This invention relates in general to the field of dual-axis swallowing accelerometry signal analysis and more specifically to a method for denoising such signals.
Swallowing accelerometry is a potentially informative adjunct to bedside screening for dysphagia. These measurements are minimally invasive, requiring only the superficial attachment of a sensor anterior to the thyroid notch. Even though single-axis accelerometers were traditionally used for swallowing accelerometry, recent studies have shown that dual-axis accelerometers can capture more of the clinically relevant information. Nevertheless, such measurements are inherently very noisy due to various physiological and motion artifacts. Denoising of dual-axis swallowing accelerometry signals is therefore essential for the development of a robust medical device based on these signals.
Estimation of unknown signals in white Gaussian noise has been dealt with by others. Wavelet denoising has previously been proposed as a valuable option. Wavelet denoising removes the additive white Gaussian noise from a signal by zeroing the wavelet coefficients with small absolute value. The suggested optimal threshold is equal to σε√{square root over (2 log N)}
where σε2 is the variance of the additive noise and N is the length of the signal. This approach requires the knowledge of the noise variance, which can be estimated from the wavelet coefficients at the finest scale. However, wavelet denoising with the suggested optimal threshold does not necessarily produce the optimal results for signals that are not smooth. i.e., signals with noiseless coefficients being of very small amplitude for a large number of basis functions. Recent attempts to overcome this shortcoming have yielded methods that can suffer from high computational complexities for very long signals, and do not necessarily reach the optimal results.
It is an object of this invention to: (1) reduce high computational complexity; and, (2) reduce reconstruction error associated with denoising swallowing accelerometry signals.
This invention teaches a method for denoising of long duration dual-axis swallowing accelerometry signals using a computationally efficient algorithm. The algorithm achieves low computational complexity by performing a search for the optimal threshold in a reduced wavelet subspace. To find this reduced subspace, the proposed scheme uses the minimum value of the estimated reconstruction error. By finding this value, the proposed approach also achieves a smaller reconstruction error than previous approaches such as MNDL. SURE-based and Donoho's approaches. This finding has been confirmed for both, synthetic test signals and dual-axis swallowing accelerometry signals.
In the drawings, embodiments of the invention are illustrated by way of example. It is to be expressly understood that the description and drawings are only for the purpose of illustration and as an aid to understanding, and are not intended as a definition of the limits of the invention.
Methodology of the Invention
Consider N noisy discrete-time observations:
x(n)=f(n)+ε(n) (1)
where n=0, . . . , N−1, f(n) is a sampled version of a noiseless continuous signal, and ε(n) is the additive white Gaussian noise drawn from N (0, σε2)
Assume that f(n) can be expanded using
basis functions, bk(n), on the observation space, BN:
f(n)=Σk=1Nckbk(n) (2)
where
ck=bk(n),f(n) (3)
and (p,q) denotes the inner product of vectors p and q. However, given the noisy observations, the coefficients, ck, can only be approximated as follows:
ĉk=bk(n),x(n)=ck+bk(n),ε(n) (4)
Denoising and Reconstruction Error
If f(n) can be described with M nonzero coefficients, where M<<N, then many estimated coefficients, ĉk, represent samples of a zero mean Gaussian random variable with variance σε2. A classical approach known as wavelet denoising diminishes the effects of noise by first expanding the noisy signal in terms of orthonormal bases of compactly supported wavelets. The estimated coefficients below some threshold, τ, are disregarded either by hard or soft thresholding. The value of τ is always chosen based on an attempt to minimize the so-called reconstruction error,
re:
where ∥·∥ denotes the Euclidean norm and {circumflex over (f)}(ii) represents the estimated noiseless signal. re is a sample of random variable Re that has the following expected value:
where m represents the number of coefficients describing f(n) in some subspace of BN and Δm is a vector of length N-m, representing the coefficients of bases that are not selected to describe the unknown signal. In reality, re is not available and only the number of coefficients not disregarded by the thresholding operation, {circumflex over (m)}, is known. In a recent contribution, probabilistic upper and lower bounds for re were derived based on the available data error:
Therefore, it, has been shown that the upper bound for re is equal to
where α and β represent the parameters for validation probability (Pv=Q(α)) and confidence probability (Pc=Q(β)), with Q(·) for an argument λ being, defined as
In addition, {circumflex over (m)}(r) denotes the number of bases whose expansion coefficients are greater than τ in some subspace of BN.
It should be note that for some values of {circumflex over (m)} the reconstruction error given by eqn. (5) and its upper bound given by eqn. (8) achieve a minimum due to the bias-to-variance trade-off. The principle of MDL has been borrowed from coding theory to find such a minimum value. Also, it has been demonstrated that, smaller reconstruction errors can be achieved with MDL-derived thresholds.
Algorithm for Determining Optimal Threshold
The MNDL-based approach can be computationally expensive for very long data sets since the bases are incrementally added to the subspace describing the unknown signal. Considering the length of acquired dual-axis accelerometry signals (>>105 points}, an attempt should be made to minimize the search space, while choosing a threshold that minimizes the reconstruction error. In some cases the MNDL-based approach can yield higher reconstruction errors than Donoho's approach.
In light of the computational and reconstruction limitations or the MNDL-based approach, a new denoising strategy is proposed here. The goal of this new approach is twofold. First, it should be computationally efficient. Second, it should attain a minimum reconstruction error. Minimization of the search space can be achieved by exploiting the fact that the optimal threshold is usually larger than the actual threshold which minimizes the reconstruction error. The algorithm for determining the optimal threshold is defined through the following steps:
The above procedure is repeated independently for signals acquired from each axis of a dual-axis accelerometer. Unlike the MNDL-based approach, soft thresholding is applied in the above steps, since it yields an estimated signal as smooth as the original signal with high probability. Hard thresholding can produce abrupt artifacts in the recovering signal leading to a higher reconstruction signal.
Numerical Analysis
The results of a two-step numerical analysis are presented in this section. First, the performance of the proposed algorithm is examined using two test signals. The goal of this analysis is to compare the performance of the proposed scheme against that of other well-established techniques under well-controlled conditions. In the second step, the proposed denoising algorithm is applied to the acquired dual-axis swallowing accelerometry signals. The goal is to understand the benefits of the proposed approach in the context of a real biomedical application.
Performance Analysis Using Synthetic Test Signals
Referring to
The next task is to examine the reconstruction error under various SNR values with the Haar wavelet. One thousand realizations are used for each SNR value yielding the results depicted in
To more closely mimic a real swallowing scenario, the test signal shown in
where w(n) is Gaussian window with standard deviation σg=1.9 and
f0(n)=0.1 sin(8πnT)+0.2 sin(2πnT)+0.15 sin(20πnT)+0.15 sin(6πnT)+0.12 sin(14πnT)+0.1 sin(4πnT) (12)
with 0≦n≦N−1, N=35000 and T=10−4 seconds. The duration of the signal is based on previously reported swallow durations. It should be mentioned that this signal only mimics a realistic signal, and does not represent a model of a swallow. The same group of wavelets as in the Blocks signal analysis are used to examine the reconstruction error. It is assumed again that the signal is contaminated with additive zero-mean Gaussian noise and SNR=0.10 dB. For this particular signal, the Meyer wavelet (indexed by number 7 in
Denoising Dual-Axis Swallowing Accelerometry Signals
Experimental Protocol
During a three month period, four hundred and eight participants (aged 18-65) were recruited at a public science centre. All participants provided written consent. The study protocol was approved by the research ethics boards of the Toronto Rehabilitation Institute and Bloorview Kids Rehab, both located in Toronto, Ontario, Canada. As seen in
With the accelerometer attached, each participant was cued to perform 5 saliva swallows (denoted as dry in Table 1). After each swallow, there was a brief rest to allow for saliva production. Subsequently, the participant completed 5 water swallows (denoted as wet in Table 1) by cup with their chin in the natural position (i.e., perpendicular to the floor) and water swallows in the chin-tucked position (denoted as WTC in Table 1). The entire data collection session lasted 15 minutes per participant.
Results of Denoising
The acquired dual-axis swallowing accelerometry signals were denoised using Donoho's approach, the MNDL-based approach, the SURE-based approach and the proposed approach. In particular, a 10-level discrete wavelet transform using the Meyer wavelet with soft thresholding was implemented. Before denoising, the signals were pre-processed using inverse filters to annul effects of the data collection system on the acquired data. In order to compare the performance of the aforementioned denoising schemes, SNR values were evaluated before and after denoising using the following formula:
where Ef represents the approximate energy of the noise-free signal, and E{circumflex over (ε)} represents an approximate variance of the white Gaussian noise. The approximate energy is calculated as Ef={circumflex over (σ)}x2={circumflex over (σ)}{circumflex over (ε)}2, where {circumflex over (σ)}x2 is the variance of the observed signal, and {circumflex over (σ)}{circumflex over (ε)}2 represents the variance of the noise calculated by (9). Similarly, E{circumflex over (ε)}={circumflex over (σ)}x2 for the noisy signals, and for the denoised signals E{circumflex over (ε)}=reub({circumflex over (m)}(τ),{circumflex over (σ)}{circumflex over (ε)}2,α,β) for the threshold estimated by (10).
Using the SNR metric given by (13), the results of the analysis are summarized in Table 1. Donoho's approach provides the least amount of improvement in SNR as expected, followed by the MNDL-based approach. The SURE-based approach achieves greater improvement in the SNR values in comparison to the other two aforementioned approaches. Nevertheless, as demonstrated by the results in Table 1, the SURE approach exhibits strong variations in performance. The proposed approach provides the greatest improvement in SNR values. On average, the greatest gain in SNR is over Donoho's approach (3.8 dB and 4.0 dB in the A-P and S-I directions, respectively), while smaller improvements were obtained over the SURE-based approach (2.0 dB and 1.3 dB in the A-P and S-I directions, respectively). Nevertheless, the proposed approach still provides a statistically significant improvement over SURE-based approach in denoising the dual-axis swallowing accelerometry signals (Wilcoxon rank-sum test, p<<10−10 for both directions). This improvement was achieved regardless of whether or not the different swallowing types were considered individually or as a group. As a last remark, it should be noted that these SNR values were estimated using eqn. (13), which from our experience with swallowing signals, provides a conservative approximation. In reality, we expect the gains in SNR to be even greater.
A denoising algorithm is proposed for dual-axis swallowing accelerometry signals, which have potential utility in the non-invasive diagnosis of swallowing difficulties. This algorithm searches for the optimal threshold value in order to achieve the minimum reconstruction error for a signal. To avoid the high computational complexity associated with competing algorithms, the proposed scheme conducts the threshold search in a reduced wavelet subspace. Numerical analysis showed that the algorithm achieves a smaller reconstruction error than Donoho, MNDL- and SURE-based approaches. Furthermore, the computational complexity of the proposed algorithm increases logarithmically with signal length. The application of the proposed algorithm to dual-axis swallowing accelerometry signals demonstrated statistically significant improvements in SNR over the other three considered methods.
This application claims the benefit of U.S. Provisional Patent Application No. 61/218,976 filed on Jun. 21, 2009
Number | Name | Date | Kind |
---|---|---|---|
3683378 | Polhemus | Aug 1972 | A |
3805032 | Ross | Apr 1974 | A |
4910398 | Komatsu et al. | Mar 1990 | A |
5024240 | McConnel | Jun 1991 | A |
5143087 | Yarkony | Sep 1992 | A |
5263491 | Thornton | Nov 1993 | A |
5274548 | Bernard et al. | Dec 1993 | A |
5353223 | Norton et al. | Oct 1994 | A |
5363858 | Farwell | Nov 1994 | A |
5442562 | Hopkins et al. | Aug 1995 | A |
5445144 | Wodicka et al. | Aug 1995 | A |
5497777 | Abdel-Malek et al. | Mar 1996 | A |
5505410 | Diesel et al. | Apr 1996 | A |
5610609 | Rose | Mar 1997 | A |
5619998 | Abdel-Malek et al. | Apr 1997 | A |
5625704 | Prasad | Apr 1997 | A |
5704017 | Heckerman et al. | Dec 1997 | A |
5704018 | Heckerman et al. | Dec 1997 | A |
5729700 | Melnikoff | Mar 1998 | A |
5737487 | Bellegarda et al. | Apr 1998 | A |
5745654 | Titan | Apr 1998 | A |
5784696 | Melnikoff | Jul 1998 | A |
5802256 | Heckerman et al. | Sep 1998 | A |
5891185 | Freed et al. | Apr 1999 | A |
5909189 | Blackman et al. | Jun 1999 | A |
5970978 | Aviv et al. | Oct 1999 | A |
6028841 | Lyon et al. | Feb 2000 | A |
6033073 | Potapova et al. | Mar 2000 | A |
6036349 | Gombar | Mar 2000 | A |
6061631 | Zhang | May 2000 | A |
6157912 | Kneser et al. | Dec 2000 | A |
6267729 | Addington et al. | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6383142 | Gavriely | May 2002 | B1 |
6443895 | Adam et al. | Sep 2002 | B1 |
6445942 | Berthon-Jones et al. | Sep 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6568397 | Addington et al. | May 2003 | B1 |
6581605 | Addington et al. | Jun 2003 | B2 |
6620100 | Smits et al. | Sep 2003 | B2 |
6745184 | Choi et al. | Jun 2004 | B1 |
6826513 | Kumar et al. | Nov 2004 | B1 |
6928434 | Choi et al. | Aug 2005 | B1 |
6978787 | Broniatowski | Dec 2005 | B1 |
6987511 | Taubin | Jan 2006 | B2 |
7253627 | Ahmed | Aug 2007 | B1 |
7398270 | Choi et al. | Jul 2008 | B1 |
7421377 | Zhang | Sep 2008 | B2 |
7526402 | Tanenhaus et al. | Apr 2009 | B2 |
7672717 | Zikov et al. | Mar 2010 | B1 |
7721961 | Silverbrook et al. | May 2010 | B2 |
7930145 | Hel-Or et al. | Apr 2011 | B2 |
8041136 | Causevic | Oct 2011 | B2 |
8239162 | Tanenhaus | Aug 2012 | B2 |
8267875 | Chau et al. | Sep 2012 | B2 |
20020133194 | Leelamanit et al. | Sep 2002 | A1 |
20030018276 | Mansy et al. | Jan 2003 | A1 |
20030073920 | Smits et al. | Apr 2003 | A1 |
20040075659 | Taubin | Apr 2004 | A1 |
20040147816 | Policker et al. | Jul 2004 | A1 |
20040260169 | Sternnickel | Dec 2004 | A1 |
20050283096 | Chau et al. | Dec 2005 | A1 |
20050286772 | Albertelli | Dec 2005 | A1 |
20060064037 | Shalon et al. | Mar 2006 | A1 |
20060074823 | Heumann et al. | Apr 2006 | A1 |
20060120609 | Ivanov et al. | Jun 2006 | A1 |
20070032951 | Tanenhaus et al. | Feb 2007 | A1 |
20070238920 | Sato et al. | Oct 2007 | A1 |
20080103717 | Hel-Or et al. | May 2008 | A1 |
20080146890 | LeBoeuf et al. | Jun 2008 | A1 |
20080243017 | Moussavi et al. | Oct 2008 | A1 |
20080262371 | Causevic | Oct 2008 | A1 |
20080269646 | Chau et al. | Oct 2008 | A1 |
20080306373 | Kandori et al. | Dec 2008 | A1 |
20090030346 | Kojima et al. | Jan 2009 | A1 |
20090198306 | Goetz et al. | Aug 2009 | A1 |
20090263034 | Causevic | Oct 2009 | A1 |
20090264786 | Jacquin | Oct 2009 | A1 |
20090326851 | Tanenhaus | Dec 2009 | A1 |
20100160833 | Chau et al. | Jun 2010 | A1 |
20100161238 | Cappadona et al. | Jun 2010 | A1 |
20100217089 | Farley et al. | Aug 2010 | A1 |
20100217099 | LeBoeuf et al. | Aug 2010 | A1 |
20100250173 | Kozu | Sep 2010 | A1 |
20100250473 | Porikli et al. | Sep 2010 | A1 |
20100306144 | Scholz et al. | Dec 2010 | A1 |
20110170796 | Qian et al. | Jul 2011 | A1 |
20120271872 | Chau et al. | Oct 2012 | A1 |
20130184538 | Lee et al. | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
1773184 | Apr 2007 | EP |
0226101 | Apr 2002 | WO |
02082968 | Oct 2002 | WO |
2004011035 | Feb 2004 | WO |
2005023105 | Mar 2005 | WO |
Entry |
---|
Lee, J., Steele, C.M., and Chau, T., “Time and time-frequency characterization of dual-axis swallowing accelerometry signals,” Aug. 28, 2008, IOP Publishing—Physiological Measurement, issue 29, pp. 1105-1120. |
“A radial basis classifier for the automatic detection of aspiration in children with dysphagia,” by Tom Chau et al., Journal of Neuroengineering and Rehabilitation, 2006, vol. 3, issue 14, pp. 1-11. |
Lee, Joonwu, “Investigation of Accelerometry, Mechanomyography, and Nasal Airflow Signals for Abnormal Swallow Detection,” 2009, University of Toronto, Department of Electrical and Computer Engineering, pp. i-188 (204 total pages). |
Raya, Mary Anne D., et al, “Adaptive Noise Cancelling of Motion Artifact in Stress ECG Signals Using Accelerometer,” IEEE, Proceedings of the Second Joint EMBS/BMES Conference, Oct. 23-26, 2002, pp. 1756-1757 (2 total pages). |
Beheshti, Soosan, et al., “A New Information-Theoretic Approach to Signal Denoising and Best Basis Selection,” Oct. 2005, IEEE Transactions on Signal Processing, vol. 53, No. 10., pp. 3613-3624 (12 total pages). |
Chau, Tom, et al., “A procedure for denoising dual-axis swalling accelerometry signals,” Nov. 26, 2009, Physiological Measurement, Issue 31, pp. N1-N9 (9 total pages). |
Chang, S. Grace, et al., “Adaptive Wavelet Thresholding for Image Denoising and Compression,” Sep. 2000, IEEE Transactions on Image Processing, vol. 9, No. 9, pp. 1532-1546 (15 total pages). |
Chau, Tom, et al., “Investigating the Stationarity of Paediatric Aspiration Signals,” Mar. 2005, IEEE Transactions on Nueral Systems and Rehabilitation Engineering, vol. 13, No. 1, pp. 99-105 (7 total pages). |
D65. J. Lee, C. M. Steele, and T. Chau, “Swallow segmentation with artificial neural networks and multi-sensor fusion,” Medical Engineering and Physics, vol. 31, No. 9, pp. 1049-1055. Nov. 2009. |
D66. J. Lee, T. Chau and C. M. Steele. Effects of Age and Stimulus on Submental Mechanomyography Signals During Swallowing. Dysphagia, 24(3):265-273, 2009. |
W24. J.A. Hind, G. Gensler, D.K. Brandt, P.J. Miller, Gardner, L. Blumenthal, G.D. Gramigna, S. Kosek D. Lundy, S. McGarvey-Toker, S. Rockafellow, et al. Comparison of trained clinician ratings with expert ratings of aspiration on videofluoroscopic images from a randomized clinical trial. Dysphagia, 24(2):211-217, 2009. |
W9. Pauloski BR, Rademaker AW, Kern M, Shaker R, Logemann JA: The feasibility of establishing agreement between laboratories for measures of oropharyngeal structural movements. J Med Speech Lang Pa. 2009;17: 9-19. |
W14. R. Martino, D. L. Stre, Iner E. Maki, and N. Diamant “A sensitivity analysis to determine whether ten teaspoons of water are really necessary,” Dysphagia, vol. 24, No. 4, p. 473, Dec. 2009. |
D67. R. Martino, F. Silver, R. Teashell, M. Bayley, G. Nicholson, D. L. Streiner, and N. E. Diamant, “The toronto bedside swallowing screening test (TOR-BSST): Development and validation of a dysphagia screening tool for patients with stroke,” Stroke, vol. 40, No. 2, pp. 555-561, Feb. 2009. |
D68. Singapore Ministry of Health. Stroke and transient ischaemic attacks: Assessment, investigation, immediate management and secondary prevention. Clinical practice guidelines. 2009. http://www.moh.gov.sg/mohcorp/uploadedFiles/Publications/Guidelines/Clinical—Practice—Guidelines/Stroke%20Booklet.pdf. |
W16. Logemann Ja, Rademaker A, Pauloski Br, Kelly A, Strangl-McBreen C, Antinoka J, Grande B, Farquharson J, Kern M, Easterling C: A randomized study comparing the Shaker exercise with traditional therapy: a preliminary study. Dysphagia. 2009:24:403-411. |
D69. C. M. Steele, T. Chau, G. Bailey, J. Bennett, N. B. N, R. Cliffe, S. M. Molfenter, M. Takeuchi, A. Waito, A. Weeda, and D. Zoratto, “Sensitivity and specificity of a standardized swallow screening protocol: Validation against concurrent videofluoroscopy,” Dysphagia, vol. 25, No. 4, p. 359, Dec. 2010. |
W1. C.S.S. Greco, L.G.M.Q. Nunes, P.L. Melo, “Instrumentation for Bedside Analysis of Swallowing Disorders,” 32nd Annual International Conference of the IEEE EMBS, Buenos Aires, Argentina, Aug. 31-Sep. 4, 2010. |
D70. Damouras, et al., “An Online Swallow Detection Algorithm . . . Dual-Axis Accelerometry,” IEEE Transactions on Signal Processing, Jun. 2010, No. 6, pp. 3352-3359, vol. 58. |
D71. E. Sejdic, C. M. Steele, and T. Chau, “A procedure for denoising dual-axis swallowing accelerometry signals,” Physiological Measurement, vol. 31, No. 1, pp. N1-N9, Jan. 2010. |
D72. E. Sejdic, M. Steele, and T. Chau, “Understanding the statistical persistence of dual-axis swallowing accelerometry signals,” Computers in Biology and Medicine, vol. 40, No. 11-12, pp. 839-844, 2010. |
D73. E. Sejdic, T. H. Falk, C. M. Steele, and T. Chau, “Vocalization removal for improved automatic segmentation of dual-axis swallowing accelerometry signals,” Medical Engineering and Physics, vol. 32, No. 6, pp. 668-672, Jul. 2010. |
D74. E. Sejdic, V. Komisar, C. M. Steele, and T. Chau, “Baseline characteristics of dual-axis cervical accelerometry signals,” Ánnals of Biomedical Engineering, vol. 38, No. 3, pp. 1048-1059, Mar. 2010. |
D75. Esteves, et al.,“Configurable Portable/Ambulatory Instrument for the Analysis of the Coordination between Respiration & Swallowing,”32nd Annual Inti Conf of IEEE, Sep. 2010. |
D76. F. Hanna, S. Molfenter, R. Cliffe, T. Chau, and C. Steele, “Anthropometric and demographic correlates of dual-axis swallowing accelerometry signal characteristics: A canonical correlation analysis,” Dysphagia, vol. 25, No. 2, pp. 94-103, Jun. 2010. |
D77. Orovic, S. Stankovic, T. Chau, C. M. Steele, and E. Sejdic, “Time-frequency analysis and Hérmite projection method applied to swallowing accelerometry signals,” EURASIP Journal on Advances in Signal Processing, vol. 2010, 2010, article ID 323125, 7 pages. |
D78. Lee, E. Sejdic, C. Steele, and T. Chau, “Effects of liquid stimuli on dual-axis swallowing accelerornetry signals in a healthy population,” BioMedical Engineering OnLine, vol. 9, pp. 7-1-7-14, 2010. |
D79. Management of Patients with Stroke: Identification and Management of Dysphagia, Scottish Intercollegiate Guidelines Network, Edinburgh, Scotland, Jun, 2010. |
D80. Sejdic et al., “The Effects of Head Movement on Dual-Axis Cervical Accelerometry Signals,” BMC Research Notes, 2010, vol. 3. |
D81. A. Waito, G. L. Bailey, S. M. Molfenter, D. C. Zoratto, and C. M. Steele, “Voice-quality abnormalities as a sign of dysphagia: Validation against acoustic and videofluoroscopic data,” Dysphagia, vol. 26, No. 2, pp. 125-134, Jun. 2011. |
D82. C. M. Steele, G. L. Bailey, T. Chau, S. M. Molfenter, M. Oshalla, A. A. Waito, and D. Zoratto, “The relationship between hyoid and laryngeal displacement and swallowing impairment,” Clinical Otolaryngology, vol. 36, No. 1, pp. 30-36, Feb. 2011. |
D83. E. Sejdic, C. M. Steele, and T. Chau, “Scaling analysis of baseline dual-axis cervical accelerometry signals,” Computer Methods and Programs in Biomedicine, vol. 103, No. 3, pp. 113-120, Sep. 2011. |
D84. Lee, C. M. Steele, and T. Chau, “Classification of healthy and abnormal swallows based on accelerometry and nasal airflow signals,” Artificial Intelligence in Medicine, vol. 52, No. 1, pp. 17-25, May 2011. |
W20. Leder, et al., “Silent Aspiration Risk is Volume-Dependent,” Dysphagia, Sep. 2011, No. 3, pp. 304-309, vol. 26. |
W12. Omari TI, Dejaeger E, Van Beckevoort D, Goeleven A, De Cock P, Hoffman I, Smet MH, Davidson GP, Tack J, Rommel N: A novel method for the nonradiological assessment of ineffective swallowing. Am J Gastroenterol. 2011;106: 1796-1802. |
W4. Ryu JS, Lee JH, Kang JY, Kim MY, Shin DE, Shin DA: Evaluation of dysphagia after cervical surgery using laryngeal electromyopraphy. Dysphagia. 2011;epub ahead of print. DOI 10.1007/s00455-011-9368-7. 1-7. |
D85. S.R.Youmans, J.A.G. Stierwalt, “Normal Swallowing Acoustics Across Age, Gender, Bolus, Viscosity, and Bolus Volume,” Dysphagia (2011) 26:374-384. |
D86. Steele. C.M. et al., Nonimasiye detection of thin-liquid aspiration using dual-axis swallowing accelerometry . . . Dysphagia. Jul. 28, 2012. pp. 105-112. url <http:/hww.ncbi.nlm.gm/pmc/articles/PMC3576558/pdf/-J.55—2012—Article—9-J.I8.pdf>. |
D24. Das, Reddy and Narayanan, “Hybrid fuzzy logic committee neural networks for recognition of swallow acceleration signals”, Computer Methods and Programs In Biomedicine, 64 (2001) 87-99, Elsevier Science Ireland Ltd. |
D44. Chau, et al.,“Investigating the Stationarity of Paediatric Aspiration Signals, ”Transactions on Neural Systems and Rehabilitation Engineering, Mar. 2005, No. 1, pp. 99-105, vol. 13. |
D2. W. J. Dodds, K. M. Man, I. J.Cook, P. J. Kahrilas, E. T. Stewart, and M. K. Kern, “Influence of bolus volume on swallow-induced hyoid movement in normal subjects,” American Journal of Roentgenology, vol. 150, No. 6, pp. 1307-1309, Jun. 1988. |
D4. Lof, et al., “Test-Retest Variability in Normal Swallowing,” Dysphagia, 1990, pp. 236-242, vol. 4. |
W7. Perlman AL, Grayhack JP, Booth BM: The relationship of vallecular residue to oral involvement, reduced hyoid elevation, and epiglottic function. J Speech Hear Res. 1992;35:734-174. |
D12. Perlman LP, Vandaele DJ, Otterbacher MS; Quantitative Assessment of Hyoid Bone Displacement from Video Images During Swallowing; Journal of Speech and Hearing Research, vol. 38, 579-585, Jun. 1995. |
D14. J. C. Rosenbek, J. A. Robbins, E. B. Roecker, J. L.Coyle, and J. L. Wood, “A penetration-aspiration scale,” Dysphagia, vol. 11, No. 2, pp. 93-98, Mar. 1996. |
W5. Rosenbek JC, Roecker EB, Wood JL, Robbins JA: Thermal application reduces the duration of stage transition in dysphagia after stroke. Dysphagia, 1996;11:225-233. |
W30. Dejaeger E, Pelemans W, Ponette E, Joosten E: Mechanisms involved in postdeglutition retention in the elderly. Dysphagia. 1997;12:63-67. |
W23. Kahrilas PJ, Lin S, Rademaker AW, Logemann JA; Impaired Deglutitive Airway Protection: A Videofluoroscipic Analysis of Severity and Mechanism; Gastroenterology 1997; 113:1457-1464. |
W22. Kuhlemeier KV, Yates P, Palmer JB: Intra-and interrater variation in the evaluation of videofluorographic swallowing studies. Dysphagia. 1998;13:142-147. |
W11. Sellars, Dunnet and Carter, “A Preliminary Comparison of Videofluoroscopy of Swallow and Pulse Oximetry In the Identification of Aspiration in Dysphagic Patients”, Dysphagia, 13:82-86 (1998), Springer-Verlag New York Inc. |
D20. A. S. Halper, L. R. Cherney, K. Cichowski, and M. Zhang, “Dysphagia after head trauma: The effect of cognitive-communicative impairments on functional outcomes,” Journal of Head Trauma Rehabilitation, vol. 14, No. 5, pp. 486-496, Oct. 1999. |
D21. Zoratto, et al., “Hyolaryngeal Excursion as the Physiological Source of Swallowing Accelerometry Signals,” D Physiological Measurement, 2010, pp. 844-855, vol. 31. Diagnosis and Treatment of Swallowing Discorders (Dysphagia) in Acute-Care Stroke Patients, Agency for D Healthcare Research and Quality, Mar. 1999. |
W17. Logemann JA, Pauloski BR, Rademaker AW, Colangelo LA, Kahrilas PJ, Smith CH; Temporal and Biomechanical Characteristics of Oropharyngeal swallow in Younger and Older Men; Journal of Speech, Language, and Hearing Research: Oct. 2000; 46, 5; Research Library p. 1264. |
D23. Reddy, Katakam, Gupta, Unnikrishnan, Narayanan and Canilang, “Measurement of acceleration during 1 videofluorographic evaluation of of dysphagic patients”, Medical Engineering & Physics; 22 (2000) 405-412, Elsevier D Science Ireland Ltd. |
W26. Han TR, Paik NJ, Park JW: Quantifying swallowing function after stroke: A functional dysphagia scale based on videofluoroscopic studies. Arch Phys Med Rehabil. 2001;82:677-682. |
W25. Hind JA, Nicosia MA, Roecker EB, Carnes ML, Robbins JA: Comparison of effortful and noneffortful swallows in healthy middle-aged and older adults. Arch Phys Med Rehabil. 2001;82:1661-1665. |
D25. L. Perry, “Screening swallowing function of patients with acute stroke. part two: detailed evaluation of the tool used by nurses,” Journal of Clinical Nursing, vol. 10, No. 4, pp. 474-481, Jul. 2001. |
D26. McCullough GH, Wertz RT, Rosenbek JC, Mills RH, Webb WG, Ross KB: Inter-and intrajudge reliability for videofluoroscopic swallowing evaluation measures. Dysphagia. 2001;16:110-118. |
D29. Chau, Casas, Berall and Kenny, Poster Presentation; “To characterize normality and stationarity properties of pediatric aspiration signals”, Houston, Texas, Oct. 2002. |
D31. Cichero and Murdoch, “Detection of Swallowing Sounds: Methodology Revisited”, Dysphagia, 17:40-49 (2002), Springer-Veriag New York Inc. |
D32. Cichero, et al., “Acoustic Signature of the Normal Swallow: Characterization by Age, Gender, and Bolus Volume, ” The Annals of Otology, Rhinology & Laryngology, Jul. 2002, No. 7, pp. 623-632, val. 111. |
W27. Eisenhuber E, Schima W, Schober E, Pokieser P, Stadler A, Scharitzer M, Oschatz E: Videofluoroscopic assessment of patients with dysphagia: Pharyngeal retention is a predictive factor for aspiration. Am J Roentgenol. 2002; 178:393-398. |
D33. Ishida R, Palmer JB, Hiiemae KM: Hyoid Motion During Swallowing: Factors Affecting Forward and Upward Displacement. Dysphagia. 2002;17:262-272. |
W18. Logemann JA, Pauloski BR, Rademaker AW, Kahrilas PJ; Oropharyngeal Swallow in Younger and Older Women: Videofluoroscopic Analysis; Journal of Speech, Language, and Hearing Research: Jun. 2002; 45, 3; Research Library p. 434. |
W8. Pauloski BR, Rademaker AW, Logemann JA, Lazarus CL, Newman L, Hamner A, Maccraken E, Gaziano J, Staceiowiak L: Swallow function and perception of dysphagia in patients with head and neck cancer. Head Neck. 2002;24:555-565. |
D36. Cichero, et al., “What Happens After the Swallow” Introducing the Glottal Release Sound, Journal of Medical Speech—Language Pathology, Mar. 2003, No. 1, pp, 31-41, vol. 11. |
D40. Stoeckli et al.: Interraterreliability of videofluoroscopic swallow evaluation. Dysphagia. 2003;18:53-57. |
W2. Suiter DM, McCullogh GH, Powell PW: Effects of cuff deflation and one-way tracheostomy speaking valve placement on swallow physiology. Dysphania. 2003;18:284-292. |
D41. Joint Commission. Stroke performance measurement implementation guide. 2004. http://www.jointcommission.org/CertificationPrograms/Disease-SpecificCare/Standards/09—FAQs+—PrimaryStrokeCenter/PerfM/For+which+patients.htm. |
W3. C. M. Steele and P. H. H. M. Van Lieshout, “Influence of bolus consistency on lingual behaviors in sequential swallowing,” Dysphagia, vol. 19, No. 3. pp. 192-206, Aug. 2004. |
W19. Logemann JA, Williams RB, Rademaker A, Pauloski BR, Lazarus CL, Cook I: The relationship between observations and measures of oral and pharyngeal residue from videofluorography and scintigraphy. Dysphagia. 2005;20:226-231. |
W13. R. Martino, N. Foley, S. Bhogal, N. Diamant, M. Speechley, and R. Teasell, “Dysphagia after stroke: Incidence, diagnosis, and pulmonary complications,” Stroke, vol. 36, No. 12, pp. 2756-2763, Dec. 2005. |
W29. A. Daggett, J. Logemann, A. Rademaker, and B. Pauloski, “Laryngeal penetration during deglutition in normal subjects of various ages,” Dysphagia, vol. 21, No. 4, pp. 270-274, Oct. 2006. |
W32. Clavé P, De Kraa M, Arreola V, Girvent M, Farré R, Palomera E, Serra-Prat M: The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment Pharmacol Ther. 2006;24:1385-1394. |
D49. C. Borr, M. Hielscher-Fastabend, and A. Lucking. Reliability and validity of cervical auscultation. Dysphagia, 22(3):225-234, Jul. 2007. LR: 20071115; JID: 8610856; Mar. 23, 2006 [received]; Jan. 18, 2007 [accepted]; Apr. 25, 2007 [a head of print]; publish. |
W6. Robbins JA, Kays SA, Gangnon RE, Hind JA, Hewitt AL, Gentry LR, Taylor AJ: The effects of lingual exercise in stroke patients with dysphagia. Arch Phys Med Rehabil. 2007;88:150-158. |
W15. B. Martin-Harris, M. Brodsky, Y. Michel, D. Castell, M. Schleicher, J. Sandidge, R. Maxwell, and J. Blair, “MBS measurement tool for swallow impairment—MBSImp: Establishing a standard,” Dysphagia, vol. 23, No. 4, pp. 392-405, Dec. 2008. |
D53. Clave, et al., “Accuracy of the volume-viscosity swallow test for clinical screening of oropharyngeal dysphagia . . . ,” Clinical Nutrition, Dec. 2008, No. 6, pp. 806-815, vol. 27. |
W21. D. M. Suiter and S. B. Leder, “Clinical utility of the 3-ounce water swallow test,” Dysphagia, vol. 23, No. 3, pp. 244-250, Sep. 2008. |
W28. Dyer JC, Leslie P, Drinnan MJ: Objective computer-based assessment of valleculae residue: Is it useful? Dysphagia. 2008;23:7-15. |
D55. J. Lee, C. M. Steele, and T. Chau, “Time and time-frequency characterization of dual-axis swallowing accelerometry signals,” Physiological Measurement, vol. 29, No. 9, pp. 1105-1120, Sep. 2008. |
W33. Kim, et al., “Maximum Hyoid Displacement in Normal Swallowing,” Dysphagia, Sep. 2008, No. 3, pp. 274-279, vol. 23. |
D57. Lindsay, et al., Canadian best practice recommendations for stroke care, Canadian Medical Association Journal, Dec. 2008, No. 12, pp. El-E93, vol. 179. |
D58. Martino, et al., “Screening for Dysphagia in Stroke Survivors: A Before and After Implementation Trial of Evidence-Based Care,” Dysphagia, Dec. 2008, No. 4, pp. 429-430, vol. 23. |
D59. Moriniere, et al., “Origin of the Sound Componenets during Pharngeal Sallowing in Normal Subjects,” Dysphagia, Sep. 2008, No. 3, pp. 267-273, val. 23. |
W10. N.-J. Paik, S. J. Kim, H. J. Lee, J. Y. Jeon, J.-Y. Lim, and T. R. Han, “Movement of the hyoid bone and the epiglottis during swallowing in patients with dysphagia from different etiologies,” Journal of Electromyography and Kinesiology, vol. 18, No. 2, pp. 329-335, Apr. 2008. |
D60. Bours, et al., “Bedside Screening Tests vs. Videofluoroscopy or Fibreoptic Endoscopic Evaluation of Swallowing to Detect Dysphagia in Patients with Neurological Disorders: Systematic Review,” Journal of 2009, No. 3, pp. 477-493, vol. 65. Advanced Nursing, Mar. D. |
D61. Bravata, et al., “Comparison of Two Approaches to Screen for Dysphagia Among Acute Ischemic Stroke Patients: Nursing Admission Screening Tool Versus National Institutes of Health Stroke Scale,” Journal of Research and Development, 2009, No. 9, pp. 1127-1134, vol. 46. Rehabilitation D. |
W31. Coyle, et al., “Oropharyngeal Dysphagia Assessment and Treatment Efficacy: Setting the Record Straight,” Journal of the American Medical Directors Association, Jan. 2009, No. 1, pp. 62-66, vol. 10. |
D64. E. Sejdic, C. M. Steele, and T. Chau, “Segmentation of dual-axis swallowing accelerometry signals in healthy subjects with analysis of anthropometric effects on duration of swallowing activities,” IEEE Transactions on Biomedical Engineering, vol. 56, No. 4, pp. 1090-1097, Apr. 2009. |
Number | Date | Country | |
---|---|---|---|
20120271872 A1 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
61218976 | Jun 2009 | US |