None
This invention relates to a simple mechanical device that converts the rotary motion of a drill motor to an oscillating or reciprocating motion. This is proposed for non-surgical uses. Several prototypes have been built to successfully test different shaft geometry, drill bits, and degrees of rotation of the bit. They have been tested and found to solve the problems described. One model rotates about 120 to 130 degrees and uses a three fluted drill. The device drills a close tolerance hole and the three flutes are necessary to accommodate the limited rotation angle. The three fluted bits are sometimes difficult to find and more costly. Another model rotates about two hundred (200) degrees and uses a standard twist drill bit. Empirically it also works quite well. The other variation of the prototypes is in the geometry of the input shaft and the output shaft. Versions or embodiments have the shafts in line, offset and electronically accomplished. These were done for application convenience.
None.
None.
Various drills over the ages have tried to address the need to drill safely through soft materials. The surgical field has addressed soft tissues but did not anticipate other uses for a reciprocating or oscillating drill device.
A. Introduction of the Problems Addressed
Drilling through soft materials such as carpets, foam rubber, upholstery fabrics, insulations etc. is very difficult if not dangerous because drill bits tend to catch on these materials and get wrapped around the bit which can cause unintended damage to the material and/or twist the drill motor out of the operator's hands. Orthopedic surgeons have had the same kind of problems when drilling in bones. If tissue comes in contact with the drill bit, it can get wrapped around the bit and cause considerable tissue and/or muscle damage.
Several prototypes have been built to successfully test different shaft geometry, drill bits, and degrees of rotation of the bit. They have been tested and found to solve the problems described. One model rotates about 120 to 130 degrees and uses a three fluted drill. The device drills a close tolerance hole and the three flutes are necessary to accommodate the limited rotation angle. The three fluted bits are sometimes difficult to find and more costly. Another model rotates about two hundred (200) degrees and uses a standard twist drill bit. Empirically it also works quite well. The other variation of the prototypes is in the geometry of the input shaft and the output shaft. Versions or embodiments have the shafts in line, offset and electronically accomplished. These were done for application convenience.
B. Prior Art
An example of a process and apparatus for drilling holes in soft materials, in non-surgical procedures was shown by U.S. Pat. No. 4,111,208 (FIG. 8A) issued to Leuenberger on Sep. 5, 1978. This taught a process and apparatus for drilling holes in hard materials in surgical procedures, comprising driving a drilling tool with a movement of alternating rotation with an amplitude of less than one revolution. The tool can be driven from a motor having unidirectional continuous rotatable movement through a convertor which transforms this movement into the alternating rotation. The drilling tool can covered by a member which feeds the waste cutting materials rearwardly into an enclosed chamber. The apparatus can also be provided with a member that covers the drill during an insertion thereof through cut tissue prior to the drilling operation. This drill did not claim non-surgical uses or common, simple devices with less parts and precision of the claimed invention.
A U.S. Pat. No. 4,955,888 (FIG. 8B) issued to Slocum (1990) teaches a biradial saw including a biradial saw blade having an elongate, arcuate body with a cutting end that is constructed to penetrate a solid substance. The blade's body is formed with inner and outer arcuate surfaces whose curvature radii are substantially equal but oriented relative to offset axes of curvature. Also included is a means for producing oscillating motion, and a means for attaching the blade's rear end to the oscillating-motion-producing means.
A radiolucent orthopedic chuck was shown and taught by the U.S. Pat. No. 5,030,222 (FIG. 8C) issued to Calandruccio, et al. (1991). The patent taught a radiolucent orthopedic chuck includes a housing having a driver stem protruding from the top surface and a drill bit protruding from the underside in radially spaced relation from the driver stem so as to displace a drill secured to the driver stem from the axis of the drill bit so that fluoroscopy may be used to ensure accurate alignment of the drill bit with a hole of an intramedullary nail both prior to and during its operation. A drive train interconnects the driver stem and drill bit for rotation in unison. All parts of the chuck but for the drill bit preferably radiolucent.
A Method of fixating bone by driving a wire through oscillation was taught by the U.S. Pat. No. 6,110,174 (FIG. 8D) issued to Nichter (2000). The patent taught a method and/or apparatus is provided for bone fixation which includes oscillating a wire about a longitudinal axis, advancing the oscillating wire into the bone tissue, and leaving the wire in the bone tissue as a fixation element. The apparatus in the present invention may be a self-contained unit for providing oscillatory motion to a chuck configured for releasably engaging a K-wire or the like, or may include a drive gear for use with a conventional rotor and drill for accomplishing the same oscillatory action.
As far as known, there are no known devices at the present time on the market that can effectively drill through these materials and also effectively drill through wood, bones, aluminum, copper, steel, etc. It is believed that this device is made with fewer parts, of a more durable design, and with comparatively less expense as compared to other drill and turning devices for soft materials in use today.
This invention relates to a simple mechanical device that converts the rotary motion of a drill motor to an oscillating or reciprocating motion. This is proposed for non-surgical uses.
The preferred embodiment of the device is comprised essentially of A general reciprocating drive system 31 comprised of a reciprocating drive device—offset drive and eccentric bars 32; a turning drive means 34 such as a drill or the like; a drive structure member 35 such as a gear, plate or the like; a reciprocation configuration 36 of various members such as the eccentric linkage 37 to the reciprocating driven structure member 38 such as a gear, plate, linkage or the like; a device encasement 40; a connection means 39 of members to an encasement 40; and a driven output means. Other alternative embodiments include embodiments such as a reciprocating drive device 33 with inline drive and eccentric bars; a reciprocating drive device 33A with inline drive, gears and eccentric bars; and an electronic controlled reciprocating turning device 55 such as a drill or the like.
The newly invented drilling device and system features various configurations to accomplish the desired output within the scope and spirit of the unique device and new use described herein.
There are several objects and advantages of the drilling device and system. There are currently no known turning or drill devices that are effective at providing the objects of this invention. The following TABLE A summarizes various advantages and objects of the drilling device and system. This list is exemplary and not limiting to the many advantages offered by this new device.
Finally, other advantages and additional features of the new drilling device and system will be more apparent from the accompanying drawings and from the full description of the device. For one skilled in the art of devices and improvements for turning and drilling devices, it is readily understood that the features shown in the examples with this mechanism are readily adapted for improvement to other types of turning and drilling devices and systems.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate a preferred and alternative embodiments for the drilling device and system. The drawings together with the summary description given above and a detailed description given below serve to explain the principles of the drilling device and system. It is understood, however, that the device is not limited to only the precise arrangements and instrumentalities shown.
The following list refers to the drawings:
The present mechanism is a special drilling device and system that has been developed for use by a person to provide a method to drill through soft and fibrous materials in non-surgical uses. The preferred embodiment of the device is a general reciprocating drive system 31 comprised of Reciprocating drive device—offset drive and eccentric bars 32; a turning drive means 34 such as a drill or the like; a drive structure member 35 such as a gear, plate or the like; a reciprocation configuration 36 of various members such as the eccentric linkage 37 to the reciprocating driven structure member 38 such as a gear, plate, linkage or the like; a device encasement 40; a connection means 39 of members to an encasement 40; and a driven output means. One skilled in the art of turning and drill devices for soft materials will appreciate the varied uses anticipated by this new drilling device and system. The newly invented drilling device and system features very few parts. In operation, the new device may be easily and quickly used for turning and drilling in non-surgical uses.
The structural members of the drilling device and system are potentially made of various materials. The device may have alternative embodiments described below.
The improvement over the existing art is providing a device that is:
A smooth operation of turning; has limited or no chatter; is durable; has multi-uses; is simple; may be configured with a straight or offset Design; is essentially mechanically simple; minimizes wobble without ball bearings; has bearings or drill bit retainer block that may be inexpensive and easy to replace by user; uses the same power supply as the existing drill and would be interchangeable with it; does not have to attach a drill motor; is less awkward; easily adjusts to differing torque and speed requirements; can have handles for left and right hand operations and convenience; may accommodate different sized drill bits would require different bearing/retainer blocks unless the drill bits were made with the same sized upper shank; may have a bevel gear or other gears is molded onto the drill bit or modified to have a permanent gear; and adapts easily to future design changes or operating charges for easy incorporation.
There are shown in
Various important features of these components are delineated in
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the drilling device and system 31,32 that is preferred. The drawings together with the summary description given above and a detailed description given below serve to explain the principles of the drilling device and system 31,32. It is understood, however, that the drilling device and system is not limited to only the precise arrangements and instrumentalities shown. This is exemplified with the described alternative embodiments.
One skilled in the art drill and turning devices appreciates that these drilling devices and system 31, 32, 33 and 33A may be made of various materials. Often, these devices are combinations of materials to keep the designs simple and to lower the costs. Various metals, plastics and composite materials may be used for the main eccentric, disk or gear structures 35, 35A, 36, 37, 37A, and 38. Various thrust bearing or ball bearing devices may provide the connection means 39 of members to an encasement 40. The encasement 40 may be of metals (such as aluminum, steel and the like), plastics and composite materials structures. These may be stamped, molded or cast depending on the selected material and final design configuration. The input and output means 34 and 41 can be of various metals, composites and plastics also and be within the scope and spirit of the device and system.
All of the details mentioned here are exemplary and not limiting. Other specific components specific to describing a drilling device and system 31,32,33,33A may be added as a person having ordinary skill in the field of drilling and turning devices well appreciates.
The new drilling device and system 31, 32, 33, and 33A have been described in the above embodiment. The manner of how the device operates is described below. One skilled in the art of drill and turning devices will note that the description above and the operation described here must be taken together to fully illustrate the concept of the special drilling device and system. The preferred embodiment described above is essentially comprised of only a few parts as shown in the sketches and drawings. The preferred embodiment of the device is comprised essentially of a reciprocating drive device—offset drive and eccentric bars 32; a turning drive means 34 such as a drill or the like; a drive structure member 35 such as a gear, plate or the like; a reciprocation configuration 36 of various members such as the eccentric linkage 37 to the reciprocating driven structure member 38 such as a gear, plate, linkage or the like; a device encasement 40; a connection means 39 of members to an encasement 40; and a driven output means. One skilled in the art of drilling and turning devices and systems will appreciate the plethora and varied uses anticipated by this new drilling device and system.
Potential uses for this device with the drilling and turning industry as described herein. However, these describe uses are exemplary and not intended as a limitation of anticipated uses for the drilling device and system. The following TABLE B shows additional examples of potential turning and drilling uses.
Beyond the potential uses, the improved method of operation is shown in
With the above description and accompanying drawings, it is to be understood that the drilling device and system 31 is not to be limited to only the disclosed embodiment. The features of the drilling device and system 31 are intended to cover various modifications and equivalent arrangements included within the spirit and scope of the description.
Number | Date | Country | |
---|---|---|---|
60957194 | Aug 2007 | US |