The field of the invention is diagnostic and therapeutic probes, including medical probes.
A variety of medical diagnostic and therapeutic probes, used in blood vessels and other lumens inside the body, include expandable balloons, either to temporarily hold the probe in place, or to enlarge the lumen. For example, balloons are commonly used to expand stents used for angioplasty in arteries. Balloons used in angioplasty are typically made of a thick, rather inelastic material, and are inserted into the artery in a folded state. They unfold as they are expanded, typically by injecting saline solution into them under pressure. Once the pressure is released and they collapse, they do not refold themselves, so they cannot easily be moved to a different location and re-expanded. Since these balloons are relatively inelastic, a given balloon is only designed for use in a narrow range of lumen diameters, for example, within 10% of the nominal expansion diameter. However, there are some medical applications where elastic balloons are used, which can be expanded to a relatively large range of diameters by using different pressures.
Most balloons used in medical probes are axisymmetric and have uniform elasticity. For example, Golan in U.S. Pat. No. 6,600,319, and Blank et al in U.S. Pat. No. 6,704,594, the disclosures of which are incorporated herein by reference, each describe a self-contained intravascular MRI probe which is held in place in the center of a blood vessel by axisymmetric balloons, and is rotated to successively image different azimuthal sectors of the blood vessel wall, to detect plaque. Tu et al, in U.S. Pat. No. 6,036,689, the disclosure of which is incorporated herein by reference, describe an intravascular probe with RF electrodes, used for ablation of plaque, arranged in an expandable basket, with an axisymmetric balloon in the center. When the balloon expands, the basket expands, pushing the electrodes against the wall of the blood vessel, together with temperature sensors to provide feedback during the ablation process.
There are some medical devices which use balloons that are not uniformly elastic. Mikhail et al, in U.S. Pat. No. 5,707,357, the disclosure of which is incorporated herein by reference, describes a urinary catheter with an anchoring balloon that is axisymmetric, but has non-uniform thickness or non-uniform bonding patterns which alter the shape of the balloon when it is expanded. Richter, in PCT publication WO 01/95833 A3, the disclosure of which is incorporated herein by reference, describes two axisymmetric balloons, one inside the other, which are used to implant a stent. The inner balloon, which is shorter than the stent, is expanded first, expanding a center portion of the stent. The inner balloon then bursts, and the outer balloon, which is longer than the stent and has a much higher bursting pressure than the inner balloon, then expands, causing the rest of the stent to expand uniformly, and preventing an undesirable condition called “dogboning” in which the ends of a stent expand more than the center.
Brennan et al, in U.S. patent application publication U.S. 2003/0109810 A1, the disclosure of which is incorporated herein by reference, describes a guide catheter, the end of which is steered by inflating and deflating a balloon. The end of the catheter has a flexible shaft with a preformed bend, surrounded by an initially deflated balloon. When the balloon is expanded, it forces the preformed bend to straighten out partially, and when the balloon is deflated, the end of the catheter bends again.
Reilly et al, in U.S. Pat. No. 6,235,043, the disclosure of which is incorporated herein by reference, describes a non-axisymmetric balloon for insertion into a medullary cavity of a bone. The balloon is made of a non-elastic material, but is folded up, so that it can be inserted through a narrow tube.
Schnall et al, U.S. Pat. No. 5,476,095, the disclosure of which is incorporated herein by reference, describes an MRI receiver probe designed for prostate imaging in the rectum. The probe includes an asymmetric elastic balloon mounted on a probe shaft, and an MRI receiver antenna mounted on the inside of the balloon. When the balloon expands, the antenna moves away from the probe shaft to a position adjacent to the prostate.
Nohilly et al, U.S. published patent application 2005/0113857 A1, the disclosure of which is incorporated herein by reference, describes an elastic surgical balloon shaped to fill the inside of the uterus, and used for purposes such as thermal ablation of tissue in the wall of the uterus.
An aspect of some embodiments of the invention concerns a probe, for example an intravascular probe, in which a non-axisymmetric elastically expandable balloon is mounted on a relatively rigid support element, which has a longitudinal axis aligned with a lumen such as a blood vessel. When the balloon expands, a more expandable part of the balloon, on a first side of the axis, expands further away from the support element, while a less expandable part of the balloon, on a second side of the axis, opposite to the first side, remains much closer to the support element. As a consequence, when the balloon is expanded sufficiently so that it reaches the wall of the blood vessel, it holds the support element in place closer to the wall on the second side than on the first side. A tool, optionally mechanically mounted on the support structure, is thus brought close to the wall of the blood vessel on the second side, where it optionally performs a diagnostic or therapeutic task, or both. As used herein, the term “diagnostic task” includes any kind of medical information gathering, not necessarily limited to final diagnosis of a medical condition. The tool is, for example, an MRI sensor which produces images of plaque in the wall.
As used herein, “mechanically mounted on the support structure” means that the support structure provides support for the tool. In some embodiments of the invention, the tool is mounted on the support structure on the second side of the axis. In some embodiments of the invention, the tool is rigidly mounted on the support structure, and substantially does not move relative to the support structure during the normal operation of the probe. Alternatively, the tool is flexibly mounted on the support structure, but is sufficiently well coupled to the support structure that it does not move freely with respect to the support structure. In some embodiments of the invention, one or more elements of the tool also function as the support structure, or as a part of the support structure. For example, magnets may function both as part of an MRI sensor tool, and as part of the support structure.
The asymmetric balloon brings the sensor closer to the wall than if an axisymmetric balloon were used which held the support element in the center of the blood vessel. Furthermore, a potential advantage of the balloon being elastic on one side is that the same probe can be used with a fairly wide range of blood vessel diameters, by applying different pressures to the fluid filling the balloon. In contrast, if a conventional inelastic angioplasty balloon were used, then the diameter of the fully inflated balloon would be nearly fixed, varying by perhaps 10% over the safe range of pressures, and the probe could only be used with a narrow range of blood vessel diameters. Another potential advantage of an elastic balloon is that the balloon may provide a greater safety margin against bursting, than an inelastic balloon.
Alternatively, such a balloon can be used for other types of sensors that are used close to a blood vessel wall, or for therapeutic devices which remove plaque, for example. A similar balloon may also be used in other lumens in the body, for example in the urethra, or in the digestive track, including, for example, in the rectum for prostate imaging, or any minimally invasive procedure. A similar balloon may also be used in more invasive procedures, for example in a breast biopsy, to hold a probe in place in a channel made as part of the procedure, as opposed to a pre-existing lumen.
In an exemplary embodiment of the invention, the balloon is stiffened by a stiffening material, for instance parylene, more in a first portion thereof than in other portions, such that in the stiffened portion the expandability of the balloon is smaller than in its other portions.
According to one embodiment of the invention, the asymmetrically expandable balloon is double walled, and the walls are attached to each other, for instance by heat fusing, in one portion. Thus, when the balloon is inflated, the portion with the walls that are attached to each other does not expand.
According to one embodiment of the invention, the balloon is wrapped with an outer layer held firmly to the support and having at least one opening. The outer layer inhibits the balloon's expansion, and thus expansion occurs mainly at the opening of the outer layer. The outer layer may be made of a shrinking material, for instance, heat shrinking, and be held firmly to the support by shrinking around it.
An aspect of the invention relates to manufacturing a balloon with non-axisymmetric expandability. According to one embodiment of the invention, a balloon of uniform elasticity, made for example from a tube of circular cross-section, is mounted on a support element. The balloon is masked asymmetrically, covering more of the area on one side of the axis of the support element than on the other side of the axis, or covering one side for more time than the other side. A stiffening material, for example parylene, is then deposited on the masked balloon, and the masking is removed. The balloon will be more elastic in the region which was masked, which will have less parylene, if any, while the unmasked region, covered with more parylene, will be less elastic.
According to some embodiments of the invention, the support is first wrapped with an inner layer. Then, the obtained wrapped support is further wrapped with an expandable layer, which is then made asymmetrically expandable, for example, by selective application of a stiffening material to one portion thereof, or by attaching one portion thereof to the inner layer, for instance by heat fusing, thereby inhibiting the expanding layer from expanding in that portion. In some embodiments of the invention, the expandable layer is wrapped with an outer layer with an opening in it, and the outer layer inhibits the expanding layer from expanding except through the opening.
According to one embodiment of the present invention, there is provided a device comprising an asymmetric balloon, MRI coil and magnet.
According to one embodiment of the present invention, there is provided a device adapted to be inserted into a lumen. The device has a longitudinal axis and comprises (i) a support element extending along the longitudinal axis; (ii) a tool being adapted to be used near a wall of the lumen on at least a first side of the longitudinal axis; and (iii) an elastically inflatable balloon mounted on the support element, optionally surrounding it and the tool. The balloon has at least one portion that is less radially expandable, at a given axial position along the support element, than at least one other portion of the balloon at the same axial position. In this embodiment, the tool is mechanically mounted on the support element. One way to mount the tool on the support element is to include a sealing element in the device which holds the balloon against the support element in a pressure-tight manner. It should be noted that the tool may be an integral part of the support, and in some embodiments, the tool may also function as a support element.
Optionally, the lumen is in the body. Non-limiting examples of such lumens are portions of the digestive track, the rectum, and blood vessels.
Optionally, the tool is configured to perform a diagnostic task, for example, a diagnostic task that includes imaging, information gathering by NMR, detecting plaque in a blood vessel, diagnosing one or more characteristics of plaque in a blood vessel, and/or others. Thus, non-limiting examples of tools are MRI coils and/or magnets.
Exemplary outer diameters of the device, when the balloon is not inflated, are diameters less than 1 mm, less than 2 mm, and between about 2 and about 4 mm.
Optionally, the balloon of the device safely inflates to a range of sizes varying by at least a factor of 2, and this range of sizes may contain 3 mm. The term safely inflates means that the danger of bursting during such inflation is within allowed limits according to medical standards acceptable for the specific use intended for the specific device.
The balloon may be made of elastic materials that comprise silicone, a blend of silicone and polyurethane, and others.
In an exemplary embodiment, the portion of the balloon that expands less is thicker than other portions.
In an exemplary embodiment, the balloon is coated with a stiffening material on at least the first side of the axis. Optionally, at least a portion of the balloon on the side of the axis opposite the first side is not coated with the stiffening material. A non-limiting example for a suitable stiffening material is parylene.
In an exemplary embodiment, a heat shrink material is applied to a balloon's portion that is less expandable than other portions of the balloon. Optionally, the heat shrink material comprises PET (polyethylene tetraphtalate).
In accordance with another embodiment of the present invention there is provided a method of manufacturing a device adapted to be inserted into a lumen. This method includes placing an elastically expandable balloon around a support element having an axis; masking the balloon asymmetrically, such that a first portion of the balloon is masked more than a second portion of the balloon, said first and second portions extending along the axis; applying a stiffening material, for example parylene, to the masked balloon; and unmasking the balloon. Optionally, the differences in amount of stiffening material applied to different portions of the balloon allow differences in expandability of such different portions, such that an inflated balloon has one portion that is expanded at least 35% more than another.
Optionally, applying a stiffening material in accordance with the invented method includes vapor depositing the stiffening material onto the masked balloon.
In accordance with an exemplary embodiment of the invention, there is provided a method of manufacturing a device adapted to be inserted into a lumen, the method comprising: placing an elastically expandable balloon around a rigid support element having an axis; applying a heat-shrink material to a first portion of the balloon; and heating the heat-shrink material as to let it shrink around the first portion of the balloon.
In accordance with an exemplary embodiment of the invention, there is provided a method of manufacturing a device adapted to be inserted into a lumen, the method comprising fixing a sheet of polymeric material around a support element having an axis; piercing this sheet as to allow an inflation tube extending along the support element to supply an inflating fluid through the pierce; placing an elastic balloon around the pierced sheet; and heat-fusing a first portion of the elastic balloon to an adjacent portion of the pierced sheet, such that upon supplying inflating material through the inflation tube, the first portion of the balloon will not inflate. The first portion may, however, be distorted due to forces exerted on it by inflated portions adjacent to it. The sheet of polymeric material may include a blend of silicone and polyurethane, such as the blend commercially available under the name of Polyblend™. The elastic balloon may be made of the same material as the polymeric sheet.
The methods of the invention may also include sealing the balloon against the support element, for instance, by application of glue. Non-limiting examples of suitable kinds of glue are cyanoacrylates and UV-curable glue. In all methods of the invention, a tool is optionally mechanically mounted on the support element.
According to one embodiment of the present invention there is provided a method of performing a diagnostic task, such as diagnostic imaging, diagnostic NMR, plaque detection, and/or diagnosis of plaque characteristics. The task is performed on the wall of a lumen in the body, for instance, on the wall of a blood vessel. This method includes inserting a device according to the invention into the lumen; expanding the balloon of the device; and performing the diagnostic task on the wall of the lumen on the first side of the axis, using the device.
In order to better understand the invention and to see how it may be carried out in practice, exemplary embodiments of the invention are described in the following sections, by way of non-limiting examples only, with reference to the drawings, which are generally not to scale. Tools used for such purposes as punching, cutting, stretching, and injecting glue, shown in some of these drawings, are intended to be symbolic, and are not intended to illustrate realistic shapes and sizes for these tools. In some of these drawings, some elements are shown in a schematic perspective view, to show their azimuthal extent, rather than in a cross-sectional view.
In order to hold probe 106 against the blood vessel wall, so that the imaging region of the probe extends into the wall, and so that the probe does not move relative to the wall while an image is acquired, there is an elastic balloon 116 which surrounds a central portion of probe 106 (i.e. the support element referred to in the Summary) and whose ends are sealed against the probe. The bottom side of balloon 116, as shown in
In an exemplary embodiment of the invention, inflation is by injecting a biologically safe fluid such as saline solution under pressure through an inflation tube 122 into balloon 116. The top part of balloon 116, which is optionally not coated with parylene, is elastic and expands, as shown in
Alternatively or additionally, the NMR signals are used to obtain non-imaging data, such as NMR spectroscopic data. The magnets and RF coil need not have the configuration shown in
Alternatively or additionally, probe 106 has sensing tools for imaging or non-imaging applications other than MRI or NMR, for example for ultrasound imaging, or chemical sensing, or temperature sensing. Alternatively or additionally, probe 106 has tools for therapy, for example RF electrodes for ablating plaque. For all of these applications, balloon 116, when it is expanded, holds the probe in place with one side of the probe (the bottom side in
Also shown in
Catheter 108 includes inflation tube 122, the end of which opens up inside balloon 116, as well as one or more cables 124 which carry power and control signals to the RF coil, and convey NMR signals from the RF coil, for example to a controller located outside the body.
Note that, in contrast to most balloons used in angioplasty, which are fairly inelastic and only expand to a more or less fixed size regardless of the pressure used, balloon 116 is highly elastic, and can expand to the diameter of the blood vessel for a range of diameters, depending on the pressure used. For example, the balloon can expand by a factor of 2.7 in diameter, for example from 1.5 mm to 4 mm in diameter, as the internal pressure (above the external pressure) varies from much less than 1 atmosphere to 1 atmosphere, or to 2 atmospheres, or it can expand by a factor of 2, 2.5, 3, or 3.5 in diameter, or by a higher or lower or intermediate factor, with this change in pressure. Optionally, the initial, unexpanded, diameter is 1 mm, or 2 mm, or a higher or lower or intermediate value. Optionally, a higher or lower maximum pressure than 1 or 2 atmospheres is used. However, using a maximum pressure that is no more than 1 or 2 atmospheres has the potential advantage that the balloon is unlikely to rupture the blood vessel. Another advantage of using a very elastic balloon is that it can be much thinner than a typical angioplasty balloon, and hence the magnets and RF coil can be closer to the desired imaging region in the wall of the blood vessel. For example, a typical angioplasty balloon is between 100 and 200 micrometers thick, while balloon 116 is optionally thinner than 30 micrometers. Alternatively, balloon 116 is between 30 and 40 micrometers thick, or between 40 and 60 micrometers thick, or between 60 and 80 micrometers thick, or thicker than 80 micrometers. For an NMR probe which is only 1 mm to 2 mm in diameter, the thickness of the balloon may make a significant difference in the static and RF magnetic field strength that can be obtained in the imaging region, and hence in the signal to noise ratio and resolution that can be obtained in a given acquisition time. Optionally, balloon 116 is designed to function as an angioplasty balloon, as well as functioning to hold probe 106 in place against the blood vessel wall to produce MRI images.
Optionally, when balloon 116 is sufficiently expanded to wedge probe 106 against the walls of the blood vessel, the blood vessel is not completely blocked, and blood can still flow. For example, blood can flow around the sides of the stiff part of the balloon which does not expand. Additionally or alternatively, there is a passageway inside the probe, not shown, which blood can flow through. Additionally or alternatively, the expanded balloon has a cross-section with one or more grooves on the outside that blood can pass through, for example it has a heart-shaped cross-section. Such non-circular cross-sections are produced, for example, by making some azimuthal regions of the balloon relatively stiff, and possibly of fixed curvature azimuthally. In general, blood can flow around the balloon if the probe, with the balloon expanded, has a non-circular cross-section, which does not fill up the blood vessel, and if the balloon does not press hard enough against the blood vessel to significantly distort the shape of the blood vessel.
Alternatively or additionally, instead of coating one side of the balloon with a stiffening material such as parylene, the stiffer side of the balloon is made thicker than the more elastic side.
The balloon has a diameter such that it will fit snugly around the probe. For example, for a 5.5 French probe, suitable for use in a blood vessel, at least a substantially straight blood vessel, with inner diameter between 2 mm and 4 mm, the balloon optionally has an initial diameter of 1.5 mm. (For a very tortuous blood vessel of this diameter range, a smaller initial probe diameter might be needed.) The balloon is somewhat longer than the probe, since, in some embodiments of the invention, it will be cut during the process of installing it on the probe, and thin enough so that it can expand elastically, i.e. a moderate increase in the pressure, for example from much less than 1 atmosphere up to 1 atmosphere, or 2 atmospheres, will result in a significant increase in expanded diameter, for example from 1.5 mm to 4 mm, without the balloon bursting. A silicone balloon 60 micrometers thick, or a 30 micrometer thick balloon made of a blend of polyurethane and silicone, for example, may be satisfactory for achieving this range of diameters. Different balloon thicknesses may be appropriate for probes with different diameter ranges and lengths, and for different balloon materials. The balloon initially optionally has a closed end 204, and an open end 206. Optionally, before assembling the balloon onto the probe, the balloon is repeatedly stretched axially and inflated, to make it more flexible (2102 in
As shown in
As shown in
As shown in
Alternatively, balloon 116 is transferred from tubular tool 302 to probe shaft 506 without rolling the balloon up, or it is placed on probe shaft 506 directly without using tubular tool 302, but the procedure described may make it easier to get balloon 116 onto probe shaft 506.
As shown in
As shown in
As shown in
The distal end 1304 of balloon 116 is then optionally stretched axially over probe tip 502, as shown in
Without releasing the balloon from its axial tension, as shown in
As shown in
As shown in
A stiffening agent 2008, for example parylene, is then deposited on the probe (2146 in
Alternatively, instead of or in addition to using a mask, another means is used to confine the parylene coating (or whatever hardening agent is used) to only part of the balloon surface. For example, the stiffening agent is sprayed on from one direction, or painted on, or otherwise applied from one direction. If the probe is rotated while the stiffening agent is sprayed on, and it is rotated faster when it is in some orientations than in other orientations, and/or if it moves closer to and further away from the source of the spray depending on its orientation, then the stiffening agent will be thicker in some places than in other places.
As shown in
In an embodiment of the invention described below in
As shown in
It should be noted that, although probe shaft 2202 is shown in
As shown in
As shown in
Suitable materials for tube 116 include the blends of polyurethane and silicone sold by Cardiotech International under the registered trademark Polyblend 1100, in particular type 60A, with hardness of Shore 60, which the inventors have tested. Type 45, with a hardness of Shore 45, as well as other types, might also be satisfactory. Although tube 116 is also optionally made of silicone, using a blend of polyurethane and silicone has the potential advantage that it can be made thinner while still expanding safely to a same diameter, thereby allowing probe shaft 2202 to get closer to a blood vessel wall for example, which can improve the signal to noise ratio if, for example, probe shaft 2202 is an MRI probe looking at plaque in the blood vessel wall. Another potential advantage of using a blend of polyurethane and silicone is that the balloon may be sealed by gluing it to an underlying layer of shrink wrap, while a pure silicone balloon, which is not glued so easily, may have to be sealed using wires and/or shrink wrap, as described in
Using reverse action tweezers 2601 as shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
According to one such embodiment, the balloon is now given asymmetric expandability by selectively applying to it a stiffening material, for instance, as described in relation to
According to one embodiment of the invention, as shown in
As shown in
Shrink wrap 3501 is then shrunk and its edges are cut and sealed, for example in the same way as shrink wrap 2201 as described in
According to another embodiment of the invention, probe 3400, shown in
It should be understood that not all features shown in the drawing or described in the associated text may be present in an actual device, in accordance with some embodiments of the invention. Furthermore, variations on the method and apparatus shown are included within the scope of the invention, which is limited only by the claims. Also, features of one embodiment may be provided in conjunction with features of a different embodiment of the invention. As used herein, the terms “have”, “include” and “comprise” or their conjugates mean “including but not limited to.”
The present application is a continuation-in-part of U.S. Ser. No. 10/968,853, entitled “Magnet and Coil Configurations for MRI Probes”, filed on Oct. 18, 2004, and is a continuation in part of PCT/IL2005/000074, entitled “MRI Probe for Prostate Imaging”, filed on Jan. 20, 2005, the disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL05/01098 | 10/17/2005 | WO | 4/18/2007 |
Number | Date | Country | |
---|---|---|---|
Parent | 10968853 | Oct 2004 | US |
Child | 11665699 | Apr 2007 | US |
Parent | PCT/IL2005/000074 | Jan 2005 | US |
Child | 11665699 | Apr 2007 | US |