The present invention relates generally to optical systems and more particularly to an optical wavelength filter system for wavelength tuning.
Considerable effort has been devoted for developing rapidly and widely tunable wavelength laser sources for optical reflectometry, biomedical imaging, sensor interrogation, and tests and measurements. A narrow line width, wide-range and rapid tuning have been obtained by the use of an intra-cavity narrow band wavelength scanning filter. Mode-hopping-free, single-frequency operation has been demonstrated in an extended-cavity semiconductor laser by using a diffraction grating filter design. Obtaining single-frequency laser operation and ensuring mode-hop-free tuning, however, may use a complicated mechanical apparatus and limit the maximum tuning speed. One of the fastest tuning speeds demonstrated so far has been limited less than 100 nm/s. In certain applications such as biomedical imaging, multiple-longitudinal mode operation, corresponding to an instantaneous line width as large or great than 10 GHz, may be sufficient. Such width may provide a ranging depth of a few millimeters in tissues in optical coherence tomography and a micrometer-level transverse resolution in spectrally-encoded confocal microscopy.
A line width on the order of 10 GHz is readily achievable with the use of an intra-cavity tuning element (such as an acousto-optic filter, Fabry-Perot filter, and galvanometer-driven diffraction grating filter). However, the sweep frequency previously demonstrated has been less than 1 kHz limited by finite tuning speeds of the filters. Higher-speed tuning with a repetition rate greater than 15 kHz may be needed for video-rate (>30 frames/s), high-resolution optical imaging in biomedical applications.
Accordingly, there is a need to overcome the above-described deficiencies.
According to the exemplary concepts of the present invention, an optical wavelength filter may be provided that can be tuned with a repetition rate of greater than 15 kHz over a wide spectral range. In addition, a wavelength tuning source comprising such optical filter in combination with a laser gain medium may be provided. The tuning source may be useful in video-rate optical imaging applications, such as the optical coherence tomography and spectrally encoded confocal microscope.
In general, the optical filter according to one exemplary embodiment of the present invention may include a diffraction grating, a rotating polygon scanner, and a telescope. Such optical filter can be operated at a tuning speed more than an order of magnitude higher than the conventional filters. The wavelength tunable light source may be implemented by employing the filter, e.g., in combination with a laser gain medium. The filter and gain medium may further, be incorporated into a laser cavity. For example, a laser can emit a narrow band spectrum with its center wavelength being swept over a broad wavelength range at a high repetition rate.
In one exemplary embodiment of the present invention, an apparatus is provided which includes an arrangement for emitting an electromagnetic radiation that has a spectrum whose mean frequency changes substantially continuously over time. Such radiation is may be associated with a tuning speed that is greater than 100 terahertz per millisecond. The mean frequency can change repeatedly at a repetition rate that is greater than 5 kilohertz or over a range greater than 10 terahertz. The spectrum may have a tuning range covering a portion of the visible, near-infrared or infrared wavelengths. Exemplary spectra may be centered at approximately at 850 nm, 1300 nm or 1700 nm wavelengths. Further, the spectrum may have an instantaneous line width that is smaller than 100 gigahertz. The apparatus may also include a laser cavity with a roundtrip length shorter than 5 m. The apparatus may also have a polygon scanner arrangement which may be adapted to receive at least a portion of the emitted electromagnetic radiation and reflect or deflect the portion to a further location. In addition, a beam separating arrangement can be provided which selectively receives components of the electromagnetic radiation.
According to another exemplary embodiment of the present invention the apparatus for filtering an electromagnetic radiation can include at least one spectral separating arrangement configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. The apparatus may also have at least one continuously rotating optical arrangement that is configured to receive the physically separated components and selectively direct individual components to a beam selecting arrangement.
In one exemplary variation of the present invention, the spectral separating arrangement includes a diffraction grating, a prism, a grism, an acousto-optic beam deflector, a virtual phased array, and/or an arrayed waveguide grating. The continuously rotating optical arrangement may be a polygon mirror, a diffractive element, a substantially opaque disk having an array of substantially transparent regions, and/or a substantially transparent disk having an array of substantially reflective regions. The spectral separating arrangement may also include a holographic grating mounted on a substrate comprising a continuously rotating optical arrangement.
In another exemplary variation of the present invention the beam selecting arrangement may be an optical fiber, an optical waveguide, a pinhole aperture, a combination of a lens with an optical fiber, waveguide or pinhole, and/or a spatial filter. The beam selecting arrangement can include a plurality of beam selecting elements, and the electromagnetic radiation which is transmitted by the plurality of beam selecting elements may be combined. The signal may be reflected multiple times from the continuously rotating optical arrangement before being received by the selecting arrangement.
According to yet another exemplary embodiment of the present invention the apparatus for filtering an electromagnetic radiation may include at least one spectral separating arrangement configured to angularly separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. Such arrangement can also include at least one angularly deflecting optical arrangement that includes a pivot point, and that is configured to receive the components of the electromagnetic radiation and selectively direct the components to a beam selecting arrangement. Further, the arrangement can include at least one optical imaging arrangement configured to receive the components of the electromagnetic radiation and generate an image of one or more dispersive elements associated with the components. The position of the pivot point of the angularly deflecting optical arrangement may be provided in proximity to a real or virtual image of at least one of the dispersive elements.
In one exemplary variant of the present invention, a deflection point of the angularly deflecting optical element may substantially overlap with a real image of at least one of the dispersive elements. At least one reflector which is configured to receive at least one signal from the at least one angularly deflecting optical arrangement may also be provided. One or more of the dispersive elements may be a diffraction grating, a prism, a grism, an acousto-optic beam deflector, a virtual phased array, and/or an arrayed waveguide grating. The angularly deflecting optical element may be a polygon mirror scanner, a galvanometer mirror scanner, or a piezo-electric mirror scanner.
According to still another exemplary embodiment of the present invention, an apparatus is provided for filtering an electromagnetic radiation. The apparatus includes at least one dispersive arrangement configured to angularly separate components of the electromagnetic radiation based on a frequency of the electromagnetic radiation, and generate frequency-separated components. The apparatus may also include at least one angularly deflecting optical element having a pivot point of an angular deflection. The pivot point can substantially overlap a location where substantially all of the frequency-separated components overlap.
In another exemplary embodiment of the present invention, at least one spectral separating arrangement can be provided that is configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation. In addition, at least one continuously rotating optical arrangement may be included which is configured to receive at least one signal that is associated with the one or more components. At least one beam selecting arrangement may also be configured to receive the signal. The emitter can be a laser gain medium, a semiconductor optical amplifier, a laser diode, a super-luminescent diode, a doped optical fiber, a doped laser crystal, a doped laser glass, and/or a laser dye.
In still another exemplary embodiment of the present invention, a source arrangement can provide an electromagnetic radiation. The source includes at least one emitter of the electromagnetic radiation, at least one spectral separating arrangement configured to angularly separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation, as well as at least one angularly deflecting optical arrangement that includes a pivot point, and configured to receive the components of the electromagnetic radiation to generate at least one signal associated with the one or more components. In addition, the source arrangement can include at least one beam selecting arrangement adapted to receive the signal, and selectively generate at least one selected signal, and at least one optical imaging arrangement configured to received the selected signal, and generate an image of one or more dispersive elements associated with the one or more components. In a variation of the present invention, more than one laser gain medium providing electromagnetic radiation and at least one spectral separating arrangement configured to physically separate one or more components of the electromagnetic radiation based on a frequency of the electromagnetic radiation can be provided. In this variation, the selected components of electromagnetic radiation from each laser gain medium are synchronized, and can be used separately or combined.
In one further exemplary embodiment of the present invention, a high-speed tuning of an extended-cavity semiconductor laser may be provided. The laser resonator may include a unidirectional fiber-optic ring, a semiconductor optical amplifier as the gain medium, and a scanning filter based on a polygon scanner. Variable tuning rates of up to 1,150 nm/ms (15.7 kHz repetition frequency) can be obtained over a 70 nm wavelength span centered at 1.32 μm. Such tuning rate can be more than an order of magnitude faster than is conventionally know, and may be facilitated in part by self-frequency shifting in the semiconductor optical amplifier. The instantaneous line width of the source may be <0.1 nm for 9-mW cw output power, and a low spontaneous-emission background of 80 dB can be obtained.
Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
The light controller 2 can be one or more of various systems and/or arrangements that are configured to transmit a beam of light having a broad frequency (f) spectrum. In one exemplary embodiment, the beam of light may be a collimated beam of light The beam of light can include a plurality of wavelengths λ . . . λn, within the visible light spectrum (e.g., red, blue, green). Similarly, the beam of light provided by the light controller 2 can also include a plurality of wavelengths λ . . . λn that may be defined outside of the visible spectrum (e.g., ultraviolet, near infrared or infrared). In one exemplary embodiment of the present invention, the light controller 2 can include a unidirectional light transmission ring, which shall be described in further detail below in connection with
The wavelength dispersing element 4 of the optical wavelength filter 1 can include one or more elements that are specifically adapted to receive the beam of light from the light controller 2, and to conventionally separate the beam of light into a plurality of wavelengths of light having a number of directions. The wavelength dispersing element 4 is further operative to direct portions of light having different wavelengths in equal angular directions or displacements with respect to an optical axis 38. In one exemplary embodiment of the present invention, the wavelength dispersing element 4 can include a light dispersion element, which may include but not limited to, a reflection grating, a transmission grating, a prism, a diffraction grating, an acousto-optic diffraction cell or combinations of one or more of these elements.
The lens system 6 of the optical wavelength filter 1 can include one or more optical elements adapted to receive the separated wavelengths of light from the wavelength dispersing element. Light at each wavelength propagates along a path which is at an angle with respect to the optical axis 38. The angle is determined by the wavelength dispersing element 4. Furthermore, the lens system 6 is adapted to direct or steer and/or focus the wavelengths of light to a predetermined position located on a beam deflection device 8.
The beam deflection device 8 can be controlled to receive and selectively redirect one or more discrete wavelengths of light back along the optical axis 38 through the lens system 6 to the wavelength dispersing element 4 and back to the light controller 2. Thereafter, the light controller 2 can selectively direct the received discrete wavelengths of light to any one or more of the applications. The beam deflecting device 8 can be provided in many different ways. For example, the beam deflecting device 8 can be provided from elements including, but not limited to, a polygonal mirror, a planar mirror disposed on a rotating shaft, a mirror disposed on a galvonmeter, or an acousto-optic modulator.
In the second exemplary embodiment of the optical wavelength filter 1′ shown in
The image plane IP is preferably located between the first lens 20 and the second lens 22 and at a predetermined distance from the first lens 20. According to one exemplary variation of the present invention, such predetermined distance may be defined by the focal length F1 of the first lens 20. After such one or more converging beams are propagated through the image plane IP, these one or more converging beams form equal or corresponding one or more diverging beams that are received by the second lens 22. The second lens 22 is adapted to receive the diverging beams and provide approximately an equal number of collimated beams having predetermined angular displacements with respect to the optical axis 38. Thus, the second lens 22 can direct or steer the collimated beams to predefined portions of the beam deflection device 8′.
The telescope 6′ according to the second exemplary embodiment of the present invention is operative to provide one or more features as described above, as well as to convert a diverging angular dispersion from the grating into converging angular dispersion after the second lens 22. Such result may be advantageous for a proper operation of the filter. In addition, the telescope 6′ may provide adjustable parameters which control the tuning range and linewidth and reduce the beam size at the polygon mirror to avoid beam clipping. As is illustrated in the exemplary embodiment of
Furthermore, the size of the polygon arrangement 24 may be selected based on preferences of a particular application, and preferably taking into account certain factors including, but not limited to, manufacturability and weight of the polygon arrangement 24. It should also be understood that lenses 20, 22 that have different focal lengths may be provided. For example, the lenses 20, 22 should be selected to provide a focal point at approximately the center point 24a of the polygon arrangement 24.
In one exemplary embodiment, a Gaussian beam 30 can be utilized with a broad optical spectrum incident to the grating from the fiber collimator 12. The well-known grating equation is expressed as λ=p·(sin α+sin β) where λ is the optical wavelength, p is the grating pitch, and α and β are the incident and diffracted angles of the beam with respect to the normal axis 42 of the grating, respectively. The center wavelength of tuning range of the filter may be defined by λ0=p·(sin α+sin β0) where β0 is the angle between the optic axis 38 of the telescope and the grating normal axis. FWHM bandwidth of the filter is defined by (δλ)FWHM/λ0=A·(p/m)cos α/W, where A=√{square root over (4 ln 2)}/π for double pass, m is the diffraction order, and W is 1/e2-width of the Gaussian beam at the fiber collimator.
Tuning range of the filter may be limited by the finite numerical aperture of the first lens 20. The acceptance angle of the first lens 20 without beam clipping may be defined by Δβ=(D1−W cos β0/cos α)/F1, where Dl and Fl are the diameter and focal length of the first lens 20. Such formulation relates to the filter tuning range via Δλ=p cos β0·Δβ. One of exemplary design parameters of the filter, originated from the multiple facet nature of the polygon mirror, is the free spectral range, which is described in the following. A spectral component after propagating through the first lens 20 and the second lens 22 may have a beam propagation axis at an angle β′ with respect to the optic axis 38, e.g., β′=−(β−β0)·(F1/F2), where F1 and F2 are the focal lengths of the first lens 20 and the second lens 22, respectively. The polygon arrangement 24 may have a facet-to-facet polar angle given by θ=2π/N≈L/R, where L is the facet width, R is the radius of the polygon and N is the number of facets. If the range of β′ of incident spectrum is greater than the facet angle, i.e. Δβ′=Δβ·(F1/F2)>θ, the polygon arrangement 24 can retro-reflect more than one spectral component at a given time. The spacing of the multiple spectral components simultaneously reflected, or the free spectral range, can be defined as (Δλ)FSR=p cos β0(F1/F2)·θ. In an exemplary intra-cavity scanning filter application, the free spectral range of the filter should exceed the spectral range of the gain medium in order to avoid multiple frequency bands (in the case of an inhomogeneously broadened gain medium) or limited tuning range (in the case of a homogeneously broadened gain medium).
The duty cycle of laser tuning by the filter can be, for example, 100% with no excess loss caused by beam clipping if two preferable conditions are met as follows:
The first equation may be derived from a condition that the beam width after the second lens 22 should be smaller than the facet width. The second equation can be derived from that the two beams at the lowest 32 and highest wavelengths 34 of the tuning range, respectively, which should not overlap each other at the polygon arrangement 24. S in equation (1) denotes the distance between the second lens 22 and the front mirror of the polygon arrangement 24.
It is possible to select the optical components with the following parameters: W=2.4 mm, p= 1/1200 mm, α=1.2 rad, β0=0.71 rad, m=1, D1=D2=25 mm, F1=100 mm, F2=45 mm, N=24, R=25 mm, L=6.54, S=5 mm, θ=0.26 rad, λ0=1320 nm. From the parameters, the theoretical FWHM bandwidth, tuning range and free spectral range of the filter could be calculated: (δλ)FWHM=0.09 nm, Δλ=126 nm and (Δλ)FSR=74 nm. Both conditions in equation (1) may be satisfied with particular margins.
In
The filter tuning speed can be further increased by having the beam of light reflected multiple times by the polygon arrangement 24. A fifth exemplary embodiment of the present invention, depicted in
One exemplary application of the above-described polygon tuning filter according to the sixth embodiment of the present invention may be a wide band wavelength scanning light source. In
The exemplary embodiment illustrated in
A frequency downshift in the optical spectrum of the intra-cavity laser light may arise as the light passes through the SOA gain medium, as a result of an intraband four-wave mixing phenomenon. In the presence of the frequency downshift, greater output power can be generated by operating the wavelength scanning filter in the positive wavelength sweep direction.
An exemplary embodiment of a free-space extended-cavity semiconductor tunable laser arrangement according to the present invention is depicted in
The distance from the lens 200 to the reflectors of the disk 210 may be approximately equal to the focal length, F, of the lens 200. The tuning range of the filter may be given by Δλ=p cos β0 (D/F), where D denotes the distance between the stripes. The width of the strip, w, can preferably be substantially equal to the beam spot size, ws, at the surface of the disk:
where z=πws2/λ. Such formulation may lead to a FWHM filter bandwidth given by (δλ)FWHM/λ0=A·(p/m)cos α/W where A=√{square root over (4 ln 2)}/π. For w>ws, the filter bandwidth may become greater, and for w<ws, the efficiency (reflectivity) of the filter can be decreased by beam clipping. The orientation of the incident beam 30 with respect to the optic axis of the lens 200 and the spinning direction 220 may determine the sense of wavelength tuning. The positive wavelength scan may be preferable, which is the case of the exemplary embodiment shown in
Two exemplary applications of the exemplary embodiments of the present invention are described as follows.
Another exemplary application of the exemplary embodiments of the present invention is for optical coherence tomography (“OCT”) the details of which are described in U.S. Pat. No. 5,956,355, the disclosure of which is incorporated herein by reference in its entirety. In one exemplary configuration, depicted in
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. For example, the invention described herein is usable with the exemplary methods, systems and apparatus described in U.S. Patent Application No. 60/514,769. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention.
The present application is a divisional of U.S. patent application Ser. No. 10/861,179 filed Jun. 4, 2004. This application also claims priority from U.S. Patent Application Ser. No. 60/476,600 filed on Jun. 6, 2003, and U.S. Patent Application Ser. No. 60/514,769 filed on Oct. 27, 2003, the entire disclosure of which is incorporated herein by reference.
The invention was made with the U.S. Government support under Grant Number DAMD17-99-2-9001 awarded by the U.S. Department of the Army and Grant Number BES-0086789 awarded by the National Science Foundation. Thus, the U.S. Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2339754 | Brace | Jan 1944 | A |
3090753 | Matuszak et al. | May 1963 | A |
3601480 | Randall | Aug 1971 | A |
3856000 | Chikama | Dec 1974 | A |
3872407 | Hughes | Mar 1975 | A |
3941121 | Olinger | Mar 1976 | A |
3973219 | Tang et al. | Aug 1976 | A |
3983507 | Tang et al. | Sep 1976 | A |
4030827 | Delhaye et al. | Jun 1977 | A |
4030831 | Gowrinathan | Jun 1977 | A |
4140364 | Yamashita et al. | Feb 1979 | A |
4141362 | Wurster | Feb 1979 | A |
4224929 | Furihata | Sep 1980 | A |
4295738 | Meltz et al. | Oct 1981 | A |
4300816 | Snitzer et al. | Nov 1981 | A |
4303300 | Pressiat et al. | Dec 1981 | A |
4428643 | Kay | Jan 1984 | A |
4479499 | Alfano | Oct 1984 | A |
4533247 | Epworth | Aug 1985 | A |
4585349 | Gross et al. | Apr 1986 | A |
4601036 | Faxvog et al. | Jul 1986 | A |
4607622 | Fritch et al. | Aug 1986 | A |
4631498 | Cutler | Dec 1986 | A |
4650327 | Ogi | Mar 1987 | A |
4744656 | Moran et al. | May 1988 | A |
4751706 | Rohde et al. | Jun 1988 | A |
4763977 | Kawasaki et al. | Aug 1988 | A |
4770492 | Levin et al. | Sep 1988 | A |
4827907 | Tashiro et al. | May 1989 | A |
4834111 | Khanna et al. | May 1989 | A |
4868834 | Fox et al. | Sep 1989 | A |
4890901 | Cross, Jr. | Jan 1990 | A |
4892406 | Waters | Jan 1990 | A |
4905169 | Buican et al. | Feb 1990 | A |
4909631 | Tan et al. | Mar 1990 | A |
4925302 | Cutler | May 1990 | A |
4928005 | Lefevre et al. | May 1990 | A |
4965441 | Picard | Oct 1990 | A |
4965599 | Roddy et al. | Oct 1990 | A |
4993834 | Carlhoff et al. | Feb 1991 | A |
4998972 | Chin et al. | Mar 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040889 | Keane | Aug 1991 | A |
5045936 | Lobb et al. | Sep 1991 | A |
5046501 | Crilly | Sep 1991 | A |
5065331 | Vachon et al. | Nov 1991 | A |
5085496 | Yoshida et al. | Feb 1992 | A |
5120953 | Harris | Jun 1992 | A |
5121983 | Lee | Jun 1992 | A |
5127730 | Brelje et al. | Jul 1992 | A |
5197470 | Helfer et al. | Mar 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5208651 | Buican | May 1993 | A |
5212667 | Tomlinson et al. | May 1993 | A |
5214538 | Lobb | May 1993 | A |
5228001 | Birge et al. | Jul 1993 | A |
5241364 | Kimura et al. | Aug 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5250186 | Dollinger et al. | Oct 1993 | A |
5262644 | Maguire | Nov 1993 | A |
5275594 | Baker et al. | Jan 1994 | A |
5291885 | Taniji et al. | Mar 1994 | A |
5293872 | Alfano et al. | Mar 1994 | A |
5293873 | Fang | Mar 1994 | A |
5304173 | Kittrell et al. | Apr 1994 | A |
5304810 | Amos | Apr 1994 | A |
5305759 | Kaneko et al. | Apr 1994 | A |
5317389 | Hochberg et al. | May 1994 | A |
5318024 | Kittrell et al. | Jun 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5348003 | Caro | Sep 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5394235 | Takeuchi et al. | Feb 1995 | A |
5404415 | Mori et al. | Apr 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441053 | Lodder et al. | Aug 1995 | A |
5450203 | Penkethman | Sep 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5459325 | Hueton et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5486701 | Norton et al. | Jan 1996 | A |
5491524 | Hellmuth et al. | Feb 1996 | A |
5491552 | Knuttel | Feb 1996 | A |
5526338 | Hasman et al. | Jun 1996 | A |
5555087 | Miyagawa et al. | Sep 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5565986 | Knüttel | Oct 1996 | A |
5566267 | Neuberger | Oct 1996 | A |
5583342 | Ichie | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5600486 | Gal et al. | Feb 1997 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5621830 | Lucey et al. | Apr 1997 | A |
5623336 | Raab et al. | Apr 1997 | A |
5635830 | Itoh | Jun 1997 | A |
5649924 | Everett et al. | Jul 1997 | A |
5697373 | Richards-Kortum et al. | Dec 1997 | A |
5698397 | Zarling et al. | Dec 1997 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5716324 | Toida | Feb 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5730731 | Mollenauer et al. | Mar 1998 | A |
5735276 | Lemelson | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5748318 | Maris et al. | May 1998 | A |
5748598 | Swanson et al. | May 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5801826 | Williams | Sep 1998 | A |
5803082 | Stapleton et al. | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5810719 | Toida | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5840023 | Oraevsky et al. | Nov 1998 | A |
5840075 | Mueller et al. | Nov 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5843000 | Nishioka et al. | Dec 1998 | A |
5843052 | Benja-Athon | Dec 1998 | A |
5847827 | Fercher | Dec 1998 | A |
5862273 | Pelletier | Jan 1999 | A |
5865754 | Sevick-Muraca et al. | Feb 1999 | A |
5867268 | Gelikonov et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5877856 | Fercher | Mar 1999 | A |
5887009 | Mandella et al. | Mar 1999 | A |
5892583 | Li | Apr 1999 | A |
5910839 | Erskine et al. | Jun 1999 | A |
5912764 | Togino | Jun 1999 | A |
5920373 | Bille | Jul 1999 | A |
5920390 | Farahi et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5926592 | De Boer et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5955737 | Hallidy et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5975697 | Podoleanu et al. | Nov 1999 | A |
5983125 | Alfano et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5994690 | Kulkarni et al. | Nov 1999 | A |
5995223 | Power | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6004314 | Wei et al. | Dec 1999 | A |
6006128 | Izatt et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6014214 | Li | Jan 2000 | A |
6016197 | Krivoshlykov | Jan 2000 | A |
6020963 | DiMarzio | Feb 2000 | A |
6033721 | Nassuphis | Mar 2000 | A |
6044288 | Wake et al. | Mar 2000 | A |
6045511 | Lutz et al. | Apr 2000 | A |
6048742 | Weyburne et al. | Apr 2000 | A |
6053613 | Wei et al. | Apr 2000 | A |
6069698 | Ozawa et al. | May 2000 | A |
6078047 | Mittleman et al. | Jun 2000 | A |
6091496 | Hill | Jul 2000 | A |
6091984 | Perelman et al. | Jul 2000 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6134010 | Zavislan | Oct 2000 | A |
6134033 | Bergano et al. | Oct 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6151522 | Alfano et al. | Nov 2000 | A |
6159445 | Klaveness et al. | Dec 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6161031 | Hochmann et al. | Dec 2000 | A |
6166373 | Mao | Dec 2000 | A |
6174291 | McMahon et al. | Jan 2001 | B1 |
6175669 | Colston et al. | Jan 2001 | B1 |
6185271 | Kinsinger | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6201989 | Whitehead et al. | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6208887 | Clarke | Mar 2001 | B1 |
6245026 | Campbell et al. | Jun 2001 | B1 |
6249349 | Lauer | Jun 2001 | B1 |
6249381 | Suganuma | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6264610 | Zhu | Jul 2001 | B1 |
6272376 | Marcu et al. | Aug 2001 | B1 |
6274871 | Dukor et al. | Aug 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6297018 | French et al. | Oct 2001 | B1 |
6308092 | Hoyns | Oct 2001 | B1 |
6324419 | Guzelsu et al. | Nov 2001 | B1 |
6341036 | Tearney et al. | Jan 2002 | B1 |
6353693 | Kano et al. | Mar 2002 | B1 |
6359692 | Groot | Mar 2002 | B1 |
6374128 | Toida et al. | Apr 2002 | B1 |
6377349 | Fercher | Apr 2002 | B1 |
6384915 | Everett et al. | May 2002 | B1 |
6393312 | Hoyns | May 2002 | B1 |
6394964 | Sievert, Jr. et al. | May 2002 | B1 |
6396941 | Bacus et al. | May 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6437867 | Zeylikovich et al. | Aug 2002 | B2 |
6445485 | Frigo et al. | Sep 2002 | B1 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6459487 | Chen et al. | Oct 2002 | B1 |
6463313 | Winston et al. | Oct 2002 | B1 |
6469846 | Ebizuka et al. | Oct 2002 | B2 |
6475159 | Casscells et al. | Nov 2002 | B1 |
6475210 | Phelps et al. | Nov 2002 | B1 |
6477403 | Eguchi et al. | Nov 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6485482 | Belef | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6501878 | Hughes et al. | Dec 2002 | B2 |
6517532 | Altshuler et al. | Feb 2003 | B1 |
6538817 | Farmer et al. | Mar 2003 | B1 |
6549801 | Chen et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6556305 | Aziz et al. | Apr 2003 | B1 |
6556853 | Cabib et al. | Apr 2003 | B1 |
6558324 | Von Behren et al. | May 2003 | B1 |
6564087 | Pitris et al. | May 2003 | B1 |
6564089 | Izatt et al. | May 2003 | B2 |
6567585 | De Boer et al. | May 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6680780 | Fee | Jan 2004 | B1 |
6685885 | Varma et al. | Feb 2004 | B2 |
6687007 | Meigs | Feb 2004 | B1 |
6687010 | Horii et al. | Feb 2004 | B1 |
6687036 | Riza | Feb 2004 | B2 |
6701181 | Tang et al. | Mar 2004 | B2 |
6721094 | Sinclair et al. | Apr 2004 | B1 |
6738144 | Dogariu et al. | May 2004 | B1 |
6741355 | Drabarek | May 2004 | B2 |
6757467 | Rogers | Jun 2004 | B1 |
6790175 | Furusawa et al. | Sep 2004 | B1 |
6806963 | Wälti et al. | Oct 2004 | B1 |
6816743 | Moreno et al. | Nov 2004 | B2 |
6831781 | Tearney et al. | Dec 2004 | B2 |
6839496 | Mills et al. | Jan 2005 | B1 |
6882432 | Deck | Apr 2005 | B2 |
6903820 | Wang | Jun 2005 | B2 |
6909105 | Heintzmann et al. | Jun 2005 | B1 |
6949072 | Furnish et al. | Sep 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6980299 | de Boer | Dec 2005 | B1 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7019838 | Izatt et al. | Mar 2006 | B2 |
7061622 | Rollins et al. | Jun 2006 | B2 |
7072047 | Westphal et al. | Jul 2006 | B2 |
7075658 | Izatt et al. | Jul 2006 | B2 |
7099358 | Chong et al. | Aug 2006 | B1 |
7130320 | Tobiason et al. | Oct 2006 | B2 |
7142835 | Paulus | Nov 2006 | B2 |
7190464 | Alphonse | Mar 2007 | B2 |
7231243 | Tearney et al. | Jun 2007 | B2 |
7236637 | Sirohey et al. | Jun 2007 | B2 |
7242480 | Alphonse | Jul 2007 | B2 |
7267494 | Deng et al. | Sep 2007 | B2 |
7304798 | Izumi et al. | Dec 2007 | B2 |
7336366 | Choma et al. | Feb 2008 | B2 |
7355716 | De Boer et al. | Apr 2008 | B2 |
7355721 | Quadling et al. | Apr 2008 | B2 |
7359062 | Chen et al. | Apr 2008 | B2 |
7366376 | Shishkov et al. | Apr 2008 | B2 |
7391520 | Zhou et al. | Jun 2008 | B2 |
7609391 | Betzig | Oct 2009 | B2 |
20010047137 | Moreno et al. | Nov 2001 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020024015 | Hoffmann et al. | Feb 2002 | A1 |
20020048025 | Takaoka | Apr 2002 | A1 |
20020048026 | Isshiki et al. | Apr 2002 | A1 |
20020052547 | Toida | May 2002 | A1 |
20020057431 | Fateley et al. | May 2002 | A1 |
20020064341 | Fauver et al. | May 2002 | A1 |
20020076152 | Hughes et al. | Jun 2002 | A1 |
20020085209 | Mittleman et al. | Jul 2002 | A1 |
20020091322 | Chaiken et al. | Jul 2002 | A1 |
20020093662 | Chen et al. | Jul 2002 | A1 |
20020109851 | Deck | Aug 2002 | A1 |
20020122246 | Tearney et al. | Sep 2002 | A1 |
20020140942 | Fee et al. | Oct 2002 | A1 |
20020158211 | Gillispie | Oct 2002 | A1 |
20020161357 | Anderson et al. | Oct 2002 | A1 |
20020163622 | Magnin et al. | Nov 2002 | A1 |
20020168158 | Furusawa et al. | Nov 2002 | A1 |
20020172485 | Keaton et al. | Nov 2002 | A1 |
20020183623 | Tang et al. | Dec 2002 | A1 |
20020188204 | McNamara et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020198457 | Tearney et al. | Dec 2002 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030026735 | Nolte et al. | Feb 2003 | A1 |
20030028114 | Casscells, III et al. | Feb 2003 | A1 |
20030030816 | Eom et al. | Feb 2003 | A1 |
20030082105 | Fischman et al. | May 2003 | A1 |
20030097048 | Ryan et al. | May 2003 | A1 |
20030108911 | Klimant et al. | Jun 2003 | A1 |
20030120137 | Pawluczyk et al. | Jun 2003 | A1 |
20030135101 | Webler | Jul 2003 | A1 |
20030137669 | Rollins et al. | Jul 2003 | A1 |
20030164952 | Deichmann et al. | Sep 2003 | A1 |
20030171691 | Casscells, III et al. | Sep 2003 | A1 |
20030174339 | Feldchtein et al. | Sep 2003 | A1 |
20030199769 | Podoleanu et al. | Oct 2003 | A1 |
20030216719 | Debenedictis et al. | Nov 2003 | A1 |
20030220749 | Chen et al. | Nov 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040002650 | Mandrusov et al. | Jan 2004 | A1 |
20040054268 | Esenaliev et al. | Mar 2004 | A1 |
20040072200 | Rigler et al. | Apr 2004 | A1 |
20040075841 | Van Neste et al. | Apr 2004 | A1 |
20040077949 | Blofgett et al. | Apr 2004 | A1 |
20040086245 | Farroni et al. | May 2004 | A1 |
20040100631 | Bashkansky et al. | May 2004 | A1 |
20040100681 | Bjarklev et al. | May 2004 | A1 |
20040126048 | Dave et al. | Jul 2004 | A1 |
20040133191 | Momiuchi et al. | Jul 2004 | A1 |
20040150829 | Koch et al. | Aug 2004 | A1 |
20040150830 | Chan | Aug 2004 | A1 |
20040152989 | Puttappa et al. | Aug 2004 | A1 |
20040165184 | Mizuno | Aug 2004 | A1 |
20040166593 | Nolte et al. | Aug 2004 | A1 |
20040212808 | Okawa et al. | Oct 2004 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
20040254474 | Seibel et al. | Dec 2004 | A1 |
20040263843 | Knopp et al. | Dec 2004 | A1 |
20050018133 | Huang et al. | Jan 2005 | A1 |
20050018201 | De Boer | Jan 2005 | A1 |
20050035295 | Bouma et al. | Feb 2005 | A1 |
20050046837 | Izumi et al. | Mar 2005 | A1 |
20050057680 | Agan | Mar 2005 | A1 |
20050057756 | Fang-Yen et al. | Mar 2005 | A1 |
20050075547 | Wang | Apr 2005 | A1 |
20050083534 | Riza et al. | Apr 2005 | A1 |
20050119567 | Choi et al. | Jun 2005 | A1 |
20050128488 | Yelin et al. | Jun 2005 | A1 |
20050165303 | Kleen et al. | Jul 2005 | A1 |
20050171438 | Chen et al. | Aug 2005 | A1 |
20060103850 | Alphonse et al. | May 2006 | A1 |
20060146339 | Fujita | Jul 2006 | A1 |
20060155193 | Leonardi et al. | Jul 2006 | A1 |
20060184048 | Saadat et al. | Aug 2006 | A1 |
20060193352 | Chong et al. | Aug 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20070019208 | Toida et al. | Jan 2007 | A1 |
20070070496 | Gweon et al. | Mar 2007 | A1 |
20070086013 | De Lega et al. | Apr 2007 | A1 |
20070133002 | Wax et al. | Jun 2007 | A1 |
20070188855 | Shishkov et al. | Aug 2007 | A1 |
20070223006 | Tearney et al. | Sep 2007 | A1 |
20070291277 | Everett et al. | Dec 2007 | A1 |
20080002197 | Sun et al. | Jan 2008 | A1 |
20080049220 | Izzia et al. | Feb 2008 | A1 |
20080097225 | Tearney et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
4105221 | Sep 1991 | DE |
4309056 | Sep 1994 | DE |
19542955 | May 1997 | DE |
10351319 | Jun 2005 | DE |
0110201 | Jun 1984 | EP |
0251062 | Jan 1988 | EP |
0617286 | Feb 1994 | EP |
0590268 | Apr 1994 | EP |
0728440 | Aug 1996 | EP |
0933096 | Aug 1999 | EP |
1324051 | Jul 2003 | EP |
1426799 | Jun 2004 | EP |
2738343 | Aug 1995 | FR |
1257778 | Dec 1971 | GB |
2030313 | Apr 1980 | GB |
2209221 | May 1989 | GB |
2298054 | Aug 1996 | GB |
6073405 | Apr 1985 | JP |
04-056907 | Feb 1992 | JP |
4135550 | May 1992 | JP |
4135551 | May 1992 | JP |
5509417 | Nov 1993 | JP |
2002214127 | Jul 2002 | JP |
2007271761 | Oct 2007 | JP |
7900841 | Oct 1979 | WO |
9201966 | Feb 1992 | WO |
9216865 | Oct 1992 | WO |
9219930 | Nov 1992 | WO |
9303672 | Mar 1993 | WO |
9216865 | Oct 1993 | WO |
9533971 | Dec 1995 | WO |
9628212 | Sep 1996 | WO |
9732182 | Sep 1997 | WO |
9800057 | Jan 1998 | WO |
9801074 | Jan 1998 | WO |
9814132 | Apr 1998 | WO |
9835203 | Aug 1998 | WO |
9838907 | Sep 1998 | WO |
9846123 | Oct 1998 | WO |
9848846 | Nov 1998 | WO |
9848838 | Nov 1998 | WO |
9944089 | Feb 1999 | WO |
9905487 | Feb 1999 | WO |
9944089 | Sep 1999 | WO |
9957507 | Nov 1999 | WO |
0058766 | Oct 2000 | WO |
0101111 | Jan 2001 | WO |
0108579 | Feb 2001 | WO |
0127649 | Apr 2001 | WO |
0138820 | May 2001 | WO |
0142735 | Jun 2001 | WO |
0236015 | May 2002 | WO |
0238040 | May 2002 | WO |
02053050 | Jul 2002 | WO |
0254027 | Jul 2002 | WO |
02084263 | Oct 2002 | WO |
03020119 | Mar 2003 | WO |
03046495 | Jun 2003 | WO |
03046636 | Jun 2003 | WO |
03052478 | Jun 2003 | WO |
03062802 | Jul 2003 | WO |
03062802 | Jul 2003 | WO |
03105678 | Dec 2003 | WO |
2004034869 | Apr 2004 | WO |
20040457266 | Jul 2004 | WO |
20040066824 | Aug 2004 | WO |
2004088361 | Oct 2004 | WO |
2004105598 | Dec 2004 | WO |
20050000115 | Jan 2005 | WO |
2005047813 | May 2005 | WO |
2005054780 | Jun 2005 | WO |
2005082225 | Sep 2005 | WO |
2006014392 | Feb 2006 | WO |
2006039091 | Apr 2006 | WO |
2006004743 | Jul 2006 | WO |
2006059109 | Jul 2006 | WO |
2006124860 | Nov 2006 | WO |
2006130797 | Dec 2006 | WO |
2007028531 | Mar 2007 | WO |
2007038787 | Apr 2007 | WO |
2007083138 | Jul 2007 | WO |
2007084995 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080181263 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60476600 | Jun 2003 | US | |
60514769 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10861179 | Jun 2004 | US |
Child | 11867953 | US |