Process and apparatus for grinding with electrolytic dressing

Information

  • Patent Application
  • 20080057835
  • Publication Number
    20080057835
  • Date Filed
    August 01, 2007
    18 years ago
  • Date Published
    March 06, 2008
    17 years ago
Abstract
A process for grinding workpieces is obtained which includes attaching honing stones to a tool, each of the honing stones including grinding particles and an electroconductive connection for fixing the grinding particles to each other; grinding the workpieces with the honing stones by applying a honing liquid having substantially no electroconductive property to a region between the workpiece and the honing stones, the workpieces being successively ground during a series of processing periods, while interposing non-processing periods between the processing periods, each of the workpieces being ground in one of the processing periods; and performing an electrolytic dressing with respect to the honing stones by using an electrode provided to face the honing stones with a space therebetween, a voltage being applied between the honing stones and an electrode in the presence of an electroconductive liquid in the space between the honing stones and the electrode, the electrolytic dressing being carried out during the non-processing periods.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily perceived as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:



FIG. 1 is a schematic diagram for explaining a grinding apparatus according to the present invention;



FIG. 2 is schematic diagram of a honing tool;



FIG. 3 is a diagram of the honing tool in FIG. 2 viewed in a direction of arrow A in FIG. 2;



FIG. 4 is a schematic diagram of a processing unit;



FIG. 5 is a schematic diagram of the electrolytic dressing unit;



FIG. 6 is a chart for explaining a grinding operation;



FIG. 7 is a schematic diagram of a conventional apparatus for applying a dressing treatment to a honing stone;



FIG. 8 is a schematic diagram of a conventional apparatus for applying an electrolytic dressing treatment to a honing stone; and



FIG. 9 is a schematic diagram of a conventional apparatus for applying an electrolytic dressing treatment to a honing stone.





DETAILED DESCRIPTION OF THE INVENTION

Other features of this invention will become apparent in the course of the following description of exemplary embodiments, which are given for illustration of the invention and are not intended to be limiting thereof.


Exemplary embodiment of the invention as to a process and apparatus for grinding a workpiece and applying an electrolytic dressing to honing stones will now be explained in detail, by referring to a honing treating method and a honing apparatus shown in FIGS. 1 to 6.



FIG. 1 is a schematic diagram of a honing apparatus, and FIG. 2 is a diagram for showing a structure of a honing tool 10. As shown in FIGS. 1 and 2, the honing tool 10 is suspended from a honing head 1 so as to be rotatable. The honing head 1 is a driving unit including a spindle motor or the like. The honing tool 10 is supported on the honing head 1 so as to be movable in a vertical direction, and also rotatable around a perpendicular central axis Z. The honing head 1 and the honing tool 10 move between a processing unit I and a dressing unit II as shown in FIG. 1. In the processing unit, grinding, i.e., a honing treatment is applied to a workpiece, such as a cylinder bore for an engine, having a cylindrical inner wall Wa.



FIG. 3 is a diagram for showing a view of the honing tool 10 seen in a direction of arrow A in FIG. 2. As shown in FIGS. 2 and 3, the honing tool 10 includes a honing tool main body 11 in the form of a hollow cylinder. The upper end of the main body 11 is supported on the honing head 1. On the outer periphery of the honing tool main body 11, a plurality of honing shoe guide openings, for instance 12 openings, are provided with equal intervals therebetween. Each of the guide openings extends from the outer periphery of the main body 11 to the axis X when viewed from an end of the main body 11. Each of the guide openings also vertically extends along the entire length of the axis X. First honing shoes 13A and second honing shoes 13B are alternately and radially arranged so as to fit in the guide openings. The honing shoes 13A and 13B slide in two directions, that is towards and away from the axis Z, under the guidance of the guide openings 12.


The first and second honing shoes 13A and 13B are in the form of blocks. Each of the blocks has a wheel fitting groove 13a at the outer end with respect to the radial direction of the honing tool 10. The wheel fitting grooves 13a at the outer end of the shoes 13A and 13B extend along the lengthwise direction of the axis Z. The honing shoes 13A and 13B have lateral faces 13b which contact lateral walls 12b of the honing shoe guide openings 12. Furthermore, engaging grooves 13c and 13d are formed respectively on an upper end and a lower end of the outer peripheries of the honing shoes 13A and 13B (FIG. 2).


The first honing shoe 13A has an inner edge including an upper inner edge and a lower inner edge. The upper inner edge and lower inner edges respectively have an upper taper surface 13Aa and a lower taper surface 13Ab. Each of the taper surfaces 13Aa and 13Ab are gradually inclined so that that a horizontal distance between the upper part of the taper surface 13Aa or 13Ab and the axis Z is longer than that between the lower part of the taper surface 13Aa or 13Ab and the axis Z. Likewise, the second honing shoe 13B has an inner edge including an upper inner edge and a lower inner edge. The upper inner edge and lower inner edges respectively have an upper taper surface 13Ba and a lower taper surface 13Bb. Each of the taper surfaces 13Ba and 13Bb are gradually inclined so that that a horizontal distance between the upper part of the taper surface 13Ba or 13Bb and the axis Z is longer than that between the lower part of the taper surface 13Ba or 13Bb and the axis Z. Spring bands 13a and 14b in the form of rings are inserted to the engaging grooves 13c and 13d formed in the honing shoes 13A and 13B as diameter-minimizing force urging members. The first and second honing shoes 13A and 13B are pressed by the spring bands 13a and 14b toward the axis Z. Namely, the honing shoes 13A and 13B are urged by the bands 13a and 14b to form an aggregate having a small diameter.


The honing stones 20 (wheels) in the form of blocks, which extend in a direction of the rotational axis Z of the honing tool 10, are provided in the wheel fitting grooves 13a in the first and second honing shoes 13A and 13B. The honing stones 29 are metal bond wheels including particles made of diamond, CBN (cubic boron nitride), crystalline aluminum oxide, silicone carbide or the like, and an electroconductive connection made of bronze and cast iron for combining the particles with each other.


Furthermore, a plurality of honing guide member installation grooves 11a are provided on the outer periphery of the honing tool main body 11 at equal intervals, and extend in a lengthwise direction of the axis Z. Honing guide members 16 in the form of rectangles are made of a material such as ceramics, and extend in a lengthwise direction of the axis Z. The honing guide members 16 are provided in the grooves 11a via attachments 15. The distances from the axis Z to outer peripheral surfaces 16a of the honing guide members 16 are identical. Air passages 11b are perforated in the honing tool main body 11 and extend to the outer peripheral surfaces 16a of the honing guide members 16 to form openings thereon. The air passages 11b are provided for precisely measuring the distance (space) between the outer peripheral surface 16a of the honing guide member 16 and a grinding surface of a workpiece, by using an air micrometer (not shown). The space is measured by the value of the air pressure.


A first bar 17A for outwardly pressing the honing shoes 13A is provided in the honing tool main body 11 so as to vertically penetrate the main body 11. As the cross section in FIG. 2 shows, the first bar 17A has an upper taper surface 17Aa and a lower taper surface 17Ab, each having an inclination which tapers toward a lower part of the first bar 17A. Namely, a horizontal distance between lower parts of the taper surfaces to the axis Z is smaller than that between upper parts of the taper surfaces to the axis Z. The upper taper surface 17Aa and the lower taper surface 17Ab of the bar 17A slide on the upper taper surfaces 13Aa and the lower taper surfaces 13Ab of the honing shoes 13A, respectively.


A second bar 17B for outwardly pressing the honing shoes 13B is also provided in the honing tool main body 11 and is connected to first bar 17A. The second bar 17B has an upper taper surface 17Ba and a lower taper surface 17Bb, each having an inclination which tapers toward a lower part of the second bar 17B. Namely, a horizontal distance between lower parts of the taper surfaces and the axis Z is smaller than that between upper parts of the taper surfaces and the axis Z. The upper taper surface 17Ba and the lower taper surface 17Bb of the bar 17B slide on the upper taper surface 13Ba and the lower taper surface 13Bb of the honing shoes 13B, respectively.


The first bar 17A and the second bar 17B are pulled by traction of an ascent-and-descent mechanism (not shown) provided in the honing head 1, and the traction is released. A spring 18 provided in the honing tool main body 11 always impart a force in a lower direction with respect to the main body 11 to the first and second bars 17A and 17B.


When the traction provided by the ascent-and-descent mechanism in the honing head 1 is released, the first bar 17A moves downwardly and the upper taper surface 17Aa and the lower taper surface 17Ab of the first bar 17A are brought into pressure contact with the upper taper surfaces 13Aa and the lower taper surfaces 13Ab of the first honing shoes 13A, due to the urging force of the spring 18. Accordingly, the first bar 17A thrusts the first honing shoes 13A outwardly with respect to the diameter of the honing tool 10, so that the first honing shoes 13A moves away from the axis Z. Likewise, when the second bar 17B moves downwardly, the upper and lower taper surfaces 17Ba and 17Bb of the first bar 17B are brought into pressure contact with the upper taper surfaces 13Ba and the lower taper surfaces 13Bb of the first honing shoes 13B. Accordingly, the first bar 17B thrusts the first honing shoes 13B outwardly with respect to the diameter of the honing tool main body 11, so that the first honing shoes 13B moves away from the central axis Z.


When the first and second bars 17A and 17B are pulled upwardly by the ascent-and-descent mechanism, opposing the force applied by the spring, the pressure application, that is to the upper taper surfaces 13Aa and the lower taper surfaces 13Ab of the first honing shoes 13 by the upper taper surface 17Aa and the lower taper surface 17Ab of the first bar 17A, is eliminated. After the pressure application by the first and second bars 17A and 17B is released, the first and second honing shoes 13A and 13B move toward the axis Z, due to the urging force of the spring bands 14a and 14b. Thus, the honing shoes 13A and 13B are gathered to be an aggregate with a small diameter.


Insulation treatment is applied to a portion between the honing head 1 and the first and second bars 17A and 17B of the honing tool 10. As shown in FIG. 2, the honing tool main body 11 is provided with an electrode 39. The electrode 39 is connected to the honing stones 20 via the honing tool main body 11, the first and second honing shoes 13A and 13B so that electricity is conductive between the electrode 39 and the honing stones 20.


When the honing tool main body 11, the first and second bars 17A and 17B are made of electroconductive iron materials and rust develops thereon, due to the electrolytic dressing (will be discussed later), the sliding movement of the first and second honing shoes 13A and 13B with respect to the honing shoe guide openings 12 could be inactive, i.e., the smooth movement could be lost. For preventing the inactive movement, it is preferable to prepare the first and second honing shoes 13A and 13B from an electroconductive and antioxidant material, such as stainless steel. It is also preferable to use O rings made of materials having antioxidant properties, such as stainless steel or a rubber, as spring bands 14a and 14b. Furthermore, it is preferable to apply insulating coatings (paints) to the outer surface of the honing tool main body 11, for rust prevention purpose. On the other hand, when the honing tool main body 11, and the first and second bars 17A and 17B are made of iron materials, the manufacturing cost can be lowered. Furthermore, the main body 11, and the bars 17A and 17B made of iron are widely applicable to the existing honing apparatus.



FIG. 4 is a diagram for showing a processing unit I for applying a honing treatment to a cylindrical inner surface Wa of the workpiece W. The processing unit I is provided with a workpiece support (not shown) for positioning and holding the workpiece W, and an insertion guide 25 in the form of a hollow cylinder provided above the workpiece W. The insertion guide 25 guides the introduction of the honing tool main body 11 therein, which descends from an upper part, into the workpiece supported by the workpiece support. Therefore, the main body is surrounded by the cylindrical inner surface Wa of the workpiece W. The processing unit I further includes a honing liquid supply member for supplying a honing liquid with a small electroconductive or substantially no electroconductive property such as an oil coolant to the cylindrical inner surface Wa of the workpiece W. In the processing unit I, honing finishing is carried out by using the honing liquid with a small electroconductive or substantially no electroconductive property.


In the processing unit I, the workpiece W is supported by the workpiece support. Then, the ascent-and-descent mechanism in the honing head 1 pulls the first and second bars 17A and 17B of the honing tool 10 in an upper direction. By the pulling operation, the first and second honing shoes 13A and 13B moves towards the central axis Z of the honing tool 10. Namely, the honing tool 10 has the honing shoes 13A and 13B in a aggregate state (centralized). The honing tool 10 in this state located above the workpiece W is brought down by the guidance of the insertion guide 25, and then put inside of the cylindrical inner surface Wa of the workpiece W. With maintaining the honing tool main body 11 inside the cylindrical inner surface Wa, the honing liquid with substantially no electroconductive property such as an oil coolant is supplied. Simultaneously with the honing liquid supply, the honing tool 10 is moved in vertical directions along the axis Z and also caused to rotate therearound. Subsequently, the traction of the first and second bars 17A and 17B of the honing tool 10 by the ascent-and-descent mechanism is released.


After the release of the traction, the first and second bars 17A and 17B move downwardly due to the urging force of the spring 18. Then, the upper taper surface 17Aa and the lower taper surface 17Ab of the first bar 17A are brought into pressure contact with and slide on the upper taper surfaces 13Aa and the lower taper surfaces 13Ab of the honing shoes 13A, respectively. Accordingly, the first honing shoes A are pushed to be away from the central axis Z (spread). In other words, the first honing shoe moves in radially outward directions of the honing tool 10. In addition to the above, the upper taper surface 17Ba and the lower taper surface 17Bb of the second bar 17B are brought into pressure contact with and slide on the upper taper surfaces 13Ba and the lower taper surfaces 13Bb of the honing shoes 13B, respectively. Then, the second honing shoes 17A are pushed to be away from the central axis Z.


By the above operation, the outer surfaces 21 of the honing stones 20 contact the cylindrical inner surface Wa of the hollow workpiece W. The grinding operation (honing treatment) on the cylindrical inner surface Wa is started with the honing stones 20 by the application of a predetermined contact pressure to the cylindrical inner surface Wa.


During the honing treatment, the space between the outer peripheral surface 16a of the honing guide member 16 and the cylindrical inner surface Wa of the workpiece W is detected by a micrometer. When the micrometer detects that a predetermined space is obtained between the outer peripheral surface 16a of the honing guide member 16 and the cylindrical inner surface Wa of the workpiece W, the ascent-and-descent mechanism pulls the first and second bars 17A and 17B upwardly, the upper and lower taper surfaces 13Aa and 13Ab of the first honing shoes 13A are detached from the upper and lower taper surfaces 17Aa and 17Ab of the first bar 17A, and also the upper and lower taper surfaces 13Ba and 13Bb the second honing shoes 13B are released from the pressure application by the upper and lower taper surfaces 17Ba and 17Bb of the second bar 17B. Therefore, the first and second honing shoes 13A and 13B are moved in the direction of the axis Z by the force of the spring bands 14a and 14b. Namely, the honing shoes 13A and 13B are moved away from the inner cylindrical surface Wa of the workpiece W, that is, a treating surface of the honing stones. Thus, the honing treatment is completed. The period from the start of the honing treatment to the completion thereof is referred to as processing period.


When the honing treatment is completed, the rotational movement and the vertical movement of the honing tool 10 are suspended. By moving the honing head 1 upwardly, the honing tool main body 11 is taken away from the location within the inner surface Wa of the workpiece W and transferred to a location above the insertion guide 25. Thereafter, the workpiece W after the honing treatment is removed from the workpiece support, and the next workpiece is brought to the workpiece support. In other words, the workpieces are sent in and out in a time period between the completion of the honing treatment and the next commencement of the honing treatment (non-processing period).


As is obvious from the above, workpieces W are successively subjected to the honing treatment by repeating the processing period and the non-processing period being carried out in turn.



FIG. 6 is a time chart for showing a honing processing cycle. Time is taken at the abscissa in FIG. 6. The line labeled as “Vertical Stroke” indicates the ascent and decent movement of the honing tool 10 provided on the honing head 1. The line labeled as “Spindle Motor” shows that “On” and “Off” of a spindle motor, and correspondingly “On” and “Off” of the rotational movement of the honing head 1 and honing tool 10. The line labeled as “Honing Stones” shows that the movement of the honing stones 20 to the “Spread” and “Centralized” positions as described above. Furthermore, the line labeled as “Workpiece movement” describes that the timing of sending workpieces in and out, with respect to the processing unit I. When the workpiece movement is “On”, the honing head is in an ascent position and the workpieces are sending in and out. Namely, a finished workpiece is replaced by a next workpiece to be ground when the movement is “On”. On the other hand, the workpieces are not sending in and out, when honing operation is carried out in the processing unit I. This situation is described as “Off”.


After the honing treatment including the processing period and non-processing period are repeatedly carried out in turn, the grinding capability of the honing stones 20 is gradually lowered because of the abrasion of grinding particles in the honing stones. Correspondingly, the processing period is getting longer. In the present invention, a processing period measuring member is provided for measuring the processing period. When the processing period arrives at a predetermined threshold value, the grinding capability is considered to be lowered to a predetermined level due to the abrasion of the grinding particles in the honing stones. Then, the electrolytic dressing treatment is applied to the honing stones 20 during the non-processing period, for maintaining an operational preciseness.



FIG. 5 is a diagram for showing an electrolytic dressing unit II for applying an electrolytic dressing treatment to the honing stones 20 of the honing tool 10.


The electrolytic dressing unit II includes a vessel 31 for storing a grinding liquid having an excellent electroconductivity, such as a aqueous coolant 40. The vessel 31 includes a bottom 32 and a wall 33 extending from the periphery of the bottom 32, and the top part of the vessel 31 is open. The honing tool 10 is provided in the vessel 31, with the bottom of the honing tool 10 being placed on the bottom 32 of the vessel 31. A honing tool supporting member 35 which is for positioning the honing tool 10 is provided on the bottom 32. The honing tool supporting member 35 is made of an insulating material.


Furthermore, an electrode supporting member 36 in the form of a hollow cylinder is vertically provided on the bottom 32. The vertical wall of the electrode supporting member 36 surrounds the honing tool supporting member 35. The supporting member 36 is made of an insulating material, with the top part thereof being open. The electrode supporting member 36 has a height lower than the liquid level of the aqueous coolant 40 in the vessel 31. A plurality of though-openings 36b are perforated in the peripheral wall of the electrode supporting member 36 for maintaining the flow of the aqueous coolant 40 through the peripheral wall.


An electrode 37 for electrolytic in-process dressing (hereinafter, referred to as ELID) is provided on the electrode supporting member 36. The electrode 37 has a cylindrical electrode surface 37a and a flange 37b. The electrode surface 37a extends along an inner surface 36a of the electrode supporting member 36. The flange is fixed to a top end of the electrode supporting member 36 by bolts as terminals 38. The electrode 37 is made, for instance, of iron, and the terminals 38 are connected to a negative electrode (minus electrode) of a voltage application member (not shown).


The electrode 37 for ELID in the form of a hollow cylinder is provided along the inner surface 36a of the cylindrical electrode supporting member 36. The electrode 37 accepts the honing tool main body 11 and the honing stones 20 by surrounding these by the surface 37a, when the honing tool main body 11 and the honing stones 20 are brought down by the honing head 1. Hence, the surface 37a of the electrode 37 faces the outer surfaces 21 of the honing stones 20, with a space therebetween. The honing stones 20 are provided on the honing tool 10 which is positioned and supported by the honing tool supporting member 35. The cylindrical electrode 37 has an inner diameter for having a distance in the range of about 1 mm to about 5 mm between the inner surface 37a of the electrode and the outer surfaces 21 of the honing stones 20. Moreover, the vertical length of the electrode 37 is slightly larger than the lengths of the honing stones 20.


The honing tool 10 is transferred from the processing unit I to a position above the honing tool supporting member 35 in the electrolytic dressing unit II, following the movement of the honing head 1. Then, the honing tool 10 is moved downwardly and inserted to a region surrounded by the electrode supporting member 36, and properly positioned on the honing tool supporting member 35. By the positioning of the honing tool 10 by the honing tool supporting member 35, the outer surfaces 21 of the honing stones 20 face the surface 37a of the electrode 37a for ELID, with the aqueous coolant (electroconductive liquid) 40 being provided around the outer surface 21 of the honing stones 20. Following the upward movement of the honing head 1, the honing tool 10 is removed from the electrode supporting member 36 and moves upwardly. Then, the honing tool 10 is returned to the processing position I by the movement of the honing head 1.


On the other hand, the honing tool 10 is moved from the processing unit I to a location above the honing tool supporting member 35 in the electrolytic dressing unit II. The honing tool 10 is configured to connect a positive electrode (plus electrode) of the voltage application member to the electrode 39 of the honing tool main body 11, and to disconnect therefrom when the honing tool 10 is transferred to the processing unit I.


After the honing tool 10 is transferred to a location above the honing tool supporting member 35 of the electrolytic dressing unit II based on the movement of the honing head 1, the electrode 39 provided on the honing tool main body 11 of the honing tool 10 is connected to the positive electrode of the voltage application member.


The honing head 1 is moved downwardly along the axis Z with maintaining the connection of the electrode 39 with the positive electrode of the voltage application member. Therefore, the honing tool 10 is also moved downwardly and inserted to a position within the electrode supporting member 36, so as to be positioned and supported on the honing tool supporting member 35. The honing tool 10 appropriately positioned on the honing tool supporting member 35 faces the electrode surface 37a of the electrode 37 for ELID, having an aqueous coolant (electroconductive liquid) around the outer surfaces 21 of the honing stones 20.


In this state, the negative voltage is applied from an electrical source for ELID to the electrode 37 for ELID, exclusively for the predetermined dressing period. Simultaneously, a positive voltage is applied from the voltage application member to the honing stones 20 by way of the electrode 39, honing tool main body 11, and honing shoes 13A and 13B. Accordingly, the electroconductive connections in the honing stones 20 on the outer surfaces 21 are dissolved by the electrolytic operation. Thus, the electrolytic dressing of the present invention is carried out. The electrolytic dressing is performed in a stable condition because the aqueous coolant 40, provided between the electrode surface 37a and the outer surfaces 21 of the honing stones 20, has an excellent electroconductive property. The time period for electrolytic dressing can be appropriately adjusted, depending on the voltage for the electrolysis, protrusion degree of the grinding particles, and a material used as the electroconductive connection in the honing stones 20. For example, it is possible to preset the time period of several seconds. It is also possible to optimize the protrusion degree of the grinding particles, by appropriately selecting the voltage for the electrolysis and the period for performing electrolytic dressing.


When the electrolytic dressing of the honing stones 20 is completed, the honing tool 10 is moved upwardly from the electrode supporting member 36, and brought back to the processing unit I by the movement of the honing head 1. When the electrode 36 of the honing tool 10 is transferred to the processing unit I, the electrode 39 of the honing tool 10 is detached from the positive electrode of the ELID electrical source. The time period required for the electrolytic dressing is short and will never adversely affect the smooth operation of the honing treatments. The dressing timing is shown by the line labeled as “Dressing Timing” in FIG. 6.


In the embodiment of the present invention, a honing liquid having substantially no electroconductive property such as an oily coolant is used in the processing unit I in the course of repeatedly performing the honing treatment by using the honing tool 10. When the predetermined processing time exceeds a predetermined time as a threshold value and the grinding capability is decreased because of the abrasion of the honing stones 20, the honing tool 10 is moved to electrolytic dressing unit II. Therein, the honing stones 20 are subjected to the electrolytic dressing with an aqueous coolant having an excellent electroconductivity. It is possible in the present invention to carry out an electrolytic dressing even when the workpieces are ground with the application of a honing liquid having small or substantially no electroconductive property. As a result, the honing treatment is performed in a stable manner, and honing stones 20 with excellent quality can be obtained, without generating surface roughness dispersion. Moreover, it is possible to prevent the honing stones 20 from an excessive abrasion. Hence, the honing treatment is carried out with an improved efficiency and the processing period is shortened.


Moreover, in the present invention, the electrolytic dressing is carried out in an electrolytic dressing unit II with maintaining the honing tool 10 on the honing head 1, and the workpieces are transferred in the processing unit I and transferring out therefrom within an extremely short period of time. Therefore, the honing treatment is carried out without adversely affecting the entire length of honing operation.


Further, the aqueous coolant used in the present invention is easy to handle, and is widely used without imparting an adverse effect to the honing tool.


As to the determination of dressing timing, the grinding resistance gradually of the honing stones 20 increases, as the abrasion of the honing stones 20 progresses. By utilizing this phenomenon, the electrolytic dressing treatment can be applied to the honing stones when the grinding resistance exceeds a predetermined threshold value.


It is also possible to perform a dressing treatment with respect to the honing stones once after a predetermined number of the non-processing periods has elapsed. Consequently, products with an excellent quality can be prepared by the honing operation, wherein excessive deterioration of the grinding capability of the honing stones is eliminated. In other words, a series of processing periods can be effectively carried out within a shortened processing time, by preventing the honing stones from an excessive abrasion.


Furthermore, the electrolytic dressing of the present invention is applicable to any kind of wheels as long as the wheels can be treated by an electrolytic dressing. The process and the apparatus of the invention are applicable to other technologies including super finishing, where workpieces are ground with a honing liquid with a small or non electroconductive property, and the honing stones are made of grinding particles and an electroconductive connection therefor.


As the electroconductive liquid for the electrolytic dressing, many kinds of electroconductive grinding liquids can be used, in addition to the aqueous coolant.


The present invention being thus described, it will be clearly understood that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modification as would be easily understood to one skilled in the art are intended to be included within the scope of the appended claims.

Claims
  • 1. A process for grinding workpieces, comprising: attaching honing stones to a tool, each of the honing stones comprising grinding particles and an electroconductive connection for fixing the grinding particles to each other;grinding the workpieces with the honing stones by applying a honing liquid having substantially no electroconductive property to a region between the workpiece and the honing stones, the workpieces being successively ground during a series of processing periods, while interposing non-processing periods between the processing periods, each of the workpieces being ground in one of the processing periods; andperforming an electrolytic dressing with respect to the honing stones by using an electrode provided to face the honing stones with a space therebetween, a voltage being applied between the honing stones and an electrode in the presence of an electroconductive liquid in the space between the honing stones and the electrode, the electrolytic dressing being carried out during the non-processing periods.
  • 2. The process for grinding workpieces as claimed in claim 1, wherein the electroconductive liquid is an aqueous coolant.
  • 3. A process for grinding workpieces, comprising: providing an apparatus comprising: a tool provided with honing stones, each of the honing stones comprising grinding particles and a connection for fixing the grinding particles to each other;a processing unit including a workpiece support for supporting the workpieces, and a honing liquid supply member for supplying a honing liquid having substantially no electroconductive property; andan electrolytic dressing unit including a vessel for storing an electroconductive liquid, an electrode and a voltage application member, the electrode and the voltage application member provided in the vessel and facing each other with a space therebetween, the voltage application member applying a voltage to the honing stones;grinding the workpieces with the honing stones by applying a honing liquid having substantially no electroconductive property to a region between the workpiece and the honing stones, the workpieces being successively ground during a series of processing periods in the processing unit, the processing periods interposing non-processing periods therebetween, each of the workpieces being ground in one of the processing periods; andperforming an electrolytic dressing with respect to the honing stones by applying a voltage between the honing stones and the electrode in the presence of the electroconductive liquid in the space between the honing stones and the electrode, the electrolytic dressing being carried out during the non-processing periods in the electrolytic dressing unit.
  • 4. The process for grinding workpieces as claimed in claim 3, wherein the electroconductive liquid is an aqueous coolant.
  • 5. An apparatus for grinding workpieces, comprising: a tool provided with honing stones, each of the honing stones comprising grinding particles and a connection for fixing the grinding particles to each other;a processing unit including a workpiece support for supporting the workpieces, and a honing liquid supply member for supplying a honing liquid with substantially no electroconductive property, the workpieces being ground by the honing stones by applying the honing liquid to a region between the workpiece and the honing stones, the workpieces being successively ground during a series of processing periods in the processing unit, the processing periods interposing non-processing periods therebetween, each of the workpieces being ground in one of the processing periods; andan electrolytic dressing unit including a vessel for storing an electroconductive liquid, an electrode and a voltage application member, the electrode and the voltage application member provided in the vessel and facing each other with a space therebetween, the voltage application member applying a voltage to the honing stones, an electrolytic dressing being performed with respect to the honing stones by applying a voltage between the honing stones and the electrode in the presence of the electroconductive liquid in the space between the honing stones and the electrode, the electrolytic dressing being carried out during the non-processing periods in the electrolytic dressing unit.
  • 6. The apparatus for grinding workpieces as claimed in claim 5, further comprising a processing period measuring member for measuring the lengths of the processing periods, the electrolytic dressing being applied to the honing stones when the processing period measuring member detects that the lengths of the processing periods reach a predetermined threshold value.
  • 7. The apparatus for grinding workpieces as claimed in claim 5, wherein the electrolytic dressing is performed once after a predetermined number of the non-processing periods has elapsed.
  • 8. The apparatus for grinding workpieces as claimed in claim 5, wherein the tool is a honing tool including a rotatable honing tool main body configured to be supported by a vertically movable honing head, and the honing stones are configured as radially arranged rectangular rods provided on an outer peripheral surface of the main body; and the electrode configured as a hollow cylinder to receive the honing head main body and the honing stones therein when the honing tool main body is moved downwardly by the support of the honing head, the honing stones facing a cylindrical surface of the electrode with a predetermined space extending from the honing stones to the cylindrical surface.
  • 9. The apparatus for grinding workpieces as claimed in claim 8, wherein the honing tool further comprises honing shoes and a bar for pressing the honing stones outwardly, the honing tool main body being configured as a hollow cylinder having a cylindrical wall extending along the central axis of the honing tool, an upper part of the honing tool main body being configured to be supported by the honing head, the honing tool main body having a plurality of honing shoe guide openings in the cylindrical wall, the openings penetrating the cylindrical wall and radially extending when viewed from and end of the main body, and also vertically extending along the entire length of the central axis of the honing tool, the honing shoes configured to fit in the openings in the cylindrical wall of the honing tool main body respectively and being slidable therein in radial directions, the honing stones being provided on outer surfaces of the honing shoes, the bar pressing the honing shoes outwardly so as to move away from the central axis of the honing tool.
  • 10. The apparatus for grinding workpieces as claimed in claim 8, wherein the honing tool main body is made of an iron material.
  • 11. The apparatus for grinding workpieces as claimed in claim 9, wherein the honing shoes are made of stainless steel.
  • 12. The apparatus for grinding workpieces as claimed in claim 5, wherein the electroconductive liquid is an aqueous coolant.
Priority Claims (1)
Number Date Country Kind
JP 2006-236008 Aug 2006 JP national