The present disclosure relates to a local-light coupling apparatus for an optical fiber that bends a coated optical fiber and inputs and outputs light through the side of an optical fiber.
As techniques for inputting and outputting optical signals through an optical fiber without cutting the optical fiber, a local-light coupling technique for an optical fiber has been studied in which bending is applied to an existing optical fiber (input-side optical fiber), another optical fiber (probe optical fiber) is made to face the bent part from the side surface, an optical signal is injected from a tip end portion of the probe optical fiber, and an optical signal emitted from the input-side optical fiber is received at the tip end portion of the probe optical fiber (see, for example, Patent literature 1).
To improve the input efficiency from the probe to the bending fiber, the beam emitted from the probe needs to be squeezed to couple the light into the core of the bending fiber (see, for example, Non Patent Literature 1). However, the input efficiency significantly decreases when axial offset occurs by squeezing the beam (Non Patent Literature 2, FIG. 6). For example, the input efficiency decreases by 5 dB due to an axial offset of approximately 10 μm. In particular, in the case of an optical fiber with a protective tube or tape fiber core, there is a possibility of axial offset of approximately tens of μm due to structural variation of each individual. Thus, in the case where light is input to these fiber cores, the probe needs to be aligned to the position where the input efficiency is obtained most.
However, in the case of a coated optical fiber used as a current line and inputting and outputting light to and from the bent coated optical fiber, there are difficulties in measuring the intensity of light input from the bent part (input efficiency measurement), and in aligning the probe to an optimal position. There is also a problem that the structure becomes complex because the probe needs to be mechanically moved when the probe is aligned to an optimal position.
Thus, to solve the problems described above, an object of the present disclosure is to provide a probe optical fiber and a local-light coupling apparatus for an optical fiber capable of inputting light with high efficiency without performing input efficiency measurement or probe alignment.
To achieve the object described above, the probe optical fiber according to the present disclosure has a gentle shape in the light intensity profile of light emitted from the tip of the probe optical fiber.
Specifically, the probe optical fiber according to the present disclosure is a probe optical fiber of which a tip is close to a bent part of a coated optical fiber disposed in a local-light coupling apparatus for an optical fiber, and which inputs and outputs light to and from the bent part of the coated optical fiber, wherein light emitted from the tip has a light intensity profile in which in the bent part of the coated optical fiber, relative to a light intensity in a center of an optical axis, a decrease in light intensity at a position separated by 20 μm from the optical axis is less than 17.6 dB.
In the related art, a single mode fiber, a double cladding fiber, or the like is used as an input/output probe optical fiber (see, for example, Non Patent Literature 3). The input light (emitted light from the probe optical fiber) is collected by the lens connected to the probe tip into the core of the bent part of the coated optical fiber, and the input efficiency is improved. As illustrated in
Contrary to the related art, the probe optical fiber according to the present invention has weak light collection of the input light and has the intensity distribution of the light at the bent part of the coated optical fiber in which the difference between the light intensity of the input light near the optical axis and the light intensity of the portion separated from the optical axis is reduced. Thus, the probe optical fiber according to the present disclosure can improve input efficiency tolerance to axial offset. Thus, the present disclosure can provide a probe optical fiber capable of inputting light with high efficiency without performing input efficiency measurement or probe alignment.
For example, the probe optical fiber is a multi-core fiber having a plurality of cores, propagates the same light through the plurality of cores and emits the light from the tip. Further, the probe optical fiber is a fiber bundle in which a plurality of single-core fibers are bundled, and propagates the same light through cores of the plurality of single-core fibers and emits the light from the tip.
At this time, it is preferable that any one of the cores is used to receive light leaking from the bent part of the coated optical fiber. Further, it is preferable that in a cross section, one of the cores is disposed at the center, and the other cores are disposed at positions of vertexes of a regular polygon around the center, and the core disposed in the center is used to receive light leaking from the bent part of the coated optical fiber.
For example, the probe optical fiber may be a large-diameter core fiber having a core diameter of 100 μm or greater.
A local-light coupling apparatus for an optical fiber according to the present disclosure includes: a first jig including a recess curved in a longitudinal direction with respect to a coated optical fiber, and a holding portion that holds the probe optical fiber which inputs and outputs light to and from the coated optical fiber provided with the bent part; and a second jig including a protrusion that curves in the longitudinal direction with respect to the coated optical fiber and sandwiches the coated optical fiber between the protrusion and the recess of the first jig.
The local-light coupling apparatus for an optical fiber includes the above-described probe optical fiber. Thus, the local-light coupling apparatus for an optical fiber can improve the input efficiency tolerance to the axial offset. Thus, the present invention can provide a local-light coupling apparatus for an optical fiber that can input light with high efficiency without performing input efficiency measurement or probe alignment.
The present disclosure can provide a probe optical fiber and a local-light coupling apparatus for an optical fiber that can input light with high efficiency without performing input efficiency measurement or probe alignment.
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments described below are examples of the present disclosure, and the present disclosure is not limited to the following embodiments. In this specification and the drawings, constituent elements having the same reference signs are assumed to be the same.
The local-light coupling apparatus for an optical fiber sandwiches the coated optical fiber 100 between the first jig 11 and the second jig 12. Then, the local-light coupling apparatus for an optical fiber applies a pressing force to the second jig 12 to bring the second jig 12 closer to the first jig 11, and bends the coated optical fiber 100 at the protrusion 22 along the recess 21 of the first jig 11 to form the bent part 40. On the other hand, the local-light coupling apparatus for an optical fiber releases the pressing force, thereby separating the first jig 11 and the second jig 12 and eliminating the bending of the coated optical fiber 100.
The probe optical fiber 50 emits light from B from the tip into the bent part 40 of the coated optical fiber 100, and the light enters the coated optical fiber 100 from the bent part 40 and propagates in the direction A. Further, a portion of the light propagating through the optical fiber 100 from the direction A leaks from the bent part 40. The probe optical fiber 50 receives this leaked light at the tip and propagates in the direction B. For example, the distance between the tip of the probe optical fiber 50 and the bent part 40 is approximately 1 to 2 mm.
In the probe optical fiber 50, all cores may be used for inputting and outputting light to and from the coated optical fiber 100. On the other hand, in the probe optical fiber 50, a certain core may be used as an output for receiving the leaked light from the coated optical fiber 100. For example, when a circulator or the like is installed in a single-core fiber 53 corresponding to the output core, the core can be used for input/output.
This evaluation illustrates the intensity distribution when the core spacing of the probe optical fiber 50 is 20, 30, 40 μm. In comparison, the intensity distribution of input light emitted from a single-core probe optical fiber described in Non Patent Literature 2 is also illustrated (dot-dash line). Note that while the intensity distribution in the X-axis direction is illustrated in
The probe optical fiber 50 has a higher intensity distribution relative to a wide range of X as compared to a single-core probe optical fiber. Specifically, in the probe optical fiber 50, the light emitted from the tip has a light intensity profile in which a decrease in light intensity at a position 20 μm away from the optical axis is less than 17.6 dB relative to the light intensity at the center of the optical axis, at the bent part 40 of the coated optical fiber 100 separated by 2 mm.
Such a light intensity profile means that the decrease in input efficiency is small even when the probe optical fiber 50 is not aligned to the optimal position and axial offset has occurred. It can also be seen that the larger the core spacing, the wider the light intensity distribution and the greater the tolerance to axial offset.
Because the fiber bundles are configured by bundling optical fibers in the related art, a multi-core fiber fan-in is unnecessary and low-cost compared to the case of the multi-core fiber of the second embodiment. In addition, it is easy to set the probe optical fiber 50 because selecting one core fiber makes it possible to select which core is used to receive the leaked light and which core is used to input light into the coated optical fiber.
The light intensity distribution of the probe optical fiber 50 of the present embodiment is also as illustrated in
In the probe optical fibers 50 described in Embodiments 2 and 3, any one of the cores may be used to receive light leaking from the bent part 40 of the coated optical fiber 100.
The present embodiment has been described as the case where the probe optical fiber 50 is a fiber bundle, but the same applies to a case where the probe optical fiber 50 is a multi-core fiber.
In the probe optical fibers 50 described in Embodiments 2 and 3, in a cross section, one of the cores may be disposed at the center, and the other cores may be disposed at positions of vertexes of a regular polygon around the center, and the core disposed in the center may be used to receive light leaking from the bent part 40 of the coated optical fiber 100.
For the fiber (core) arrangement, it is desirable to arrange the outer cores symmetrically with respect to the central core as in
As in
From
Note that in the present embodiment, the probe optical fiber 50 of the fiber bundle is described, but the same applies to the probe optical fiber 50 of the multi-core fiber. Further, the same also applies to the case where the number of the outer cores is 7 or greater, the arrangement of the cores is changed or the fiber array is used.
The probe optical fiber 50 of the present embodiment is a large-diameter core fiber having a core diameter of 100 μm or greater. The probe optical fibers 50 described in Embodiments 2 to 5 are multi-core fibers or fiber bundles, and the light in which the output light from each core is overlapped is used as input light into the coated optical fiber 100. Light corresponding to the overlaid intensity distribution of the probe optical fibers 50 described in Embodiments 2 to 5 can be output even by using the fiber of one large-diameter core (large-diameter core fiber).
The probe optical fiber according to the present disclosure emits light from a plurality of cores to make a light intensity profile smoother than that of light emitted from a single-core fiber in the related art (by increasing the total number of apertures), thereby enabling a local-light coupling apparatus for an optical fiber to have improved tolerance of input efficiency to axial offset and keep stable input/output efficiency.
The probe optical fiber according to the present disclosure can input and output light to a coated optical fiber (optical fiber with a protective tube, tape core, or the like) that does not avoid axial offset of approximately tens of μm due to structural variation with high efficiency without performing alignment.
Number | Date | Country | Kind |
---|---|---|---|
2018-089911 | May 2018 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/018069 | 4/26/2019 | WO | 00 |