The present invention relates to an industrial process for the production of wafer half-shells or similar food materials of the type used in the confectionery industry for the production of filled foodstuffs formed by a pair of the aforementioned half-shells fitted together mouth-to-mouth and including a filling.
In particular, the invention relates to a method wherein said half-shells are obtained by separation from a wafer sheet having a plurality of half-shells connected to each other by an interconnecting wall, which in turn is connected to each half-shell through an annular region surrounding the half-shell having a thickness smaller than the thickness of the interconnecting wall.
A wafer sheet having the aforementioned characteristics may be obtained, for example, by the process described in WO2011/067733, which is intended to be incorporated herein by reference.
The process described therein uses, for the production of the wafer sheet, a mold comprising a female half-mold and a male half-mold defining jointly a molding cavity for the wafer; the female half-mold comprises a plurality of cells of a shape corresponding to the half-shells to be produced, the front face of which, turned toward the male half-mold, has annular formations projecting towards the front surface of the male half-mold and surrounding each cell, which define in the batter subjected to baking in the molding cavity a notch in the interconnecting wall adjacent to each half-shell.
The wafer sheet resulting from this method has a plurality of half-shells connected to the interconnecting wall by an annular bridge of reduced thickness with respect to the thickness of the interconnecting wall.
As described in WO2011/067733, the half-shells may be separated from the wafer sheet resulting from baking by means of a pressure in the direction orthogonal to the plane of the interconnecting wall; to this end, the solidified wafer sheet may be extracted from the mold and placed on a support having cavities which supports the half-shells or the interconnecting wall, separating the half-shells by means of pressure exerted on the half-shells or respectively on the interconnecting wall.
The half-shells obtained by this method have a finished surface, substantially over their entire wall, as well as on their annular mouth surface (i.e. on the annular surface connecting the inner surface to the outer surface of the half-shell retaining wall), and therefore the baking is done with the batter in contact with the polished surfaces of the two half-molds.
The term ‘finished surface’ means a smooth surface, similar to a skin, substantially free from macropores; the term ‘finished’ being used to distinguish the morphological characteristics of this surface with respect to those of a surface resulting from cutting a wafer wall which, owing to the wafer's porous inner structure, has a macroporous and/or crumbled surface with open cells.
Obtaining half-shells with a finished rim surface is particularly desirable in the production of filled hollow products including a fluid filling, since the presence of matching surfaces with finished rims limits the risk of fluid leakage. Furthermore, the completion of the half-shell with a finished rim is advantageous in the welding process of half-shells by humidifying the matching rims, described in EP-A-1 647 190. It is therefore necessary that the separation operation of the half-shells from the interconnecting wall does not interfere or deteriorate the surface finish of the annular orifice rim of the half-shells.
Although the shape features of a wafer sheet, as described in WO2011/067733, are suitable to facilitate the separation of the half-shells from the interconnecting wall in the transfer onto the industrial-scale of the half-shell production process, wherein it is necessary to use wafer sheets of large dimensions with a high number of half-shells, it has been found that the separation operation, whether performed by compression or cutting, involves significant problems that cause the production of a large number of defective half-shells, for example having a crumbled or jagged mouth contour, resulting in a high loss of productivity.
The object of the present invention is to provide a method that overcomes the aforementioned disadvantages and is thus particularly suitable for being implemented in industrial production by substantially limiting the production of waste and increasing productivity.
In view of such aim, the object of the invention is a method as defined in the following claims, which form an integral part of the present description.
Further advantages and features of the method according to the invention will become apparent from the detailed description that follows, provided with reference to the accompanying drawings, provided by way of non-limiting example, wherein:
With reference to the drawings, at 2 is indicated a wafer sheet that comprises a plurality of half-shells 4 connected together by an interconnecting wall 6. Although
The shape of the half-shells is not binding and may be chosen according to the shape of the product that is to be made.
The half-shells 4 have an annular mouth surface 8 which constitutes the connecting surface between the inner surface 10 and the outer surface 12 of the concave wall defining the half-shell; such mouth surface is a finished rim surface since the wafer is obtained by baking in a mold having surfaces in contact with such surface.
The half-shells are connected to the interconnecting wall 6 by means of an annular region or bridge 14 which preferably has a thickness d1 reduced with respect to the thickness d2 of the interconnecting wall (see detail in
As indicated in the cross section detail of
The solution wherein the two half-shells used to produce a closed hollow body have annular mouth surfaces, both inclined (with respect to the junction plane of the two half-shells) with the same inclination, is illustrated in FIGS. 7 and 8 of EP 1 433 386 and is therein described as useful for improving the centering of the two half-shells. However, within the scope of the present invention, such a solution is desirable and advantageous as an additional feature for obtaining a clean cut of the annular region 14 without causing a deterioration of the finished surfaces of the annular mouth rim.
To carry out the separation operation of the half-shells 4 from the wafer sheet 2, the wafer is initially positioned on a support consisting of a supporting plate 20 with at least its interconnecting wall 6 in contact with a complementary surface 22 of said support plate.
The support plate 20 according to the invention is made of a plastic material, preferably polycarbonate.
The support plate 20 is generally a plate other than that wherein the wafer sheet 2 is shaped and baked, as the baking plates in the oven are mostly cast iron plates which are not suitable to support cutting actions. Plate 20 is therefore, preferably, an ad hoc produced support plate whereon the wafer sheet is transferred following its solidification.
In a preferred embodiment, the support plate 20 has a plurality of protruding formations 24 with a shape corresponding to the shape of the half-shells and is furthermore shaped so as to provide a support surface 26 (
In another embodiment, however, it is possible to carry out the separation operation also by positioning the wafer sheet with the cavities of the half-shells facing upwards, that is, towards the cutting member, i.e. using a support plate with cavities having concavity facing upwards and with the interconnecting wall 6 supported by a support surface complementary to it as previously indicated.
According to the preferred embodiment shown in
The half-shell separation operation is carried out with the use of a plurality of cutting dies or punches 32, each having a cutting profile corresponding to the contour of the half-shell at the aforementioned annular region 14 with reduced thickness.
In practice, in an industrial system, support plates 20 with a respective wafer sheet 2 associated with them are conveyed, e.g. by means of a stepwise movable conveyor, to a temporary stopping position wherein the cutting edge of the cutting dies 32 is in perfect register with the contour of the half-shells as indicated above; alternatively, it is possible to perform the separation operation continuously, i.e. with tracking, so that the cutting dies are movable with a feed rate corresponding to the feed rate of the conveyor which transports the support plates.
In step b) of
In the scope of the invention, it has been found that, in order to avoid or reduce the production of defective half-shells, the impact of the cutting profile with the annular region 14 and therefore the initial cutting thereof must be made by spaced points or dashes. For this reason, a serrated cutting profile 34 is adopted, preferably with triangular teeth 38a, 38b (
In combination with a serrated cutting profile, the adoption of an annular mouth rim 8 of the half-shells inclined with respect to the plane of the interconnecting wall, as previously described, further improves the precision of the cut, presumably as it avoids the propagation of the rupture of said annular mouth surface avoiding its deterioration.
The cutting dies and, in particular, their cutting profiles, are generally made of steel, e.g. tool steel.
To optimize the cutting operation, it is preferable that, during its execution, the interconnecting wall 6 of the wafer is bound to the support plate. To this end, the cutting die is preferably associated to a retaining member comprising a stop plate 42, vertically movable, between a raised position and a lowered position for holding the interconnecting wall 6 blocked and thereby in contact with the surface of the support plate. The pressure exerted by the stop plate 42 on the wafer sheet may be adjusted by elastic means, such as helical springs 31.
The stop plate 42 may have a plurality of openings wherein a respective cutting die 32 or a row of cutting dies is movable and is driven, in its vertical motion, by the same motor 36 that controls the vertical translation of the cutting dies, compensating for the extra travel of the springs 31 (
As illustrated in
A constructive detail of the ejector members is illustrated in the technical drawing of
As illustrated, the ejector members 44 comprise a terminal part 48 of elastomeric material, fixed to a sliding, rod-shaped piston 45.
The ejector members 44 are fixed to a vertically movable plate 53, to which the cutting dies 32 are also anchored by means of a threaded rod guide element 47.
An elastic member 52, in the form of a helical spring, exerts pressure on the rod 45 with a defined preload, making sure that the rod exerts on the wafer sheet a force such that it maintains the wafer sheet in position before and after cutting.
Once the cutting operation is performed, the motor 36 drives the vertical movement of the cutting dies away from the support plate 20 and simultaneously or subsequently the vertical movement of the stop plate 42 and that of the ejectors 44, to disengage the interconnecting wall 6 (
The process according to the invention, due to its innovative features, provides a substantial increase in productivity, in particular avoiding deterioration or crumbling of the annular rim surface of the half-shells obtained.
Naturally, without prejudice to the principle of the invention, the embodiments and the implementation details may vary from that described and illustrated without departing from the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
100316 | Jun 2017 | LU | national |