb 2010 | US |