Data storage systems store and manage large amounts of data. Keys are used in some data storage systems, pointing to, referencing, or in association with data, to make handling and keeping track of data more manageable and efficient. There may be large numbers of keys, duplicate keys, and/or keys with differing functions and usages in single or multiple locations, for example within differing servers, in a storage system. Communication regarding keys, and management of large numbers of keys, could consume a large amount of communication bandwidth and computing resources, diminishing the efficiency gains brought about by the use of keys. Recovery of storage memory and other system resources may be delayed, or performed at lowered efficiency when one part of a storage system is not aware that another part of the storage system maintains deleted keys.
It is within this context that the embodiments arise.
In some embodiments, a method for deleting a set of keys from a storage server is provided. The method includes generating a probabilistic data structure for a first set of keys and for each key in a second set of keys, determining whether a key of the second set of keys is found in the probabilistic data structure. The method includes identifying the key as a candidate for deletion if the key is not found in the probabilistic data structure.
In some embodiments, a storage system is provided. The system includes memory, configured to hold data and metadata, including keys that identify data and keys associated with data and one or more processors, configured to perform actions. The actions include storing data, metadata, the keys associated with data, and the keys that identify data in the memory and deleting one or more of the keys that identify data, when no longer needed. The method includes producing a probabilistic data structure based on a first set of the keys, the probabilistic data structure configured to determine whether a key tested with the probabilistic data structure is a member of the first set of keys. For keys in a second set of keys stored in the storage system, the actions include determining whether a key of the second set of keys is found in the probabilistic data structure and identifying a key from the second set of keys as a candidate for deletion responsive to the determining finding that the key is not a member of the first set of keys.
In some embodiments, a storage system is provided. The system includes memory and one or more processors, configured to store, in the memory, data, metadata, keys associated with one of the data and the metadata and further configured to delete one or more of the keys. The system includes a data structure generator configured to derive a probabilistic data structure from a first set of keys that identify data such that the probabilistic data structure declares, for a query for a key, what the likelihood of membership of the key is in the first set of keys. The system includes a key query engine configured to query for each key in a second set of keys using the probabilistic data structure derived from the first set of keys and a resource recovery engine configured to identify as candidates for deletion a subset of keys from the second set of keys, responsive to results of the key query engine indicating each key of the subset of keys is definitely not a member of the first set of keys.
Other aspects and advantages of the embodiments will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The described embodiments and the advantages thereof may best be understood by reference to the following description taken in conjunction with the accompanying drawings. These drawings in no way limit any changes in form and detail that may be made to the described embodiments by one skilled in the art without departing from the spirit and scope of the described embodiments.
A storage system as disclosed herein uses probabilistic data structures for the management of keys. In various operations, the storage system creates keys, manages keys, and deletes keys. To communicate in a compact manner regarding existence or nonexistence of keys in one part of the system, so that other parts of the system can delete unneeded keys, and recover storage memory and other system resources, the system generates probabilistic data structures. Storage servers or nodes in the storage system can test keys, using a probabilistic data structure, to determine whether a key is a candidate for deletion. In some embodiments, a key selector is applied to filter a set of keys prior to the generation of a probabilistic data structure, and a key selector is applied to filter another set of keys prior to the testing of keys. Probabilistic data structures can be merged in some embodiments. Discarding of keys can be postponed, pending system conditions. Components or modules for probabilistic data structures can be located in various parts of the storage system, such as in one or more metadata servers or one or more storage servers, or elsewhere in the system.
The storage system 102 has keys 112, which identify files or other data 128, on a metadata server 104. It should be appreciated that over time previously valid keys 112 can be deleted from the metadata server 104. At various points in time, one or more storage servers 106 should be notified, so that the storage server(s) 106 can delete keys 112 that are no longer valid on the metadata server 104 and release resources associated with those keys 112. The storage system 112 accomplishes this task efficiently, with the use of probabilistic data structures, such as a Bloom filter in one embodiment. In other embodiments, probabilistic data structures other than a Bloom filter such as a HyperLogLog, count-min sketch, skip lists, etc. may be utilized with the embodiments described below.
The storage system 102 inserts a valid set of keys into a probabilistic data structure, and sends the probabilistic data structure (e.g., a filter) to one or more storage servers 106. A storage server 106 receiving such a probabilistic data structure is then able to analyze the set of keys 112 that the storage server 106 is presently storing, and deleting or considering for deletion any key 112 not found in the probabilistic data structure. This approach deletes keys 112 from the storage server 106 that are not present on the original metadata server 104, although some keys not present on the original metadata server 104 might survive on a storage server 106 as a result of collisions (false positives) in the probabilistic data structure.
The storage system 102 has one or more processors 116, which could be distributed through or employed by one or more metadata servers 104 and/or one or more storage servers 106. One or more probabilistic data structure generators 118, described in more detail below with reference to
Still referring to
In one operating scenario, the storage system 102 stores data 128 in the storage server(s) 106 (i.e., in the storage memory 126), and takes snapshots 110, which the metadata server(s) 104 store in one or more snapshots repositories 108. When a metadata server 104 deletes a snapshot 110, the keys 112 of that snapshot 110 are deleted. The metadata server(s) 104, or some other part of the storage system 102, can communicate to the storage server(s) 106 as to which of the keys are still valid and exist in the snapshots repository(s) 108, by using the probabilistic data structure generator(s) 118, as further described below. In turn, the storage server(s) 106 can use one or more probabilistic data structures, as generated by the probabilistic data structure generator(s) 118, and one or more key testing modules 122 (also referred to as a key query engine) to determine which keys 112 held by the storage server(s) 106 are candidates for deletion. Upon deletion of keys 112, the storage server(s) 106 can recover storage memory 126 and other system resources formerly used by the data 128 associated with the deleted keys 112. In some embodiments, a storage server 106 has a resource recovery engine 130, which performs resource recovery. One or more key selectors 120 are used to filter the keys 112 at both ends of these processes, for more efficient key handling in some embodiments.
Based on the keys 112 fed into the probabilistic data structure generator 118, the probabilistic data structure generator outputs a probabilistic data structure 202 that has properties useful to the storage system 102. A Bloom filter constructed for members of a set has the property that testing whether an element is a member of the set, by querying that Bloom filter, yields either the answer that the element is definitively not in the set, or the answer that the element is possibly or likely in the set. Bloom filters can be tuned to affect the accuracy of the positive (i.e., possible or likely membership) answers, and a larger Bloom filter has generally a greater accuracy for a given set of keys. Larger Bloom filters are typically more accurate than smaller ones, all other things being equal. False positives are possible, in that the Bloom filter has a low probability of reporting an element is a member of a set when in fact it is not. However, false negatives are not possible, in that the Bloom filter never reports that an element is not a member of the set when in fact it is. This property makes the Bloom filter one suitable type of probabilistic data structure 202 generated by the probabilistic data structure generator 118. As noted above alternative probabilistic data structures besides a Bloom filter may be integrated into the embodiments. The storage system 102 can reliably delete or consider for deletion, a key 112 that a Bloom filter says is not in the set of keys 112 for which the Bloom filter was constructed, without concern for deleting a key 112 and associated data 128 in a storage server 106 when the key 112 is still valid in a metadata server 104 and therefore needed in a storage server 106.
In some embodiments, the storage system 102, or the metadata server 104 originating a probabilistic data structure 202, can send the probabilistic data structure 202 to one storage server 106, multiple storage servers 106, or all of the storage servers 106 in the storage system 102. Selection of which storage server(s) 106 are destinations for a specific probabilistic data structure 202 is situation dependent. For example, a metadata server 104 that is deleting keys 112 of a specific one or more snapshots that were performed on data in one or more specific storage servers 106 could generate a probabilistic data structure 202 based on remaining keys 112 in that metadata server 104 and send that probabilistic data structure 202 to the one or more specific storage servers 106. Those specific storage servers 106 could then apply that probabilistic data structure 202 in order to determine which keys 112 should be considered for deletion. The metadata server 104 would not need to send that probabilistic data structure 202 to other storage servers 106. In some embodiments, in order to improve efficiency of distribution of probabilistic data structures 202, the metadata server(s) 104 track storage servers 106 when making snapshots, or backups, or performing other tasks involving keys 112. This supports classifying or grouping which probabilistic data structure 202 goes to which storage server 106. For example, if a metadata server 104 is aware that none of the keys 112 represented in a probabilistic data structure 202 are on a specific storage server 106, then the metadata server 104 does not need to send that probabilistic data structure 202 to that storage server 106. In the alternative, if the metadata server 104 knows that some of the keys 112 represented in a probabilistic data structure 202 are on a specific storage server 106, then the metadata server 104 could send the probabilistic data structure 202 to the storage server 106. This applies to multiple metadata servers 104, and multiple storage servers 106, and further applies to merged probabilistic data structures 202, as will be described with reference to
Referring to
For example, the attribute 502 could be a value of an epoch (e.g., a specific time or time span, which may or may not be related in a straightforward manner to wall-clock time or calendar dates) for one or more snapshots. The key selector 504 would select which keys 112 belong to that epoch, for generation of a specific probabilistic data structure 202. The same or another key selector 504 would select keys 112 belonging to that same epoch, for use in a key testing module 122 equipped with the same probabilistic data structure 202, e.g., as received from a metadata server 104. By using one or more key selectors 504 in this manner, the storage system 102 can more efficiently generate and use a probabilistic data structure 202, without having to put irrelevant keys 112 into the probabilistic data structure generator 112 or the key testing module 122.
Continuing with reference to
The storage server 106 provides keys 112 that have or are associated with attributes 502, to the same or another key selector 504. The key selector 504 performs a decision action 506, to determine whether the attribute(s) 504 of the key 112 meets the criteria, for each key 112 provided to the key selector 504. If the answer to the decision action 506 is no, the attribute(s) 502 of the key 112 does not meet the criteria then the resulting action 512 is to not use the key 112 in the key testing module 122. If the answer to the decision action 506 is yes, the attribute(s) 502 of the key 112 does meet the criteria, then the action 514 is to use that key 112 in the key testing module 122. Some embodiments employ a key selector 504 as a filter prior to the probabilistic data structure generator 118, some embodiments employ a key selector 504 as a filter prior to the key testing module 122, some embodiments employ both, and some embodiments employ neither. In some embodiments, the storage server 106 does not consider any keys 112 that would not have been included in the probabilistic data structure 202 created by the metadata server 104 and the probabilistic data structure generator 118 in order to avoid deleting a key that is still valid.
In a decision action 710, it is determined whether the key is found in the probabilistic data structure. If the answer to the decision action 710 is yes, the key is found in the probabilistic data structure, then the action 712 is performed, and the key is kept or not discarded. If the answer to the decision action 710 is no, the key is not found in the probabilistic data structure, then the action 714 is performed, and the key is a candidate for deletion. In some embodiments the key may be deleted immediately upon not being found in the probabilistic data structure. Outcomes of the decision action are probabilistic, in accordance with the use of a probabilistic data structure. As mentioned above, use of a Bloom filter or other suitable probabilistic data structure can give false positives, but no false negatives. Other types of probabilistic data structures could have additional characteristics to the ability to provide no false negatives.
It should be appreciated that the methods described herein may be performed with a digital processing system, such as a conventional, general-purpose computer system. Special purpose computers, which are designed or programmed to perform only one function may be used in the alternative.
Display 811 is in communication with CPU 801, memory 803, and mass storage device 807, through bus 805. Display 811 is configured to display any visualization tools or reports associated with the system described herein. Input/output device 809 is coupled to bus 805 in order to communicate information in command selections to CPU 801. It should be appreciated that data to and from external devices may be communicated through the input/output device 809. CPU 801 can be defined to execute the functionality described herein to enable the functionality described with reference to
Detailed illustrative embodiments are disclosed herein. However, specific functional details disclosed herein are merely representative for purposes of describing embodiments. Embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the embodiments set forth herein.
It should be understood that although the terms first, second, etc. may be used herein to describe various steps or calculations, these steps or calculations should not be limited by these terms. These terms are only used to distinguish one step or calculation from another. For example, a first calculation could be termed a second calculation, and, similarly, a second step could be termed a first step, without departing from the scope of this disclosure. As used herein, the term “and/or” and the “/” symbol includes any and all combinations of one or more of the associated listed items.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising”, “includes”, and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. Therefore, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
With the above embodiments in mind, it should be understood that the embodiments might employ various computer-implemented operations involving data stored in computer systems. These operations are those requiring physical manipulation of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. Further, the manipulations performed are often referred to in terms, such as producing, identifying, determining, or comparing. Any of the operations described herein that form part of the embodiments are useful machine operations. The embodiments also relate to a device or an apparatus for performing these operations. The apparatus can be specially constructed for the required purpose, or the apparatus can be a general-purpose computer selectively activated or configured by a computer program stored in the computer. In particular, various general-purpose machines can be used with computer programs written in accordance with the teachings herein, or it may be more convenient to construct a more specialized apparatus to perform the required operations.
A module, an application, a layer, an agent or other method-operable entity could be implemented as hardware, firmware, or a processor executing software, or combinations thereof. It should be appreciated that, where a software-based embodiment is disclosed herein, the software can be embodied in a physical machine such as a controller. For example, a controller could include a first module and a second module. A controller could be configured to perform various actions, e.g., of a method, an application, a layer or an agent.
The embodiments can also be embodied as computer readable code on a tangible non-transitory computer readable medium. The computer readable medium is any data storage device that can store data, which can be thereafter read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network coupled computer system so that the computer readable code is stored and executed in a distributed fashion. Embodiments described herein may be practiced with various computer system configurations including hand-held devices, tablets, microprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers and the like. The embodiments can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a wire-based or wireless network.
Although the method operations were described in a specific order, it should be understood that other operations may be performed in between described operations, described operations may be adjusted so that they occur at slightly different times or the described operations may be distributed in a system which allows the occurrence of the processing operations at various intervals associated with the processing.
In various embodiments, one or more portions of the methods and mechanisms described herein may form part of a cloud-computing environment. In such embodiments, resources may be provided over the Internet as services according to one or more various models. Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). In IaaS, computer infrastructure is delivered as a service. In such a case, the computing equipment is generally owned and operated by the service provider. In the PaaS model, software tools and underlying equipment used by developers to develop software solutions may be provided as a service and hosted by the service provider. SaaS typically includes a service provider licensing software as a service on demand. The service provider may host the software, or may deploy the software to a customer for a given period of time. Numerous combinations of the above models are possible and are contemplated.
Various units, circuits, or other components may be described or claimed as “configured to” perform a task or tasks. In such contexts, the phrase “configured to” is used to connote structure by indicating that the units/circuits/components include structure (e.g., circuitry) that performs the task or tasks during operation. As such, the unit/circuit/component can be said to be configured to perform the task even when the specified unit/circuit/component is not currently operational (e.g., is not on). The units/circuits/components used with the “configured to” language include hardware—for example, circuits, memory storing program instructions executable to implement the operation, etc. Reciting that a unit/circuit/component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. 112, sixth paragraph, for that unit/circuit/component. Additionally, “configured to” can include generic structure (e.g., generic circuitry) that is manipulated by software and/or firmware (e.g., an FPGA or a general-purpose processor executing software) to operate in manner that is capable of performing the task(s) at issue. “Configured to” may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to fabricate devices (e.g., integrated circuits) that are adapted to implement or perform one or more tasks.
The foregoing description, for the purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the embodiments and its practical applications, to thereby enable others skilled in the art to best utilize the embodiments and various modifications as may be suited to the particular use contemplated. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
This is a continuation application for patent entitled to a filing date and claiming the benefit of earlier-filed U.S. patent application Ser. No. 16/953,213, filed Nov. 19, 2020, which is a continuation of U.S. Pat. No. 10,846,275, issued Nov. 24, 2020, each of which is hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5390327 | Lubbers et al. | Feb 1995 | A |
5450581 | Bergen et al. | Sep 1995 | A |
5479653 | Jones | Dec 1995 | A |
5488731 | Mendelsohn | Jan 1996 | A |
5504858 | Ellis et al. | Apr 1996 | A |
5551027 | Choy | Aug 1996 | A |
5564113 | Bergen et al. | Oct 1996 | A |
5574882 | Menon et al. | Nov 1996 | A |
5649093 | Hanko et al. | Jul 1997 | A |
5883909 | DeKoning et al. | Mar 1999 | A |
6000010 | Legg | Dec 1999 | A |
6260156 | Garvin et al. | Jul 2001 | B1 |
6269453 | Krantz | Jul 2001 | B1 |
6275898 | DeKoning | Aug 2001 | B1 |
6453428 | Stephenson | Sep 2002 | B1 |
6523087 | Busser | Feb 2003 | B2 |
6535417 | Tsuda et al. | Mar 2003 | B2 |
6643748 | Wieland | Nov 2003 | B1 |
6725392 | Frey et al. | Apr 2004 | B1 |
6763455 | Hall | Jul 2004 | B2 |
6836816 | Kendall | Dec 2004 | B2 |
6985995 | Holland et al. | Jan 2006 | B2 |
7032125 | Holt et al. | Apr 2006 | B2 |
7047358 | Lee et al. | May 2006 | B2 |
7051155 | Talagala et al. | May 2006 | B2 |
7055058 | Lee et al. | May 2006 | B2 |
7065617 | Wang | Jun 2006 | B2 |
7069383 | Yamamoto et al. | Jun 2006 | B2 |
7076606 | Orsley | Jul 2006 | B2 |
7107480 | Moshayedi et al. | Sep 2006 | B1 |
7159150 | Kenchammana-Hosekote et al. | Jan 2007 | B2 |
7162575 | Dalal et al. | Jan 2007 | B2 |
7164608 | Lee | Jan 2007 | B2 |
7188270 | Nanda et al. | Mar 2007 | B1 |
7334156 | Land et al. | Feb 2008 | B2 |
7370220 | Nguyen et al. | May 2008 | B1 |
7386666 | Beauchamp et al. | Jun 2008 | B1 |
7398285 | Kisley | Jul 2008 | B2 |
7424498 | Patterson | Sep 2008 | B1 |
7424592 | Karr et al. | Sep 2008 | B1 |
7444532 | Masuyama et al. | Oct 2008 | B2 |
7480658 | Heinla et al. | Jan 2009 | B2 |
7484056 | Madnani et al. | Jan 2009 | B2 |
7484057 | Madnani et al. | Jan 2009 | B1 |
7484059 | Ofer et al. | Jan 2009 | B1 |
7536506 | Ashmore et al. | May 2009 | B2 |
7558859 | Kasiolas et al. | Jul 2009 | B2 |
7565446 | Talagala et al. | Jul 2009 | B2 |
7613947 | Coatney et al. | Nov 2009 | B1 |
7634617 | Misra | Dec 2009 | B2 |
7634618 | Misra | Dec 2009 | B2 |
7681104 | Sim-Tang et al. | Mar 2010 | B1 |
7681105 | Sim-Tang et al. | Mar 2010 | B1 |
7681109 | Litsyn et al. | Mar 2010 | B2 |
7730257 | Franklin | Jun 2010 | B2 |
7730258 | Smith et al. | Jun 2010 | B1 |
7730274 | Usgaonkar | Jun 2010 | B1 |
7743276 | Jacobson et al. | Jun 2010 | B2 |
7752489 | Deenadhayalan et al. | Jul 2010 | B2 |
7757038 | Kitahara | Jul 2010 | B2 |
7757059 | Ofer et al. | Jul 2010 | B1 |
7774308 | Hillis | Aug 2010 | B2 |
7778960 | Chatterjee et al. | Aug 2010 | B1 |
7783955 | Murin | Aug 2010 | B2 |
7814272 | Barrall et al. | Oct 2010 | B2 |
7814273 | Barrall | Oct 2010 | B2 |
7818531 | Barrall | Oct 2010 | B2 |
7827351 | Suetsugu et al. | Nov 2010 | B2 |
7827439 | Mathew et al. | Nov 2010 | B2 |
7831768 | Ananthamurthy et al. | Nov 2010 | B2 |
7856583 | Smith | Dec 2010 | B1 |
7870105 | Arakawa et al. | Jan 2011 | B2 |
7873878 | Belluomini et al. | Jan 2011 | B2 |
7885938 | Greene et al. | Feb 2011 | B1 |
7886111 | Klemm et al. | Feb 2011 | B2 |
7908448 | Chatterjee et al. | Mar 2011 | B1 |
7916538 | Jeon et al. | Mar 2011 | B2 |
7921268 | Jakob | Apr 2011 | B2 |
7930499 | Duchesne | Apr 2011 | B2 |
7941697 | Mathew et al. | May 2011 | B2 |
7958303 | Shuster | Jun 2011 | B2 |
7971129 | Watson et al. | Jun 2011 | B2 |
7975115 | Wayda et al. | Jul 2011 | B2 |
7984016 | Kisley | Jul 2011 | B2 |
7991822 | Bish et al. | Aug 2011 | B2 |
8006126 | Deenadhayalan et al. | Aug 2011 | B2 |
8010485 | Chatterjee et al. | Aug 2011 | B1 |
8010829 | Chatterjee et al. | Aug 2011 | B1 |
8020047 | Courtney | Sep 2011 | B2 |
8046548 | Chatterjee et al. | Oct 2011 | B1 |
8051361 | Sim-Tang et al. | Nov 2011 | B2 |
8051362 | Li et al. | Nov 2011 | B2 |
8074038 | Lionetti et al. | Dec 2011 | B2 |
8082393 | Galloway et al. | Dec 2011 | B2 |
8086603 | Nasre et al. | Dec 2011 | B2 |
8086634 | Mimatsu | Dec 2011 | B2 |
8086911 | Taylor | Dec 2011 | B1 |
8090837 | Shin et al. | Jan 2012 | B2 |
8108502 | Tabbara et al. | Jan 2012 | B2 |
8117388 | Jernigan, IV | Feb 2012 | B2 |
8117521 | Parker et al. | Feb 2012 | B2 |
8140821 | Raizen et al. | Mar 2012 | B1 |
8145838 | Miller et al. | Mar 2012 | B1 |
8145840 | Koul et al. | Mar 2012 | B2 |
8175012 | Chu et al. | May 2012 | B2 |
8176360 | Frost et al. | May 2012 | B2 |
8176405 | Hafner et al. | May 2012 | B2 |
8180855 | Aiello et al. | May 2012 | B2 |
8200922 | Mckean et al. | Jun 2012 | B2 |
8209469 | Carpenter et al. | Jun 2012 | B2 |
8225006 | Karamcheti | Jul 2012 | B1 |
8239618 | Kotzur et al. | Aug 2012 | B2 |
8244999 | Chatterjee et al. | Aug 2012 | B1 |
8261016 | Goel | Sep 2012 | B1 |
8271455 | Kesselman | Sep 2012 | B2 |
8285686 | Kesselman | Oct 2012 | B2 |
8305811 | Jeon | Nov 2012 | B2 |
8315999 | Chatley et al. | Nov 2012 | B2 |
8327080 | Der | Dec 2012 | B1 |
8335769 | Kesselman | Dec 2012 | B2 |
8341118 | Drobychev et al. | Dec 2012 | B2 |
8351290 | Huang et al. | Jan 2013 | B1 |
8364920 | Parkison et al. | Jan 2013 | B1 |
8365041 | Olbrich et al. | Jan 2013 | B2 |
8375146 | Sinclair | Feb 2013 | B2 |
8397016 | Talagala et al. | Mar 2013 | B2 |
8402152 | Duran | Mar 2013 | B2 |
8412880 | Leibowitz et al. | Apr 2013 | B2 |
8423739 | Ash et al. | Apr 2013 | B2 |
8429436 | Fillingim et al. | Apr 2013 | B2 |
8452928 | Ofer et al. | May 2013 | B1 |
8473698 | Lionetti et al. | Jun 2013 | B2 |
8473778 | Simitci et al. | Jun 2013 | B2 |
8473815 | Chung et al. | Jun 2013 | B2 |
8479037 | Chatterjee et al. | Jul 2013 | B1 |
8484414 | Sugimoto et al. | Jul 2013 | B2 |
8498967 | Chatterjee et al. | Jul 2013 | B1 |
8504797 | Mimatsu | Aug 2013 | B2 |
8522073 | Cohen | Aug 2013 | B2 |
8533408 | Madnani et al. | Sep 2013 | B1 |
8533527 | Daikokuya et al. | Sep 2013 | B2 |
8539177 | Madnani et al. | Sep 2013 | B1 |
8544029 | Bakke et al. | Sep 2013 | B2 |
8549224 | Zeryck et al. | Oct 2013 | B1 |
8583861 | Ofer et al. | Nov 2013 | B1 |
8589625 | Colgrove et al. | Nov 2013 | B2 |
8595455 | Chatterjee et al. | Nov 2013 | B2 |
8615599 | Takefman et al. | Dec 2013 | B1 |
8627136 | Shankar et al. | Jan 2014 | B2 |
8627138 | Clark et al. | Jan 2014 | B1 |
8639669 | Douglis et al. | Jan 2014 | B1 |
8639863 | Kanapathippillai et al. | Jan 2014 | B1 |
8640000 | Cypher | Jan 2014 | B1 |
8650343 | Kanapathippillai et al. | Feb 2014 | B1 |
8660131 | Vermunt et al. | Feb 2014 | B2 |
8661218 | Piszczek et al. | Feb 2014 | B1 |
8671072 | Shah et al. | Mar 2014 | B1 |
8689042 | Kanapathippillai et al. | Apr 2014 | B1 |
8700875 | Barron et al. | Apr 2014 | B1 |
8706694 | Chatterjee et al. | Apr 2014 | B2 |
8706914 | Duchesneau | Apr 2014 | B2 |
8706932 | Kanapathippillai et al. | Apr 2014 | B1 |
8712963 | Douglis et al. | Apr 2014 | B1 |
8713405 | Healey, Jr. et al. | Apr 2014 | B2 |
8719621 | Karmarkar | May 2014 | B1 |
8725730 | Keeton et al. | May 2014 | B2 |
8751859 | Becker-Szendy et al. | Jun 2014 | B2 |
8756387 | Frost et al. | Jun 2014 | B2 |
8762793 | Grube et al. | Jun 2014 | B2 |
8769232 | Suryabudi et al. | Jul 2014 | B2 |
8775858 | Gower et al. | Jul 2014 | B2 |
8775868 | Colgrove et al. | Jul 2014 | B2 |
8788913 | Xin et al. | Jul 2014 | B1 |
8793447 | Usgaonkar et al. | Jul 2014 | B2 |
8799746 | Baker et al. | Aug 2014 | B2 |
8819311 | Liao | Aug 2014 | B2 |
8819383 | Jobanputra et al. | Aug 2014 | B1 |
8822155 | Sukumar et al. | Sep 2014 | B2 |
8824261 | Miller et al. | Sep 2014 | B1 |
8832528 | Thatcher et al. | Sep 2014 | B2 |
8838541 | Camble et al. | Sep 2014 | B2 |
8838892 | Li | Sep 2014 | B2 |
8843700 | Salessi et al. | Sep 2014 | B1 |
8850108 | Hayes et al. | Sep 2014 | B1 |
8850288 | Azier et al. | Sep 2014 | B1 |
8856593 | Eckhardt et al. | Oct 2014 | B2 |
8856619 | Cypher | Oct 2014 | B1 |
8862617 | Kesselman | Oct 2014 | B2 |
8862847 | Feng et al. | Oct 2014 | B2 |
8862928 | Xavier et al. | Oct 2014 | B2 |
8868825 | Hayes et al. | Oct 2014 | B1 |
8874836 | Hayes et al. | Oct 2014 | B1 |
8880793 | Nagineni | Nov 2014 | B2 |
8880825 | Lionetti et al. | Nov 2014 | B2 |
8886778 | Nedved et al. | Nov 2014 | B2 |
8898383 | Yamamoto et al. | Nov 2014 | B2 |
8898388 | Kimmel | Nov 2014 | B1 |
8904231 | Coatney et al. | Dec 2014 | B2 |
8918478 | Ozzie et al. | Dec 2014 | B2 |
8930307 | Colgrove et al. | Jan 2015 | B2 |
8930633 | Amit et al. | Jan 2015 | B2 |
8943357 | Atzmony | Jan 2015 | B2 |
8949502 | McKnight et al. | Feb 2015 | B2 |
8959110 | Smith et al. | Feb 2015 | B2 |
8959388 | Kuang et al. | Feb 2015 | B1 |
8972478 | Storer et al. | Mar 2015 | B1 |
8972779 | Lee et al. | Mar 2015 | B2 |
8977597 | Ganesh et al. | Mar 2015 | B2 |
8996828 | Kalos et al. | Mar 2015 | B2 |
9003144 | Hayes et al. | Apr 2015 | B1 |
9009724 | Gold et al. | Apr 2015 | B2 |
9021053 | Bernbo et al. | Apr 2015 | B2 |
9021215 | Meir et al. | Apr 2015 | B2 |
9025393 | Wu et al. | May 2015 | B2 |
9043372 | Makkar et al. | May 2015 | B2 |
9047214 | Northcott | Jun 2015 | B1 |
9053808 | Sprouse et al. | Jun 2015 | B2 |
9058155 | Cepulis et al. | Jun 2015 | B2 |
9063895 | Madnani et al. | Jun 2015 | B1 |
9063896 | Madnani et al. | Jun 2015 | B1 |
9098211 | Madnani et al. | Aug 2015 | B1 |
9110898 | Chamness et al. | Aug 2015 | B1 |
9110964 | Shilane et al. | Aug 2015 | B1 |
9116819 | Cope et al. | Aug 2015 | B2 |
9117536 | Yoon et al. | Aug 2015 | B2 |
9122401 | Zaltsman et al. | Sep 2015 | B2 |
9123422 | Yu et al. | Sep 2015 | B2 |
9124300 | Sharon et al. | Sep 2015 | B2 |
9134908 | Horn et al. | Sep 2015 | B2 |
9153337 | Sutardja | Oct 2015 | B2 |
9158472 | Kesselman et al. | Oct 2015 | B2 |
9159422 | Lee et al. | Oct 2015 | B1 |
9164891 | Karamcheti et al. | Oct 2015 | B2 |
9183136 | Kawamura et al. | Nov 2015 | B2 |
9189650 | Jaye et al. | Nov 2015 | B2 |
9201733 | Verma et al. | Dec 2015 | B2 |
9207876 | Shu et al. | Dec 2015 | B2 |
9229656 | Contreras et al. | Jan 2016 | B1 |
9229810 | He et al. | Jan 2016 | B2 |
9235475 | Shilane et al. | Jan 2016 | B1 |
9244626 | Shah et al. | Jan 2016 | B2 |
9250999 | Barroso | Feb 2016 | B1 |
9251066 | Colgrove et al. | Feb 2016 | B2 |
9268648 | Barash et al. | Feb 2016 | B1 |
9268806 | Kesselman | Feb 2016 | B1 |
9280678 | Redberg | Mar 2016 | B2 |
9286002 | Karamcheti et al. | Mar 2016 | B1 |
9292214 | Kalos et al. | Mar 2016 | B2 |
9298760 | Li et al. | Mar 2016 | B1 |
9304908 | Karamcheti et al. | Apr 2016 | B1 |
9311969 | Sharon et al. | Apr 2016 | B2 |
9311970 | Sharon et al. | Apr 2016 | B2 |
9323663 | Karamcheti et al. | Apr 2016 | B2 |
9323667 | Bennett | Apr 2016 | B2 |
9323681 | Apostolides et al. | Apr 2016 | B2 |
9335942 | Kumar et al. | May 2016 | B2 |
9348538 | Mallaiah et al. | May 2016 | B2 |
9355022 | Ravimohan et al. | May 2016 | B2 |
9384082 | Lee et al. | Jul 2016 | B1 |
9384252 | Akirav et al. | Jul 2016 | B2 |
9389958 | Sundaram et al. | Jul 2016 | B2 |
9390019 | Patterson et al. | Jul 2016 | B2 |
9395922 | Nishikido et al. | Jul 2016 | B2 |
9396202 | Drobychev et al. | Jul 2016 | B1 |
9400828 | Kesselman et al. | Jul 2016 | B2 |
9405478 | Koseki et al. | Aug 2016 | B2 |
9411685 | Lee | Aug 2016 | B2 |
9417960 | Cai et al. | Aug 2016 | B2 |
9417963 | He et al. | Aug 2016 | B2 |
9430250 | Hamid et al. | Aug 2016 | B2 |
9430542 | Akirav et al. | Aug 2016 | B2 |
9432541 | Ishida | Aug 2016 | B2 |
9454434 | Sundaram et al. | Sep 2016 | B2 |
9471579 | Natanzon | Oct 2016 | B1 |
9477554 | Hayes et al. | Oct 2016 | B2 |
9477632 | Du | Oct 2016 | B2 |
9501398 | George et al. | Nov 2016 | B2 |
9525737 | Friedman | Dec 2016 | B2 |
9529542 | Friedman et al. | Dec 2016 | B2 |
9535631 | Fu et al. | Jan 2017 | B2 |
9552248 | Miller et al. | Jan 2017 | B2 |
9552291 | Munetoh et al. | Jan 2017 | B2 |
9552299 | Stalzer | Jan 2017 | B2 |
9563517 | Natanzon et al. | Feb 2017 | B1 |
9588698 | Karamcheti et al. | Mar 2017 | B1 |
9588712 | Kalos et al. | Mar 2017 | B2 |
9594652 | Sathiamoorthy et al. | Mar 2017 | B1 |
9600193 | Ahrens et al. | Mar 2017 | B2 |
9619321 | Haratsch et al. | Apr 2017 | B1 |
9619430 | Kannan et al. | Apr 2017 | B2 |
9645754 | Li et al. | May 2017 | B2 |
9667720 | Bent et al. | May 2017 | B1 |
9710535 | Aizman et al. | Jul 2017 | B2 |
9733840 | Karamcheti et al. | Aug 2017 | B2 |
9734225 | Akirav et al. | Aug 2017 | B2 |
9740403 | Storer et al. | Aug 2017 | B2 |
9740700 | Chopra et al. | Aug 2017 | B1 |
9740762 | Horowitz et al. | Aug 2017 | B2 |
9747319 | Bestler et al. | Aug 2017 | B2 |
9747320 | Kesselman | Aug 2017 | B2 |
9767130 | Bestler et al. | Sep 2017 | B2 |
9781227 | Friedman et al. | Oct 2017 | B2 |
9785498 | Misra et al. | Oct 2017 | B2 |
9798486 | Singh | Oct 2017 | B1 |
9804925 | Carmi et al. | Oct 2017 | B1 |
9811285 | Karamcheti et al. | Nov 2017 | B1 |
9811546 | Bent et al. | Nov 2017 | B1 |
9818478 | Chung | Nov 2017 | B2 |
9829066 | Thomas et al. | Nov 2017 | B2 |
9836245 | Hayes et al. | Dec 2017 | B2 |
9891854 | Munetoh et al. | Feb 2018 | B2 |
9891860 | Delgado et al. | Feb 2018 | B1 |
9892005 | Kedem et al. | Feb 2018 | B2 |
9892186 | Akirav et al. | Feb 2018 | B2 |
9904589 | Donlan et al. | Feb 2018 | B1 |
9904717 | Anglin et al. | Feb 2018 | B2 |
9910748 | Pan | Mar 2018 | B2 |
9910904 | Anglin et al. | Mar 2018 | B2 |
9934237 | Shilane et al. | Apr 2018 | B1 |
9940065 | Kalos et al. | Apr 2018 | B2 |
9946604 | Glass | Apr 2018 | B1 |
9952809 | Shah | Apr 2018 | B2 |
9959167 | Donlan et al. | May 2018 | B1 |
9965539 | D'Halluin et al. | May 2018 | B2 |
9998539 | Brock et al. | Jun 2018 | B1 |
10007457 | Hayes et al. | Jun 2018 | B2 |
10013177 | Liu et al. | Jul 2018 | B2 |
10013311 | Sundaram et al. | Jul 2018 | B2 |
10019314 | Yang et al. | Jul 2018 | B2 |
10019317 | Usvyatsky et al. | Jul 2018 | B2 |
10031703 | Natanzon et al. | Jul 2018 | B1 |
10061512 | Lin | Aug 2018 | B2 |
10073626 | Karamcheti et al. | Sep 2018 | B2 |
10082985 | Hayes et al. | Sep 2018 | B2 |
10089012 | Chen et al. | Oct 2018 | B1 |
10089174 | Yang | Oct 2018 | B2 |
10089176 | Donlan et al. | Oct 2018 | B1 |
10108819 | Donlan et al. | Oct 2018 | B1 |
10146787 | Bashyam et al. | Dec 2018 | B2 |
10152268 | Chakraborty et al. | Dec 2018 | B1 |
10157098 | Yang et al. | Dec 2018 | B2 |
10162704 | Kirschner et al. | Dec 2018 | B1 |
10180875 | Klein | Jan 2019 | B2 |
10185730 | Bestler et al. | Jan 2019 | B2 |
10235065 | Miller et al. | Mar 2019 | B1 |
10324639 | Seo | Jun 2019 | B2 |
10567406 | Astigarraga et al. | Feb 2020 | B2 |
10846137 | Vallala et al. | Nov 2020 | B2 |
10846275 | Hayes et al. | Nov 2020 | B2 |
10877683 | Wu et al. | Dec 2020 | B2 |
11076509 | Alissa et al. | Jul 2021 | B2 |
11106810 | Natanzon et al. | Aug 2021 | B2 |
11194707 | Stalzer | Dec 2021 | B2 |
20020103793 | Koller | Aug 2002 | A1 |
20020144059 | Kendall | Oct 2002 | A1 |
20030105984 | Masuyama et al. | Jun 2003 | A1 |
20030110205 | Johnson | Jun 2003 | A1 |
20040015478 | Pauly | Jan 2004 | A1 |
20040161086 | Buntin et al. | Aug 2004 | A1 |
20050001652 | Malik et al. | Jan 2005 | A1 |
20050076228 | Davis et al. | Apr 2005 | A1 |
20050235132 | Karr et al. | Oct 2005 | A1 |
20050256972 | Cochran | Nov 2005 | A1 |
20050278460 | Shin et al. | Dec 2005 | A1 |
20050283649 | Turner et al. | Dec 2005 | A1 |
20060015683 | Ashmore et al. | Jan 2006 | A1 |
20060114930 | Lucas et al. | Jun 2006 | A1 |
20060146199 | Kijak | Jul 2006 | A1 |
20060174157 | Barrall et al. | Aug 2006 | A1 |
20060248294 | Nedved et al. | Nov 2006 | A1 |
20070079068 | Draggon | Apr 2007 | A1 |
20070214194 | Reuter | Sep 2007 | A1 |
20070214314 | Reuter | Sep 2007 | A1 |
20070234016 | Davis et al. | Oct 2007 | A1 |
20070244908 | Rajan | Oct 2007 | A1 |
20070268905 | Baker et al. | Nov 2007 | A1 |
20080005060 | Khalidi | Jan 2008 | A1 |
20080080709 | Michtchenko et al. | Apr 2008 | A1 |
20080107274 | Worthy | May 2008 | A1 |
20080152151 | Pourzandi | Jun 2008 | A1 |
20080155191 | Anderson et al. | Jun 2008 | A1 |
20080256141 | Wayda et al. | Oct 2008 | A1 |
20080295118 | Liao | Nov 2008 | A1 |
20090077208 | Nguyen et al. | Mar 2009 | A1 |
20090138654 | Sutardja | May 2009 | A1 |
20090216910 | Duchesneau | Aug 2009 | A1 |
20090216920 | Lauterbach et al. | Aug 2009 | A1 |
20100017444 | Chatterjee et al. | Jan 2010 | A1 |
20100042636 | Lu | Feb 2010 | A1 |
20100094806 | Apostolides et al. | Apr 2010 | A1 |
20100115070 | Missimilly | May 2010 | A1 |
20100125695 | Wu et al. | May 2010 | A1 |
20100162076 | Sim-Tang et al. | Jun 2010 | A1 |
20100169707 | Mathew et al. | Jul 2010 | A1 |
20100174576 | Naylor | Jul 2010 | A1 |
20100235362 | Cormode | Sep 2010 | A1 |
20100268908 | Ouyang et al. | Oct 2010 | A1 |
20100306500 | Mimatsu | Dec 2010 | A1 |
20110035540 | Fitzgerald et al. | Feb 2011 | A1 |
20110040925 | Frost et al. | Feb 2011 | A1 |
20110060927 | Fillingim et al. | Mar 2011 | A1 |
20110066577 | Van Gael | Mar 2011 | A1 |
20110119462 | Leach et al. | May 2011 | A1 |
20110219170 | Frost et al. | Sep 2011 | A1 |
20110238625 | Hamaguchi et al. | Sep 2011 | A1 |
20110264843 | Haines et al. | Oct 2011 | A1 |
20110302369 | Goto et al. | Dec 2011 | A1 |
20120004111 | Colwell | Jan 2012 | A1 |
20120011398 | Eckhardt et al. | Jan 2012 | A1 |
20120079318 | Colgrove et al. | Mar 2012 | A1 |
20120089567 | Takahashi et al. | Apr 2012 | A1 |
20120110249 | Jeong et al. | May 2012 | A1 |
20120131253 | McKnight et al. | May 2012 | A1 |
20120158923 | Mohamed et al. | Jun 2012 | A1 |
20120191900 | Kunimatsu et al. | Jul 2012 | A1 |
20120198152 | Terry et al. | Aug 2012 | A1 |
20120198261 | Brown et al. | Aug 2012 | A1 |
20120209943 | Jung | Aug 2012 | A1 |
20120226934 | Rao | Sep 2012 | A1 |
20120246435 | Meir et al. | Sep 2012 | A1 |
20120260055 | Murase | Oct 2012 | A1 |
20120303627 | Keeton et al. | Nov 2012 | A1 |
20120311557 | Resch | Dec 2012 | A1 |
20130022201 | Glew et al. | Jan 2013 | A1 |
20130036314 | Glew et al. | Feb 2013 | A1 |
20130042056 | Shats et al. | Feb 2013 | A1 |
20130060884 | Bernbo et al. | Mar 2013 | A1 |
20130067188 | Mehra et al. | Mar 2013 | A1 |
20130073894 | Xavier et al. | Mar 2013 | A1 |
20130124776 | Hallak et al. | May 2013 | A1 |
20130132800 | Healey, Jr. et al. | May 2013 | A1 |
20130151653 | Sawicki et al. | Jun 2013 | A1 |
20130151771 | Tsukahara et al. | Jun 2013 | A1 |
20130173853 | Ungureanu et al. | Jul 2013 | A1 |
20130238554 | Yucel et al. | Sep 2013 | A1 |
20130318101 | Chen | Nov 2013 | A1 |
20130339314 | Carpentier et al. | Dec 2013 | A1 |
20130339635 | Amit et al. | Dec 2013 | A1 |
20130339818 | Baker et al. | Dec 2013 | A1 |
20140040535 | Lee et al. | Feb 2014 | A1 |
20140040702 | He et al. | Feb 2014 | A1 |
20140041047 | Jaye et al. | Feb 2014 | A1 |
20140047263 | Coatney et al. | Feb 2014 | A1 |
20140047269 | Kim | Feb 2014 | A1 |
20140063721 | Herman et al. | Mar 2014 | A1 |
20140064048 | Cohen et al. | Mar 2014 | A1 |
20140067767 | Ganesh et al. | Mar 2014 | A1 |
20140068224 | Fan et al. | Mar 2014 | A1 |
20140075252 | Luo et al. | Mar 2014 | A1 |
20140122510 | Namkoong et al. | May 2014 | A1 |
20140136880 | Shankar et al. | May 2014 | A1 |
20140181402 | White | Jun 2014 | A1 |
20140201132 | Konik | Jul 2014 | A1 |
20140220561 | Sukumar et al. | Aug 2014 | A1 |
20140237164 | Le et al. | Aug 2014 | A1 |
20140279936 | Bernbo et al. | Sep 2014 | A1 |
20140280025 | Eidson et al. | Sep 2014 | A1 |
20140289588 | Nagadomi et al. | Sep 2014 | A1 |
20140330785 | Isherwood et al. | Nov 2014 | A1 |
20140372838 | Lou et al. | Dec 2014 | A1 |
20140380125 | Calder et al. | Dec 2014 | A1 |
20140380126 | Yekhanin et al. | Dec 2014 | A1 |
20150032701 | Lyle | Jan 2015 | A1 |
20150032720 | James | Jan 2015 | A1 |
20150039645 | Lewis | Feb 2015 | A1 |
20150039849 | Lewis | Feb 2015 | A1 |
20150089283 | Kermarrec et al. | Mar 2015 | A1 |
20150100746 | Rychlik et al. | Apr 2015 | A1 |
20150134824 | Mickens et al. | May 2015 | A1 |
20150153800 | Lucas et al. | Jun 2015 | A1 |
20150154418 | Redberg | Jun 2015 | A1 |
20150180714 | Chunn et al. | Jun 2015 | A1 |
20150280959 | Vincent | Oct 2015 | A1 |
20160026397 | Nishikido et al. | Jan 2016 | A1 |
20160182542 | Staniford | Jun 2016 | A1 |
20160191508 | Bestler et al. | Jun 2016 | A1 |
20160246537 | Kim | Aug 2016 | A1 |
20160248631 | Duchesneau | Aug 2016 | A1 |
20160314148 | Chirayath | Oct 2016 | A1 |
20160378612 | Hipsh et al. | Dec 2016 | A1 |
20170091236 | Hayes et al. | Mar 2017 | A1 |
20170103092 | Hu et al. | Apr 2017 | A1 |
20170103094 | Hu et al. | Apr 2017 | A1 |
20170103098 | Hu et al. | Apr 2017 | A1 |
20170103116 | Hu et al. | Apr 2017 | A1 |
20170177236 | Haratsch et al. | Jun 2017 | A1 |
20170262202 | Seo | Sep 2017 | A1 |
20180039442 | Shadrin et al. | Feb 2018 | A1 |
20180054454 | Astigarraga et al. | Feb 2018 | A1 |
20180081958 | Akirav et al. | Mar 2018 | A1 |
20180101441 | Hyun et al. | Apr 2018 | A1 |
20180101587 | Anglin et al. | Apr 2018 | A1 |
20180101588 | Anglin et al. | Apr 2018 | A1 |
20180217756 | Liu et al. | Aug 2018 | A1 |
20180307560 | Vishnumolakala et al. | Oct 2018 | A1 |
20180321874 | Li et al. | Nov 2018 | A1 |
20190036703 | Bestler | Jan 2019 | A1 |
20190220315 | Vallala et al. | Jul 2019 | A1 |
20200034560 | Natanzon et al. | Jan 2020 | A1 |
20200326871 | Wu et al. | Oct 2020 | A1 |
20210073193 | Hayes et al. | Mar 2021 | A1 |
20210360833 | Alissa et al. | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
2164006 | Mar 2010 | EP |
2256621 | Dec 2010 | EP |
0213033 | Feb 2002 | WO |
2008103569 | Aug 2008 | WO |
2008157081 | Dec 2008 | WO |
2013032825 | Mar 2013 | WO |
Entry |
---|
Hwang et al., “RAID-x: A New Distributed Disk Array for I/O-Centric Cluster Computing”, Proceedings of the Ninth International Symposium on High-performance Distributed Computing, Aug. 2000, pp. 279-286, the Ninth International Symposium on High-Performance Distributed Computing, IEEE Computer Society, Los Alamitos, CA. |
International Search Report and Written Opinion, PCT/US2015/018169, May 15, 2015, 10 pages. |
International Search Report and Written Opinion, PCT/US2015/034291, Sep. 30, 2015, 3 pages. |
International Search Report and Written Opinion, PCT/US2015/034302, Sep. 11, 2015, 10 pages. |
International Search Report and Written Opinion, PCT/US2015/039135, Sep. 18, 2015, 8 pages. |
International Search Report and Written Opinion, PCT/US2015/039136, Sep. 23, 2015, 7 pages. |
International Search Report and Written Opinion, PCT/US2015/039137, Oct. 1, 2015, 8 pages. |
International Search Report and Written Opinion, PCT/US2015/039142, Sep. 24, 2015, 3 pages. |
International Search Report and Written Opinion, PCT/US2015/044370, Dec. 15, 2015, 3 pages. |
International Search Report and Written Opinion, PCT/US2016/014356, Jun. 28, 2016, 3 pages. |
International Search Report and Written Opinion, PCT/US2016/014357, Jun. 29, 2016, 3 pages. |
International Search Report and Written Opinion, PCT/US2016/014361, May 30, 2016, 3 pages. |
International Search Report and Written Opinion, PCT/US2016/014604, May 19, 2016, 3 pages. |
International Search Report and Written Opinion, PCT/US2016/016504, Jul. 6, 2016, 7 pages. |
International Search Report and Written Opinion, PCT/US2016/023485, Jul. 21, 2016, 13 pages. |
International Search Report and Written Opinion, PCT/US2016/024391, Jul. 12, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/026529, Jul. 19, 2016, 9 pages. |
International Search Report and Written Opinion, PCT/US2016/031039, Aug. 18, 2016, 7 pages. |
International Search Report and Written Opinion, PCT/US2016/033306, Aug. 19, 2016, 11 pages. |
International Search Report and Written Opinion, PCT/US2016/047808, Nov. 25, 2016, 14 pages. |
Kim et al., “Data Access Frequency based Data Replication Method using Erasure Codes in Cloud Storage System”, Journal of the Institute of Electronics and Information Engineers, Feb. 2014, vol. 51, No. 2, 7 pages. |
Schmid, “RAID Scaling Charts, Part 3:4-128 KB Stripes Compared”, Tom's Hardware, Nov. 27, 2007, URL: http://www.tomshardware.com/reviews/RAID-SCALING-CHARTS.1735-4.html, 24 pages. |
Stalzer, “FlashBlades: System Architecture and Applications”, Proceedings of the 2nd Workshop on Architectures and Systems for Big Data, Jun. 2012, pp. 10-14, Association for Computing Machinery, New York, NY. |
Storer et al., “Pergamum: Replacing Tape with Energy Efficient, Reliable, Disk-Based Archival Storage”, FAST'08: Proceedings of the 6th USENIX Conference on File and Storage Technologies, Article No. 1, Feb. 2008, pp. 1-16, USENIX Association, Berkeley, CA. |
Number | Date | Country | |
---|---|---|---|
20230281179 A1 | Sep 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16953213 | Nov 2020 | US |
Child | 18316779 | US | |
Parent | 14752536 | Jun 2015 | US |
Child | 16953213 | US |