Procedure for controlling an elevator group where virtual passenger traffic is generated

Abstract
As elevator group including at least two elevator cars is controlled using a group control unit which allocates the calls to different elevators. Based on statistical data and/or statistical forecasts, virtual passenger traffic is generated and used in a simulation that creates events in the virtual passenger traffic, on the basis of which an elevator-specific cost is computed for each call to be allocated. Based on the costs, the best elevator is selected to serve the call. This allocation of a best elevator to answer a specific landing call may be reallocated as the simulation is updated to update the best elevator to answer a specific floor call.
Description




FIELD OF THE INVENTION




The present invention relates to a procedure for controlling ling an elevator group.




The function of elevator group control is to allocate the landing calls to the elevators in the group. The allocation of landing calls in group control may depend on factors such as load situation of the elevator group, number and disposition of calls, and instantaneous load, position and travelling direction of the elevators. In modern group control, attention is also paid to controlling passenger behavior. Call allocation in group control is the result of an optimisation task in which various parameters related to travelling comfort and other aspects of elevator use are optimized. Such parameters include e.g. waiting time, advance signalling capability, energy consumption, transport capacity, travelling time and equalization of car load. In modern microprocessor based control systems it is possible to optimize several parameters simultaneously.




Advance signalling is an important part of passenger guidance. Advance signalling is used to guide the passengers at a timely stage to the vicinity of the doors of an elevator arriving at a floor. Advance signalling does not require the use of extraordinary call button arrangements at the landing. Timely advance signalling or immediate assignment of the elevator to be allocated to the call can be best accomplished by using a control system with future-oriented simulation in which possible future situations have already been taken into account when signalling is being given or an elevator is being assigned to a call. EP patent specification 568 937 presents a procedure for controlling an elevator group in which future situations are taken into account. This procedure uses a decision analysis which is executed each time when an elevator arrives at a point where the system has to decide which one of alternative solutions is to be selected (e.g. passing by or stopping at a floor). The decision analysis examines the effects resulting from different alternative control actions by simulating the behavior of the system in the situation after the decision. In this procedure, a decision is made at two different terminations: At the starting point, where the elevator is standing at a landing with doors closed and ready to depart, and at the stopping point, where the elevator is moving and arrives at the deceleration point of the destination floor.




GB patent specification 2 235 311 presents a group control method for an elevator system in which a suitable control algorithm is selected by simulating different control modes and selecting control parameters corresponding to specified target values. In this method, statistics are maintained about the distribution of car calls issued for a given floor. This information is utilised in predicting stoppages due to car calls. However, the prediction ends with the call being served and does not actually take into account any events subsequent to the point of time when the calls are served.




SUMMARY OF THE INVENTION




The object of the present invention is to improve the existing group control procedures. Among other things, it is an object of the invention to achieve a better ability to anticipate future situations so as to facilitate advance signalling and allocation of calls to the elevators. It is also an object of the invention to ensure better consideration of both the states of the elevators and the situation regarding landing calls when allocating elevators to landing calls. In the procedure of the invention, the instant of decision is associated with the activation of a new landing call. In other words, primarily no decisions are made when there are no active landing calls. At the instant of decision, probable future landing calls are simulated, and these are allocated to the elevators in accordance with an optimum policy by calculating simulated costs and a new call is allocated to the one of the elevators whose use will result in the lowest cost on an average. In simulating the future, passengers are generated for different floors in proportion to arrival intensity and distribution; similarly, car commands are generated in accordance with probable intensities of passengers leaving the elevators. A call is not finally reserved until in a certain time window. In practice, thanks to improved forecasts of future situations, the invention makes it possible to achieve an improved accuracy and stability of call allocation in group control.




According to the invention, simulation and call reallocation can be performed even for old calls that are only going to be served after a certain length of time, which means that the simulation of future operation regarding these calls can be performed using even calls that in reality have been registered only after this call.











BRIEF DESCRIPTION OF THE DRAWINGS




In the following, the invention will be described in detail by the aid of an example by referring to the attached drawings, wherein





FIG. 1

presents a tree diagram of decisions in an elevator group comprising two elevators,





FIG. 2

presents landing calls on a time axis,





FIG. 3

presents a time window,





FIG. 4

presents a block diagram applicable for implementng the procedure of the invention, and





FIG. 5

presents a block diagram representing the simulation of future costs.





FIG. 6

is a schematic illustration of a two elevator group under group control.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENT





FIG. 1

shows a tree diagram of decisions for N calls in an elevator E


1


, E


2


as illustrated in

FIG. 6

group comprising two elevators. Each car in the group, Car


1


and Car


2


, travels in its own elevator shaft, suspended on hoisting ropes R


1


, R


2


. The elevators are driven by hoisting motors M


1


, M


2


. The motors are controlled by a microprocessor-based regulating unit in accordance with commands issued by an elevator control unit. Each control unit ECU


1


, ECU


2


is further connected to a microprocessor-base group control unit ECU


1


, ECU


2


which distributes the control commands to the elevator control units GCU. Placed inside the elevator cars are car call buttons CC


1


, CC


2


and possibly also display devices for the display of information for passengers. Correspondingly, the landings are provided with landing call buttons LCI-


1


to LCG


1


and LC


1


-


2


to LCG-


2


and display devices as appropriate. For control of the elevator group, the call buttons are connected via a communication bus CB


1


, CB


2


to the elevator control units to transmit call data to the elevator control units ECU


1


, ECU


2


and further to the group control unit GCU.




All calls (CallN, CallN-


1


, CallN-


2


) are allocated to the elevators and the costs for each decision (DecisionN, DecisionN-


1


) are calculated. The route involving the lowest cost yields an optimal call allocation. When there are N calls and the number of elevators is 1, the decision tree comprises 1″ route combinations to be computed.





FIG. 2

presents the existing landing calls (hall calls) C


1


-C


3


and simulated landing calls (hall calls) C


4


, C


5


after the lapse of T


sim


on a time axis t where the current instant is represented by T


0


. A landing call is removed from the call queue when the elevator serving the call arrives at the floor concerned. In the solution of the invention, the call is not finally allocated until in a given time window (

FIG. 3

) T


w


, where the travel time (ETA, Estimated Time of Arrival) of the elevator for the call is shorter than a preselected time T


Lim


. In the simulation of the future, persons are generated for different floors in proportion to the arrival intensities and distribution, and car commands are similarly generated according to probable intensities of passengers leaving the elevator, in other words, according to predictions regarding passengers arriving at each destination floor and leaving the elevator car.




The forecasts for the intensities of passengers arriving and leaving the elevator are obtained for each floor and each direction by using a so-called traffic predictor included in the Group Control Unit GCU. Statistics representing intensities of passengers arriving and leaving the elevator, measured e.g. from the load weight and photocell data, are accumulated in the traffic predictor. Using the statistics, an arrival time, arrival floor and destination floor are assigned for each simulated person. The simulated persons press simulated landing call buttons, and elevator traffic is simulated according to the next stopping floor used in the simulation, selected by the control system. The simulation is repeated in the same way for each decision alternative.




Simulated calls can be allocated by using known control principles, such as collective control or an ACA algorithm (ACA=Adaptive Call Allocation).




Each time a new call is registered, simulation is immediately performed for different elevators and the call is allocated to the one that can serve it at minimum costs. Simulation and call re-allocation can also be performed for old calls (

FIG. 3

) which are only to be served after the lapse of T


Lim


. Therefore, calls that have actually been registered after a first call can initially be used in the simulation of future operation regarding the first call.





FIGS. 4 and 5

present block diagrams representing an embodiment of a solution according to the invention.




The system illustrated by

FIG. 4

works as follows: After the start


100


, the elevator states L


s


, landing call states C


0


and the time T


0


are updated (block


101


). Next, the landing calls LO are checked (block


102


) one by one to determine whether the call is a ‘fixed’ one (block


103


). If it is not, then the procedure is resumed from block


102


. At the same time, the estimated remaining travelling time or time of arrival ETA to/at the floor of the call for fixed calls is updated (block


199


). On the other hand, if the call is not fixed, the elevator to serve the call is specified as L=


1


and the number of elevators is determined (block


104


). After this, the landing call table C


0


to C


N


and the elevator states L


S


to L


N


are copied (block


105


). Next, the time is set to T=T


0


(block


106


) and an unfixed call is allocated to elevator L (block


107


).




After this, the future costs J


L


(block


108


) are simulated, the optimum J


L


* is selected (block


109


) and the call is allocated to the preferable elevator L* in state C


0


(block


110


). Next, to determine whether the landing call for elevator L* falls within the time window T


W


, the estimated time of arrival of the elevator is compared with the call C


0


and the time limit T


Lim


(block


111


). If the time of arrival is greater than the time limit T


Lim


, then the procedure is resumed from block


102


. If it is lower or equal to the time limit T


Lim


then the call reservation for elevator L is fixed in landing call state C


0


(block


112


). Finally, old fixed calls are checked. If the call is not served within a certain time (the certain time is T


Lim


multiplied by a given coefficient; the value of the coefficient being at least one), then the call state is changed to unfixed (block


113


) before the procedure is ended


114


. The procedure represented by

FIG. 4

is repeated at least once in each group control cycle.





FIG. 5

is a block diagram giving a more detailed illustration of the simulation of future costs J


L


(block


108


). In this procedure, the time T of simulation is first computed as the sum of the current instant T


0


and an incremental time ΔT (block


115


). After this, the elevator states L


N


are simulated and updated (block


116


) and random arrivals of passengers are generated in accordance with a traffic flow forecast (block


117


). Next, the landing call table C


N


is updated (block


118


), the landing calls C


N


are allocated to the best elevator cars according to the allocation policy (block


119


) and the cost function J


L


is updated (block


120


). Finally, a check is carried out to determine whether the time T is greater than the sum of the simulation time T


sim


and the starting instant T


0


, this sum corresponding to the maximum simulation time (block


121


). If it is, then the procedure is ended (block


122


). If not, the procedure is resumed from block


115


.




It is obvious to a person skilled in the art that different embodiments of the invention are not restricted to the examples presented above, but that they may be varied within the scope of the claims presented below.



Claims
  • 1. A method of controlling an elevator group including two or more elevators driven by hoisting machines and collectively controlled by a group control that adaptively assigns elevators to calls comprising:a) receiving a new landing call; b) simulating probable future landing calls responsive to activating the new landing call; c) allocating the probable future landing calls to the elevator group on the basis of the simulation of step b); and d) reallocating the elevator group to one or more old calls based on the simulation if a time period for reserving the one or more old calls has not been exceeded.
  • 2. The method of claim 1, wherein said step (c) of allocating generates a statistical simulation of virtual passenger traffic generated on the basis of distribution and intensity of the passenger traffic prevailing at the moment.
  • 3. The method of claim 1, wherein said step (c) of allocating generates the statistical simulation including calls, car commands, elevator states and elevator movements.
  • 4. The method of claim 3, wherein, said simulation further includes that, passengers are generated for different floors in proportion to the arrival intensities and distributions, car commands are generated in accordance with probable intensities of passengers leaving the elevators, an arrival time, arrival floor and destination floor are assigned for each simulated person, the simulated persons give simulated landing calls and car commands, and elevator traffic is simulated according to the next stopping floor used in the simulation, selected by the control system.
  • 5. The method of claim 4, wherein for each new landing call is registered in said step (a), simulation is immediately carried out in said step (b) for different elevators and the call is allocated to the one that gives minimum costs.
  • 6. The method of claim 1 wherein the allocation is determined on the basis of computed elevator-specific cost for the call including a predicted cost of serving the new landing call and an additional cost due to the virtual traffic.
  • 7. The method of claim 1 further including performing simulation and call reallocation even for old calls that are only going to be served after a certain length of time (TLim), and performing simulation of future operation regarding these calls using even calls that, one mode subsequent to a call assignment have to a elevator of said group.
  • 8. The method of claim 1 wherein said simulation in said step b) is also based on forecast landing destinations.
  • 9. The method of claim 8 wherein said step c) of allocating assigns the best car to answer all of the received elevator calls so that said group control produces a reduced average time between elevator call and delivery to destination floor.
Priority Claims (2)
Number Date Country Kind
973927 Oct 1997 FI
973928 Oct 1997 FI
Parent Case Info

This application is a Continuation of PCT International Application No. PCT/FI98/00791 filed on Oct. 10, 1998, which designated the United States, and on which priority is claimed under 35 U.S.C. § 120, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (11)
Number Name Date Kind
4030572 Kaneko et al. Jun 1977 A
4355705 Schroder et al. Oct 1982 A
4411337 Schroder et al. Oct 1983 A
4536842 Yoneda et al. Aug 1985 A
4718520 Schroder Jan 1988 A
4947965 Kuzunuki et al. Aug 1990 A
5022497 Thanagavelu Jun 1991 A
5354957 Robertson Oct 1994 A
5616896 Kontturi et al. Apr 1997 A
5780789 Tsuji Jul 1998 A
5955708 Amano et al. Sep 1999 A
Foreign Referenced Citations (3)
Number Date Country
0565864 Mar 1993 EP
A1565864 Oct 1993 EP
331173 Aug 1991 JP
Continuations (1)
Number Date Country
Parent PCT/FI98/00791 Oct 1998 US
Child 09/547054 US