The invention is explained in detail using the examples of embodiment depicted in the figures. The following items are shown:
The closed-loop control of a work mode of the internal combustion engine 1 can result on the basis of selected operating parameters. It is, for example, therefore conceivable by means of Lambda probes 60 and/or NOx sensors 100 disposed in the exhaust gas duct 50 to determine the composition of the exhaust gas. Additionally an exhaust gas temperature can, for example, in the area of the emission control system, for example between the particle filter 70 and the NOx storage catalytic converter 90, be determined using one or several temperature probes 80. From the signals of the various probes 60, 80, 100, which are connected to the engine control unit 110, as well as from the data acquired by the incoming air measurement mechanism 20, the mixture can be calculated and the fuel metering mechanism 30 can be accordingly actuated to meter the fuel. Provision is thereby made according to the invention for a SOx removal calculation 120 to be implemented as software in the engine control unit 110.
The discharge of sulfur during a desulfurization process (DeSOx process), which is necessary for the regeneration of the NOx storage catalytic converter 90, is essentially dependent on
whereby during the desulfurization process all of these parameters are constantly changing.
A suitable removal model deals with the sulfur discharge as a function of the conditions, as it is schematically depicted in a flow diagram in
Provision is made in the procedure according to the invention for conditions, in which a reducing agent flow 122 in the exhaust gas is generated, to be adjusted in the exhaust gas for the sulfur removal. In so doing, a SOx removal amount 126 can be determined from a reducing agent flow 122 and from additional operating parameters of the internal combustion engine 1 derived from a model, whereby the reducing agent flow 122 in the exhaust gas during the sulfur removal is determined from a reducing agent characteristic diagram 121. This characteristic diagram 121 is constructed from the operating state, from a rotational speed and from a torque of the internal combustion engine 1.
Provision is made in a correction step for the reducing agent flow 122 to be corrected with a Lambda correction 123, which is calculated from a deviation from a set point Lambda value, which is calculated for the desulfurization from an actual Lambda value. In this desulfurization phase, a significant discharge of the sulfur out of the NOx storage catalytic converter 90 as a result of the short richening of the exhaust gas (λ<1) can be observed. For that reason, the Lambda correction 123 takes into account a Lambda deviation from the set point Lambda value, which occurs, if especially during the dynamic operation, the desired Lambda value is not achieved; and the reducing agent flow 122 consequently deviates from the ideal exhaust gas composition.
Provision is made in a procedural variation for the reducing agent flow 122 corrected by the Lambda correction 123 to be integrated; and when a specifiable reducing agent threshold value 127 is achieved, for the operating conditions generating the reducing agent flow in the exhaust gas to be terminated after a specifiable time, i.e. the rich operation is terminated before a release of hydrogen sulfide (H2S).
Provision is made in an additional step for the reducing agent flow 122 to be corrected with a temperature correction 124, which is calculated from the temperature of the NOx storage catalytic converter 90. In addition it is advantageous if the temperature probe 80 is thermally connected to the NOx storage catalytic converter 90. This temperature correction 124 can be determined, in that the desulfurization is implemented repeatedly at different temperatures and the effect is compared.
Provision is made in the procedure according to the invention in a third step for the reducing agent flow 122 to be corrected with a DeSOx progression correction 125 concerning the desulfurization process. The DeSOx progression correction 125 is calculated proportionally from the time duration of the desulfurization, whereby the penetrating properties of the reducing agent flow 122 into the NOx storage catalytic converter are depicted. These properties constantly change with the passage of time.
With the procedure described for the SOx removal calculation 120, dynamic effects during a desulfurization of the NOx storage catalytic converter can be better taken into account; and in so doing, the subsequent effect of the NOx storage catalytic converter 90 on the reduction of the nitrogen oxides in the exhaust gas can be better predicted, which makes the process management more streamlined and thereby more fuel efficient.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 035 283.1 | Jul 2006 | DE | national |