N/A
The methods of “painting” lines on highways or road markings have changed very little in the past thirty years. Herein the word “painting” refers to any method of applying a coating to a road surface to form a line or road marking. Prior to this invention, there were only three widely used methods to paint lines on highways. The most common technique is to spray a chemical paint on to the road and wait for the paint to dry. The apparatus to spray this paint is typically an “air” or “airless” paint machine wherein the paint is carried by air and projected to the road surface or where the paint the forced through a small hole at very high pressure and projected onto the road surface. The “chemical spray” is the most widely used system to paint lines on highways or road markings.
The second technique to paint lines on highways is to apply a tape to the road surface wherein this tape is bonded to the road surface either with heat or with suitable chemicals. U.S. Pat. No. 4,162,862 illustrates a “Pavement Striping Apparatus and Method” using a machine to press the tape into hot fresh asphalt. U.S. Pat. No. 4,236,950 illustrates another method of applying a multilayer road marking prefabricated tape material.
A third technique is to use a high velocity, oxygen fuel (“HVOF”) thermal spray gun to spray a melted power or ceramic powder onto a substrate. This is shown in U.S. Pat. No. 5,285,967.
Of the three painting methods, the first method of spraying a chemical onto the road surface and waiting for the paint to dry is the predominant technique used today.
The history of line painting indicates that there are at least three properties of “paint” which are important to the highway marking industry: (1) The speed at which the paint dries. (2) The bonding strength of the paint to the road surface. (3) The durability of the paint to withstand the action of automobiles, sand, rain, water, etc.
As discussed in U.S. Pat. No. 3,706,684 (Dec. 19, 1972), the first conventional traffic paints were based on drying oil alkyds to which a solvent, such as naphtha or white spirits was added. The paint dries as the solvent is released by evaporation. However, the paint “drying” (oxidation) process “continues and the film becomes progressively harder, resulting in embrittlement and reduction of abrasive resistance thereof causing the film to crack and peel off.” The above patent describes “rapid-dry, one-package, epoxy traffic paint compositions which require no curing agent.”
As described in U.S. Pat. No. 4,765,773:
“The road and highways of the country must be painted frequently with markings indicating dividing lines, turn lanes, cross walks and other safety signs. While these markings are usually applied in the form of fast drying paint, the paint does not dry instantly. Thus a portion of the road or highway must be blocked off for a time sufficient to allow the paint to dry. This, however, can lead to traffic congestion. If the road is not blocked for sufficient time to allow the paint to dry, vehicle traffic can smear the paint making it unsightly. Also in some instances the traffic will mar the marking to such an extent that the safety message is unclear, which could lead to accidents.”
Low-boiling volatile organic solvents evaporate rapidly after application of the paint on the road to provide the desired fast drying characteristics of a freshly applied road marking.
The U.S. Pat. No. 4,765,773 patent illustrates the use of microwave energy to hasten the paint drying process of such solvents.
While the low-boiling volatile organic solvents promote rapid drying, “this type of paint formulation tends to expose the workers to the vapors of the organic solvents. Because of these shortcomings and increasingly stringent environmental mandates from governments and communities, it is highly desirable to develop more environmentally friendly coatings or paints while retaining fast drying properties and/or characteristics” (U.S. Pat. No. 6,475,556).
To solve this problem paints have been developed using waterborne rather than solvent based polymers or resins. U.S. Pat. No. 6,337,106 describes a method of producing a fast-setting waterborne paint. However, the drying times of waterborne paints are generally longer than those exhibited by the organic solvent based coatings. In addition the waterborne paints are severely limited by the weather and atmospheric conditions at the time of application. Typically the paint cannot be applied when the road surface is wet or when the temperature is below −10 degrees centigrade. Also, the drying time strongly depends upon the relative humidity of the atmosphere in which the paint is applied. A waterborne paint may take several hours or more to dry in high humidity. Lastly the waterborne paints, which are generally known as “rubber based paints”, are made from aqueous dispersion polymers. These polymers are generally very “soft” and abrade easily from the road surface due to vehicular traffic, sand and weather erosion.
The above patents all attempt to solve the paint drying problem when using “waterborne” paints and speeding the drying process. The present invention solves the drying problem by not using any solvents in the “painting process”.
The present invention relates closely to the work done to repair coke ovens, glass furnaces, soaking pots, reheat furnaces and the like which are lined with refractory brick or castings. This process is known today as “ceramic welding”.
U.S. Pat. No. 3,800,983 describes a process for forming a refractory mass by projecting at least one oxidizable substance which burns by combining with oxygen with accompanying evolution of heat and another non-combustible substance which is melted or partially melted by the heat of combustion and projected against the refractory brick. The invention is designed to repair, in situ, the lining of a furnace while the furnace is operating. Typically the temperature of the walls of the furnace is over 1500 degrees centigrade and the projected powder(s) ignites spontaneously when projected against the hot surface. In this process it is extremely important that both the oxidizable and non-combustible particles are matched chemically and thermally with the lining of the furnace.
If the thermal properties are not correct, the new refractory mass will crack off from the lining of the furnace due to the differential expansion of the materials. If the chemical composition is not correct, the new refractory mass will “poison” the melt in the furnace.
In the U.S. Pat. No. 3,800,983 patent the oxidizable and non-oxidizable particles are combined as one powdered mixture. The powder is then aspirated from the powder hopper by using pure oxygen under pressure. The resulting powder-oxygen mixture is then driven through a flexible supply line to a water-cooled lance. The lance is used to project the powder-oxygen mixture against the refractory lining of the furnace to be repaired. The powder-oxygen mixture ignites spontaneously when it impinges on the hot surface of the oven.
The object of the '983 invention and those that followed is to select the composition of the powders to match the characteristics of the refractory lining and to prevent “flashback” up the lance and back towards the operator of the equipment. “Flashback” is the process wherein the oxygen-powder stream burns so quickly that the flame travels in the reverse direction from the oxygen-powder and causes damage to the equipment and serious hazards to the equipment operator.
U.S. Pat. No. 4,792,468 describes a process similar to that above and specifically illustrates the chemical and physical properties of the oxidizable and refractory particles needed to form a substantially crack-free refractory mass on the refractory lining.
U.S. Pat. No. 4,946,806 describes a process based upon the U.S. Pat. No. 3,800,893 patent wherein the invention provides for the use of zinc metal powder or magnesium metal powder or a mixture of the two as the heat sources in the formation of the refractory mass.
U.S. Pat. No. 5,013,499 describes a method of flame spraying refractory materials (now called “ceramic welding”) for in situ repair of furnace linings wherein pure oxygen is used as the aspirating gas and also the accelerating gas and the highly combustible materials can be chromium, aluminum, zirconium or magnesium without flashback. The apparatus is capable of very high deposition rates of material.
U.S. Pat. No. 5,002,805 improves on the chemical composition of the oxidizable and non-oxidizable powders by adding a “fluxing agent” to the mixture.
U.S. Pat. No. 5,202,090 describes an apparatus similar to that shown in U.S. Pat. No. 5,013,499. In the '090 patent, there are specific details about the mechanical equipment used to mix the powdered material with oxygen and transport the oxygen-powder combination to the lance. This apparatus also permits very high deposition rates of the refractory material without flashback.
U.S. Pat. No. 5,401,698 describes an improved “Ceramic Welding Powder Mixture” for use in the apparatus shown in the previous patents listed. This mixture requires that at least two metals are used as fuel powder and the refractory powder contains at least magnesia, alumina or chromic oxide.
U.S. Pat. No. 5,686,028 describes a ceramic welding process where the refractory powder is comprised of at least one silicon compound and also that the non-metallic precursor is selected from either CaO, MgO or FeO.
U.S. Pat. No. 5,866,049 is a further improvement on the composition of the ceramic welding powder described in U.S. Pat. No. 5,686,028.
U.S. Pat. No. 6,372,288 is a further improvement on the composition of the ceramic welding powder wherein the powder contains at least one substance which enhances production of a vitreous phase in the refractory mass.
The invention provides a method of and apparatus for flame spraying refractory material directly onto a road surface to provide a highly reflective, very durable and instant drying “paint” to said road surface. Since the paint contains no solvents and the flame spraying process operates at very high temperatures, the “paint” can be applied under widely varying conditions of temperature and humidity.
The present invention makes use of a ceramic welding process in which a non-combustible ceramic powder is mixed with a metallic fuel and an oxidizer. The mixture is transported to a combustion chamber, ignited and projected against the surface of the road. Alternately, the constituents can be mixed in the combustion chamber. The fuel is typically aluminum powder and the non-combustible ceramic powder is typically silicon or titanium dioxide. The oxidizer is typically a chemical powder, but can also be pure oxygen. The heat of combustion melts or partially melts the ceramic powder forming a coherent mass that is projected against the road surface, the temperature of the materials causing the coherent mass to adhere durably to the surface.
The object of the present invention is to present a method of “painting” lines on roads, wherein the “paint” dries instantly, adheres durably to the road, has extreme resistance to abrasion and erosion, wind, sand and rain, and is inherently safe from “flashback”. This “paint” can be applied at any temperature and under wet and rainy conditions. The operating temperature of the combustion chamber is typically on the order of 3000 degrees Kelvin.
The invention will be more fully described in the following detailed description taken in conjunction with the drawings in which:
In
In
This process is inherently safe from “backflash” because the typical aluminum-powdered or silicon-powdered fuel is transported by air and is separated from the chemical oxidizer until the chemicals are combined in the combustion chamber (11). It is almost impossible to cause aluminum or silicon powder to backflash when transported by plain air. In addition, the oxidizer does not burn (or burns very slowly) in air thus preventing any backflash in the supply line (10) transporting the chemical oxidizer.
Another safety feature is that aluminum or silicon powder is very difficult to ignite in air. While there are many cautions regarding the use of aluminum powder, the aluminum powder cannot ignite in air unless the flame temperature (from a match etc) exceeds the melting temperature of aluminum oxide (2313 K). This inventor has run experiments with several particle sizes of aluminum powder; i.e. 1 micron up to 100 microns and has been unable to ignite any of the powders using a propane torch.
In addition, the non-combustible ceramic powder may be mixed with the metallic combustible powder or the powdered oxidizer. If the non-combustible powder is mixed with the powdered fuel, it will dilute the concentration of the powdered fuel and minimize the possibility of flashback or accidental ignition of the fuel. According to the various ceramic welding patent disclosures, the quantity of the powdered fuel will typically be less than 15% by weight of the non-combustible ceramic powder.
In other cases, air alone, without supplemental pure oxygen, is sufficient to supply the oxygen needed for combustion. In this case, air can be injected at point 16 of
The choice of oxidizing chemical is very important to the safety and economics of this line painting process. The oxidizing chemical must be low cost, readily available, non-toxic, and burn with a flame temperature sufficiently high to soften or melt the ceramic materials used in this process. The following chemicals were considered:
Ammonium Perchlorate (NH4CL04)
Ammonium Nitrate (NH4NO3)
Potassium Nitrate (KNO3)
Sodium Nitrate (NaNO3)
Potassium Perchlorate (KCLO4)
Sodium Perchlorate (NaCLO4)
Potassium Chlorate (KCLO3)
Sodium Chlorate (NaCLO3)
Air
Pure oxygen
Ammonium perchlorate is a well known and well characterized oxidizer used in solid state rocket fuels. It is the oxidizer for the solid rocket boosters for the space shuttle. It is relatively expensive and made by only one company in the United States. The combustion products are primarily NO and a small amount of NO2, chlorine and hydrogen chloride (HCL), all of which are toxic. Therefore, ammonium perchlorate was ruled out for use as the oxidizer in this application.
Ammonium nitrate (NH4NO3) is one of the better oxidizers because it contains no chlorine and therefore produces no HCL. It may generate toxic amounts of NO, although the concentration of the NO when combined with free air is likely to be very low. Ammonium nitrate is also known as fertilizer and widely used in explosives. It is widely available and inexpensive. However, it takes 4.45 pounds of ammonium nitrate to burn one pound of aluminum and therefore ammonium nitrate will require larger volumes and weight than other potential oxidizers.
Potassium nitrate (KNO3) and sodium nitrate (NaNO3) are widely available, very inexpensive and will also generate a toxic amount of NO. Again, it is expected that the NO will be very much diluted with free air in the operation of this machine. Both potassium nitrate and sodium nitrate will generate byproducts which will react with air to create hydroxides. These hydroxides are soluble in water and may (or may not) cause problems with the deposition and adherence of the refractory material on the road surface. Only 2.25 pounds of KNO3 are required to burn one pound of aluminum. Therefore, KNO3 is a very good candidate for the oxidizer.
Sodium nitrate (NaNO3) has very similar properties to KNO3. It is readily available, low cost and only requires 1.89 pounds of KNO3 to burn one pound of aluminum.
The other perchlorate and chlorates are similar in performance and combustion properties to sodium and potassium nitrate and will also generate byproducts that are water soluble. They are more expensive and less available than sodium and potassium nitrate.
Air is a very good candidate for use as the oxidizer. Obviously it is readily available and only requires a compressor. The question is can sufficient air be injected into the system to supply sufficient oxygen for the combustion and also not drain too much of the heat away.
Pure oxygen is an excellent candidate for the oxidizer. Using pure oxygen would create a process very similar to ceramic welding. There are no toxic byproducts and the valves and controls are inexpensive. Pure oxygen is very inexpensive and readily available. If compressed oxygen (as a gas) is used, the containers are very large and heavy relative to the amount of oxygen stored. Also, the problem of “flashback” must be addressed.
Liquid oxygen is a very good candidate for large volume highway painting applications. It is very inexpensive and widely available. The only problem is the storage and handling of the LOX.
The following non-combustible ceramic materials were considered for use as the “paint pigment” in this apparatus:
Silicon Dioxide
Titanium Dioxide
Aluminum Oxide
Chromium Oxide produced from refused grain brick.
Magnesium Oxide
Iron Oxide
Crushed colored glass
Magnesite regenerate
Corhart-Zac
Al2O3-/Bauxite-Regenerate
The prime criteria for the selection of the “paint pigment” are cost and availability. Titanium dioxide is the prime pigment used in white paints, is readily available, and is very low in cost. Aluminum oxide is also readily available, but is much more costly than titanium dioxide. Silicon dioxide is normally known as “sand” and may be the least expensive of all of the “paint pigments”. Chromium oxide, if produced from refused grain brick, is also a low cost ceramic material, but may not be consistent in its mixture. Refused grain brick is available commercially as, for example, Cohart RFG or Cohart 104 Grades. Magnesium oxide may be used in small amount to enhance the thermal properties of the final paint product. Magnesite regenerate, corhart-zac and bauxite-regenerate are recycled refractory products that were previously used in high temperature furnaces. A mixture of two or more non-combustible ceramic materials can be used.
In one embodiment, at least two non-combustible materials are mixed with at last one metallic combustible powder and an oxidizer. One of the non-combustible materials has a melting point in excess of the flame temperature of the burning metallic powder and oxidizer, and the second non-combustible material has a melting point that is lower than the flame temperature of the burning metallic powder and the oxidizer. The mixture is ignited so that the combustible particles react in an exothermic manner with the oxidizer and release sufficient heat to melt the lower melting point non-combustible material but not sufficient to melt the higher melting point non-combustible material. The materials are then projected onto the surface, and the lower melting point non-combustible material acts as a glue for the higher melting point non-combustible material and the products of combustion, and the resulting mass adheres durably to the surface. Preferably, the higher melting point non-combustible material includes titanium dioxide, aluminum oxide, magnesium oxide, chromium oxide, iron oxide, zirconium oxide, tungsten oxide or a mixture of two or more of these. The lower temperature non-combustible material is silicon dioxide and the metallic combustible powder is silicon.
Some line painting compositions that are suitable for coating a road surface include a composition comprising titanium dioxide and silicon; a composition comprising titanium dioxide, silicon dioxide, and silicon; a composition comprising aluminum oxide and silicon; a composition comprising aluminum oxide, silicon dioxide, and silicon; a composition comprising iron oxide and silicon; a composition comprising iron oxide, silicon dioxide, and silicon; a composition comprising magnesium oxide and silicon; and a composition comprising magnesium oxide, silicon dioxide, and silicon.
In addition to the selection of low cost ceramic materials for use as “paint pigment”, there is a requirement for coloring materials to produce the colors of yellow, blue and red on road surfaces. These coloring materials may be pre-mixed with the ceramic powder or powdered fuel, or may be added to the combustion chamber via a separate supply line. The coloring material can be, for example, tungsten, zirconium, crushed yellow or another color glass, or ferric oxide (Fe2O3). Similarly, retro-reflective beads can be added.
Since the oxidizer powders tend to be hygroscopic, it is necessary to add “anti-caking” agents to the powder to prevent the formation of clumps, which inhibits the powder from flowing smoothly. The “anti-caking” agent is also known as a “flow” agent. The typical flow agent is TCP (tri-calcium phosphate), although others are well known in the art.
The invention is not to be limited by what has been particularly shown and described and is to encompass the full spirit and scope of the appended claims.
This application is a division of U.S. patent application Ser. No. 10/863,651 filed on Jun. 8, 2004, now U.S. Pat. No. 6,969,214 which is a continuation-in-part of U.S. patent application Ser. No. 10/774,199, filed on Feb. 6, 2004, now abandoned, the priority of which is claimed under 35 U.S.C. §120 and the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3706684 | Lopez | Dec 1972 | A |
3719630 | Antonen | Mar 1973 | A |
3800893 | Ramsay et al. | Apr 1974 | A |
3953193 | Bessen | Apr 1976 | A |
4128065 | Kelly et al. | Dec 1978 | A |
4162862 | Harker et al. | Jul 1979 | A |
4236950 | Eigenmann | Dec 1980 | A |
4489022 | Robyn et al. | Dec 1984 | A |
4765773 | Hopkins | Aug 1988 | A |
4792468 | Robyn et al. | Dec 1988 | A |
4818574 | Mottet et al. | Apr 1989 | A |
4946806 | Willard | Aug 1990 | A |
4981628 | Willard | Jan 1991 | A |
4988647 | Mottet et al. | Jan 1991 | A |
5002805 | Robyn | Mar 1991 | A |
5013499 | Willard | May 1991 | A |
5202090 | Zvosec et al. | Apr 1993 | A |
5203923 | Hartman | Apr 1993 | A |
5270075 | Robyn et al. | Dec 1993 | A |
5285967 | Weidman | Feb 1994 | A |
5294798 | Hartman | Mar 1994 | A |
5296256 | Hartman | Mar 1994 | A |
5368232 | Schroeder | Nov 1994 | A |
5401698 | Mottet | Mar 1995 | A |
5472737 | Anders | Dec 1995 | A |
5486269 | Nilsson | Jan 1996 | A |
5529432 | Huynh et al. | Jun 1996 | A |
5529433 | Huynh et al. | Jun 1996 | A |
5665793 | Anders | Sep 1997 | A |
5686028 | Meynckens et al. | Nov 1997 | A |
5732365 | Howard et al. | Mar 1998 | A |
5738830 | Stoltzfus et al. | Apr 1998 | A |
5753026 | Kuntz et al. | May 1998 | A |
5780114 | Meynckens et al. | Jul 1998 | A |
5866049 | Meynckens et al. | Feb 1999 | A |
5874491 | Anders | Feb 1999 | A |
5928717 | Cherico et al. | Jul 1999 | A |
5947638 | Heims | Sep 1999 | A |
5951201 | Jones | Sep 1999 | A |
5970993 | Witherspoon et al. | Oct 1999 | A |
6001426 | Witherspoon | Dec 1999 | A |
6027281 | Neuling | Feb 2000 | A |
6149341 | Neuling | Nov 2000 | A |
6217252 | Tolliver et al. | Apr 2001 | B1 |
6337106 | Brown | Jan 2002 | B1 |
6372288 | Meynckens et al. | Apr 2002 | B1 |
6413012 | Jones | Jul 2002 | B1 |
6475556 | Sobczak et al. | Nov 2002 | B1 |
20020193256 | Harris, Jr. | Dec 2002 | A1 |
20030080203 | Roth et al. | May 2003 | A1 |
20030119655 | Meyer et al. | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
2004263 | Mar 1979 | GB |
2144055 | Feb 1985 | GB |
2213812 | Aug 1989 | GB |
05201772 | Aug 1993 | JP |
WO 9523199 | Aug 1995 | WO |
WO 9616917 | Jun 1996 | WO |
Number | Date | Country | |
---|---|---|---|
20050196236 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10863651 | Jun 2004 | US |
Child | 11083409 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10774199 | Feb 2004 | US |
Child | 10863651 | US |