The present invention relates to a process for monitoring sheet-like products, in particular printed products transported by means of clamps of a transporting arrangement as claimed in patent claim 1, and to an apparatus for carrying out the process as claimed in patent claim 13.
EP 1 321 410 A discloses a process and an apparatus which are intended for conveying sheet-like products and in the case of which in each case two or more products are gripped jointly, in the region of their leading edges, by grippers of a gripper conveyor such that the edges are alternately spaced apart from one another. In a transfer region, the products are transferred to a removal arrangement such that each product at most partially overlaps the previously transferred product, the leading edges of the products being spaced apart from one another. The products are thus directly accessible for further processing. If a gripper of the gripper conveyor has been loaded with the incorrect number of products or with incorrect products, this may give rise to problems during further processing, for example by the incorrect number of products, or incorrect products, being fed to a further-processing station.
EP 0 685 420 A discloses a monitoring process which is intended for use in the production of printed products and can be used in high-capacity processes for producing printed products by collecting, inserting and/or collating operations, for example by way of a drum. The resulting products are compared, following each addition of a further constituent part, by virtue of an image being recorded by an image-recording device and the recorded image being compared with a corresponding stored calibration image, and the comparison results are used for generating control signals, for example for ejecting defective products, or alarm signals.
Furthermore, EP 0 897 887 A discloses a process and an apparatus for monitoring the thickness of continuously conveyed sheet-like products. Monitoring elements are introduced into the conveying stream of the individually conveyed printed products and are assigned to each printed product. The monitoring elements comprise a pair of monitoring levers with clamping jaws which are pressed against one another by a pressing force and clamp in the printed product between them. Interacting with one another by way of this clamping operation, the monitoring element and printed products pass through a monitoring region together. In this monitoring region, for the quantitative registration of the interaction between the monitoring element and printed product, an image is recorded of a respective edge of the two monitoring levers and of the spacing between these edges, this spacing varying with the thickness of the pressed printed product, and this image recording is used to determine the measured value corresponding to the spacing. The measurement of the spacing of which an image has been formed is compared with a desired range assigned to each monitoring element. The desired range is a predetermined tolerance range which is combined with a desired value from a calibration measurement, the calibration measurement being carried out for the specific monitoring element and a correct product.
It is an object of the present invention to provide a process which is intended for monitoring sheet-like products transported by means of clamps of a transporting arrangement and which, in a manner which does not adversely affect the products, makes it possible to monitor whether each of the product-transporting clamps has been loaded correctly with two correct products. It is also an object of the present invention to provide an apparatus for carrying out the process.
According to the invention, a first product, which carries identification information, and a second product, which likewise carries identification information, are jointly retained and transported such that the second product partially overlaps the first product. and a peripheral portion, which carries the identification information of the first product and the identification information of the second product are exposed on the same side of the products. In relation to transporting the products individually, transporting two products jointly by way of a clamp in each case makes it possible, with the same operating cycle, to double the transporting capacity or, with the same transporting capacity, to halve the operating cycle or the speeds at which clamps are moved, which results in the transporting arrangement operating extremely smoothly.
In order to monitor whether each of the clamps has been loaded with a first product and a second product, the products retained jointly by a clamp, as they move past a monitoring location, are subjected to optoelectronic monitoring. In this case, a stationary image-recording device is used to record an image of the identification information of the two products, the recorded image is processed electronically and the results of the electronic processing is processed further to form control signals.
Since the process according to the invention operates in a contactless manner, the risk of damage to the products is avoided. Optoelectronic monitoring allows very high processing speeds. Furthermore, the costs for monitoring using the process according to the invention are low since the corresponding apparatus does not need to have any moving parts. Furthermore, the process according to the invention makes it possible to monitor whether each of the clamps has been loaded with two correct products, and this allows reliable and correct further processing and also a warning to be given in respect of incorrect products, which can then be ejected.
The invention is explained in more detail with reference to exemplary embodiments illustrated in the drawing, in which, purely schematically:
The second printed product 22, which rests in imbricated fashion on the first printed product 20, as seen in the conveying direction F, only partially overlaps the first printed product 20 and leaves free, on the latter, a strip-like peripheral portion 26, of width B, adjoining the leading edge 24. The first printed product 20 has identification information 30 in this peripheral portion 26, in an information zone 28 located on the outer right-hand side, as seen in the conveying direction F. It is also the case that the second printed product 22 has an information zone 28′, likewise with identification information 30′, in its corresponding peripheral portion 26, positioned laterally at the same location as the information zone 28.
32 is used to indicate, by way of chain-dotted lines, an image zone within which the information zones 28, 28′ are located and which will be discussed in more detail at a later stage in the text.
Located at a monitoring location 33, to the side of the movement path of the clamps 12 and of the printed products 20, 22 transported thereby, is a clamp sensor 34, for example in the form of a light barrier, which generates a trigger signal T in each case when a clamp 12 moves into its sensor range.
The clamp sensor 34 is part of an optoelectronic monitoring arrangement 36, which also has an image-recording device 38, preferably in the form of a video camera, and a processing unit 40. The image-recording device 38 is connected to the processing unit 40 which, for its part, generates control signals S which, as is indicated by dashed lines, are fed to a further-processing station 42 provided downstream of the monitoring arrangement 36.
In that position of the clamp 12 which is illustrated by solid lines in
It is also possible for the image-recording device 38 to be set, and/or positioned, such that, in that position of the clamp 12 which is shown, the image zone 32 with the information zones 28 and 28′ is located in the optical range of the image-recording device 38.
The processing unit 40 has a memory 44 for digitally storing a calibration image E. The processing unit 40 also contains an electronic comparison unit 46, for example in the form of a microprocessor, by means of which digitized images recorded by the image-recording device 38 can be compared with the digital calibration image E. The further-processing station 42 generates the control signals S in dependence on this comparison.
As can be seen from
In the case of that embodiment of the transporting arrangement 10 which is shown in
The single difference between the monitoring arrangement 36 of the embodiment which is shown in
As in the case of the embodiment according to
The second clamp 12 has also been loaded with a first printed product 20 and a second printed product 22 in the correct position. The first printed product 20 is the correct product with the appropriate identification information 30 in the information zone 28, whereas the second printed product 22 is the incorrect product, which does not carry any identification information 30′, or carries incorrect identification information 30′, in the region of the information zone 28′.
The incorrect printed products 20, 22 may be, for example, incomplete printed products with at least the outermost sheet missing. It is also conceivable for the first or second printed product 20, 22, these being indicated by dashed lines in the two clamps 12 mentioned, to be missing and for the relevant clamp 12 to be loaded just with a second or first printed product 20, 22. The incorrect loading patterns of the clamps 12 which have been mentioned above can be detected by way of the optoelectronic monitoring means. If a clamp 12 has been loaded just with a single printed product 20 or 22, the latter can be used, if appropriate, for further processing, in which case it need not be ejected.
The third clamp 12 from the left in
The fourth clamp 12 has likewise been loaded with a first printed product 20 and a second printed product 22 in the correct position, but a third printed product 48 rests congruently on the second printed product 22, on that side of the latter which is directed away from the first printed product 20. If this third printed product 48 carries identification corresponding to the identification information 30′ of the second printed product 22, the incorrect loading of the clamp 12 cannot be detected by way of the optoelectronic monitoring means alone.
It is not possible either to detect that the clamp 12 which is shown on the left-hand side in
In comparison with the incorrectly loaded clamps, the clamp 12 which is shown on the right-hand side in
In order to make a check, in addition to optoelectronic monitoring, as to whether one of the clamps 12 has been loaded with more than two printed products 20, 22, an apparatus 50 for monitoring the overall thickness of the printed products 20, 22, and possibly 48, 48′, transported jointly by a clamp 12 may be arranged downstream of the monitoring location 33. A suitable apparatus for monitoring the thickness of the jointly transported printed products 20, 22 is known from EP 0 897 887 A. In respect of the construction and functioning of this apparatus 50, reference is made expressly to the EP document.
The apparatus has a multiplicity of monitoring elements 52, which are arranged equidistantly on the circumference of a monitoring disk 54 and each essentially comprise a monitoring lever 56, which is stationary relative to the monitoring disk 54, and a monitoring lever 60, which can be pivoted about a pivot axis 58 relative to the monitoring disk 54. The two monitoring levers 56, 60 each have a clamping jaw 62 in their free end regions, the clamping jaws 62 of each monitoring element 52 being directed toward one another and being aligned with one another in order for the printed products 20, 22 transported jointly by a clamp 12 to be clamped in.
The pivotable monitoring lever 60 of each monitoring element 52 is spring-loaded in the direction of the stationary monitoring lever 56. Furthermore, it has a control roller 64 which, when the monitoring disk 54 rotates—this takes place synchronously with the movement of the clamps 12 of the transporting arrangement 10—rolls on a stationary guide means (not shown). The guide means here is configured such that the pivotable monitoring lever 60 is kept at a distance apart from the stationary monitoring lever 56, counter to the spring force, except in a monitoring region in which the monitoring element 52 interacts with the printed products 20, 22 transported jointly by a clamp 12. In this monitoring region, the control roller 14 does not roll on the corresponding guide means; rather, the position of the pivotable monitoring lever 60 is determined by the spring force and by the overall thickness of the printed products 20, 22 clamped in between the clamping jaws 62.
The thickness of the clamped-in printed products 20, 22 is determined by the position of the pivotable monitoring lever 60 in relation to the stationary monitoring lever 56, for example by optical sensing and electronic evaluation, as is known from EP 0 897 887 A.
The apparatus 50 can sense incorrect loading patterns such as those illustrated, for example, in
Using the apparatuses which are shown in
If this comparison of the images of the identification information 30, 30′ of the first printed product 20 and the second printed product 22 with the calibration image E is a positive one, a corresponding control signal S is generated and emitted to the further-processing station 42. This control signal S, however, can be dispensed with if the further-processing station 42 requires a corresponding signal S only when one of the clamps 12 has not been loaded correctly.
However, if the comparison between the recorded images and the calibration image E is a negative one for one of the recorded images, or for both recorded images, a corresponding control signal S is likewise generated and fed to the further-processing station 42. This control signal S may also be an alarm signal, in order for an alarm to be triggered when an incorrectly loaded clamp 12 is detected. The further-processing station 42 may be, for example, an ejecting station, in order for the clamps 12 which are not loaded correctly with printed products 20, 22 to be opened and for these printed products to be separated out of the conveying stream.
The abovementioned method of operating the monitoring arrangement 36 is suitable, in particular, when identical printed products 20, 22 with identical identification information 30, 30′ are transported. This mode of operation can also be used to establish whether the first and/or second printed product 20, 22 is the correct or incorrect printed product.
As has already been described above, it is also possible for the image-recording device 38 to be equipped and/or arranged such that it can record an image of the entire image zone 32 with the identification information 30, 30′ of the first printed product 20 and of the second printed product 22. In this case, the processing unit 40, in response to a trigger signal T, emits in each case a single recording command to the image-recording device 38. The image recorded of the image zone 32, in turn, is compared electronically, by means of the comparison unit 46, with a corresponding digitally stored calibration image E and, in dependence on the result of the comparison, the monitoring arrangement 36 generates a corresponding control signal S and transmits it to the further-processing station 42.
This mode is suitable both for the case where in each case a first printed product 20 and a second printed product 22 with the same identification information 30, 30′ are to be transported by a clamp 12 and for the case where the first printed product 20 and the second printed product 22 have different pieces of identification information 30, 30′.
Of course, it is also conceivable to arrange the clamp sensor 34 upstream of the monitoring location. In this case, the processing unit 40, in response to trigger pulses T, generates the recording commands for the image-recording device 38 in a correspondingly delayed manner.
In a further operating mode, it is possible for the optoelectronic monitoring to be carried out such that the image-recording device 38 continuously records images and transmits the corresponding image data to the processing unit 40. When the latter receives a trigger signal T, it initiates—in dependence on the conveying speed v and the desired spacing B between the leading edges 24, 24′ of the first and of the second printed products 20, 22—a first time window, and then a second time window, within which the comparison unit 46 compares the recorded images with the calibration image E. If a respective recorded image corresponds to the calibration image E within the first and the second time intervals, the relevant clamp 12 has been loaded correctly. Otherwise, incorrect loading has taken place. Here too, the processing unit 40, in dependence on the result of the electronic processing, generates a corresponding control signal and transmits this to the further-processing station 42.
This operating mode is suitable, in particular, when first and second printed products 20, 22 with identical identification information 30, 30′ are to be transported and the speed v at which the clamps 12 move may vary. This may be the case, for example, when, rather than being fastened on a driven conveying means 14, the clamps 12 are arranged, for example, on carriages or slides which move freely along a path, for example with a gradient.
If the image-recording device 38 is equipped and/or positioned such that it can record an image of the entire image zone 32 with the identification information 30, 30′ of the first printed product 20 and the second printed product 22, then, in a further operating mode, the processing unit 40, in response to a trigger signal T, initiates a time interval on the basis of which it is monitored, in the comparison unit 46, whether one of the images recorded during this time interval corresponds to the calibration image E. This operating mode is suitable, in particular, when, as is shown in the previous example, clamps 12 which follow one after the other at different speeds have to be expected. Furthermore, it is also suitable when the pieces of identification information 30, 30′ of the first printed product 20 and of the second printed product 22 differ.
Depending on the type of further-processing station 42, the control signals S are used differently. If the station is, for example, a stacking arrangement, the control signals S can be used in order to form stacks with a certain number of printed products 20, 22. In this case, clamps 12 which have been loaded with incorrect printed products 20, 22 are not opened as they move past the further-processing station 42. This may likewise be the case when a clamp has been loaded just with a single printed product, whereas a further two printed products 20, 22 are required in order to complete the stack.
It is also conceivable for the clamp sensor 34 to be arranged and designed such that, rather than sensing the movement of a clamp 12 into the sensor region, it senses the movement of a printed product 20, 22 into the sensor region. In this case, the optoelectronic monitoring does not take into account the clamps 12 which have not been loaded with at least one printed product 20, 22.
The calibration operation is carried out using the same arrangement as the optoelectronic monitoring. This operation consists essentially in that, by means of the image-recording device 38, an image is made of the identification information 30, 30′ of the first printed product 20 and second printed product 22 arranged correctly in a clamp 12, and this image is stored in electronically digital form in the memory 44 for the calibration image E. The calibration operation can be carried out when the transporting arrangement 10 is at a standstill, it previously being possible for the correct arrangement of the first and second printed products 20, 22 in the relevant clamp 12 and the settings on the image-recording device 38 to be visually monitored and precisely adjusted. It is also possible, however, for the calibration operation to be carried out during operation of the transporting arrangement; in this case, it is easily possible, in the operating mode in which a dedicated image is recorded for the identification information 30, 30′ of each of the printed products 20, 22, to adjust the time delay between the points in time at which the first image and the second image are recorded.
It is advantageous if a larger detail is recorded for the calibration image E than is later the case for carrying out the optoelectronic monitoring. For the image comparison, it is then possible for the images recorded for optoelectronic monitoring to be shifted by software within the calibration image until maximum correspondence has been established. This makes it possible to prevent the situation where printed products 20, 22 which have been shifted slightly relative to the calibration image E, but are correct, are interpreted as being defective. The same also applies in the converse case in which, for the optoelectronic monitoring, the image detail recorded is larger than the calibration image E.
In particular for the purpose of monitoring the transportation of newspapers, periodicals or the like in which the first and second printed products 20, 22 are provided with identical printing, a detail of the printing on the printed products 20, 22 is advantageously used as identification information 30, 30′.
Monitoring of printed products 20, 22 which are transported in pairs by means of clamps 12 has been described in relation to the exemplary embodiments. However, the process according to the invention and the apparatus according to the invention are also suitable for monitoring other sheet-like products which are transported in pairs by means of clamps.
Number | Date | Country | Kind |
---|---|---|---|
1276/05 | Jul 2005 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH06/00260 | 2/1/2007 | WO | 00 | 7/10/2008 |