Claims
- 1. A process for recovering a desired constituent of a fluid from at least one porous zone of a subterranean formation, the method comprising:(a) generating an electrical pulsed discharge in a first borehole at a distance from the at least one porous zone and propagating an electromagnetic wave into the formation at a first time, said electromagnetic wave reaching the at least one porous zone at a time substantially equal to the first time and inducing ultrasonic vibrations within said at least one porous zone; (b) propagating at a second time an acoustic wave into the formation, said acoustic wave arriving at said at least one porous zone at a time substantially equal to the first time and combining with said ultrasonic vibrations thereby enhancing the mobility of previously immobile fluid in the at least one porous zone; (c) recovering a fluid including the mobilized fluid from a producing well in the at least one porous zone to give a recovered fluid; and (d) using at least one process selected from gravity separation, fractionation, cyclone separation, membrane separation, solvent extraction, cryogenic separation, liquefaction, and pyrolysis to obtain the desired constituent from the recovered fluid.
- 2. The method of claim 1 further comprising generating the acoustic wave in the first borehole.
- 3. The method of claim 2 wherein the electromagnetic wave is produced by a first pulse generator and the acoustic wave is produced by a second pulse generator.
- 4. The method of claim 3 wherein the first and the second pulse generator each produce electromagnetic and acoustic pulses.
- 5. The method of claim 4 wherein the first and the second pulse generator are part of an array including a plurality of pulse generators, the method further comprising generating at least one additional electrical pulse for propagating at least one additional electromagnetic wave and acoustic wave, so that the second or later acoustic wave is permitted to reach a greater volume of the reservoir while the first or later electromagnetic wave is still causing induced acoustic vibration in the reservoir.
- 6. The method of claim 4 wherein the first and the second pulse generator are part of an array including a plurality of pulse generators, the method further comprising generating multiple electrical pulses at the same time, but with variable pulse durations and energies that permit the simultaneous stimulation of different scale dependent features with the reservoir.
- 7. The method of claim 6, further comprising generating at least one additional electrical pulse for propagating at least one additional electromagnetic wave and acoustic wave at a time substantially after the first discharge time, so that the first or later acoustic wave is permitted to reach a greater volume of the reservoir while the second or later electromagnetic wave is still causing induced acoustic vibration in the reservoir.
- 8. The method of claim 3 wherein the first and the second pulse generator are part of an array including a plurality of pulse generators, the method further comprising generating at least one additional electrical pulse for propagating at least one additional electromagnetic wave at a time after the first time, and propagating at least one additional acoustic wave, so that the first acoustic wave is permitted to reach a greater volume of the reservoir while the first or later electromagnetic wave is still causing induced acoustic vibration in the reservoir.
- 9. The method of claim 8 wherein the at least one porous zone comprises at least two spaced apart porous zones, the method further comprising activating the plurality of pulse generators at selected times, said times being selected for enabling an acoustic and an electromagnetic wave from different pulse generators to arrive at each of the at least two porous zones at substantially the same time.
- 10. The method of claim 3 wherein the said electromagnetic wave, generated from a pulse generator or generators in an array of pulse generators, that reaches the at least one porous zone causes a vibration that has a finite time duration such that the acoustic wave generated from the first pulse generator can pass a given location in the at least one porous zone while the ultrasonic vibration induced by the electromagnetic pulse is still active.
- 11. The method of claim 3 wherein the first and the second pulse generator are part of an array including a plurality of pulse generators, the method further comprising generating multiple electromagnetic waves at the same time, but with variable pulse durations and energies that permit the simultaneous stimulation of different scale dependent features with the reservoir by electromagnetically-induced acoustic vibration.
- 12. The method of claim 2 wherein the acoustic wave is generated by an electrohydraulic discharge device contained within a sleeve of suitable material that allows propagation of the acoustic wave, but prevents interaction of a coupling fluid used in the generation of the acoustic wave with the fluids surrounding the electrohydraulic discharge device in the wellbore.
- 13. The method of claim 1 further comprising generating the acoustic wave in a second borehole different from the first borehole.
- 14. The method of claim 1 wherein a difference between the first time and the second time is selected based upon a velocity of propagation of the acoustic wave in the formation.
- 15. The method of claim 1 further comprising introducing a material selected from (i) steam, (ii) water, (iii) a surfactant, (iv) diluent, and, (v) CO2 into the subterranean formation, said introduced material further enabling at least one of (A) increased mobility of the reservoir fluid, and, (B) increased flow of the reservoir fluid.
- 16. The method of claim 15 wherein introducing the introduced material into the formation further comprises injecting said material in an injection well.
- 17. The method of claim 1 wherein the said first electromagnetic wave that reaches the at least one porous zone causes a vibration that has a finite time duration such that the acoustic wave can pass a given location in the at least one porous zone while the electromagnetic vibration is still active.
- 18. The method of claim 1 wherein the electrical pulsed discharge generates the electromagnetic wave using a magnetic pulse generator that discharges electricity into a single- or multiple-turn coil, thus producing an electromagnetic wave, but produces no direct acoustic wave.
- 19. The method of claim 1 wherein the pulsed electric discharge is initiated using a filament of flexible conductive material that extends across a gap between a pair of electrodes and reduces wear on the electrodes during discharge, said filament being replaced after each discharge through an automated spooling feed device that feeds new filament into the discharge gap through a hole in one of the electrodes.
- 20. The method of claim 1 wherein the pulsed electric discharge is initiated using a pencil-shaped filament of rigid conductive material that extends across a gap between a pair of electrodes and reduces wear on the electrodes during discharge, said filament being replaced after each discharge through an automated feed device that feeds new filament into the discharge gap through a hole in one of the electrodes.
- 21. The method of claim 1 wherein the pulsed electric discharge is initiated using a jet of combustible gas that extends across a gap between pair of electrodes and reduces wear on the electrodes during discharge, said gas being applied under pressure through a hole in one of the electrodes.
- 22. The method of claim 1 wherein the electrical pulse is produced by an electrical pulse discharge device is contained within a packer assembly, said packer assembly being designed to isolate the discharge device from the rest of the wellbore, and with inflow and outflow fluid lines so as to provide recirculation of fluids around the discharge device in the packed off interval, and to apply and maintain positive fluid pressure to improve the coupling of the acoustic wave to the wellbore.
- 23. The method of claim 1 wherein the electrical pulsed discharge is generated using a reflecting cone that allows the acoustic wave to be directed at a given azimuth or range of azimuths, said reflecting cone also being designed to focus the acoustic energy at a given inclination from the wellbore and also being controlled such that the energy can be redirected to different azimuths from time to time during operation by repositioning of the reflecting cone through a remote control.
- 24. The method of claim 1, the method further comprising controlling the pulse characteristics of the electromagnetic wave so that an acoustic vibration induced by the electromagnetic wave in the reservoir produces vibration frequencies that are optimized to enhance stimulation at a given scale of inclusion in the reservoir including (i) the pore scale, (ii) the grain scale, (iii) the flat crack scale, (iv) the fracture scale, (v) the lamina scale, (vi) the bedding scale, (vii) the reservoir body length scale, or (ix) any other scale appropriate for stimulation of reservoir fluid production.
- 25. The method of claim 1 wherein the desired constituent is selected from the group consisting of oil, natural gas, methane, condensate, casing head gasoline, nitrogen, argon, helium, oxygen, hydrogen sulfide, carbon dioxide, sulphur dioxide, boron, vanadium, nickel, sulphur, and asphaltene.
CROSS REFERENCES TO RELATED APPLICATIONS
This application is a continuation-in-part of U.S. patent application Ser. No. 09/500,669, filed on Feb. 9, 2000, now U.S. Pat. No. 6,227,293.
US Referenced Citations (38)
Non-Patent Literature Citations (2)
Entry |
Robert N. Maddox; Chapter 14, Lease-Operated Hydrocarbon Recovery Systems, Petroleum Engineering Handbook, 1992, pp. 1-22. |
H. Vernon Smith; Chapter 12, Oil and Gas Separators. Petroleum Engineering Handbook, 1992, pp. 1-4. |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/500669 |
Feb 2000 |
US |
Child |
09/755228 |
|
US |