This application claims the priority of German Application No. 102 12 036.6-22 filed Mar. 19, 2002 the disclosure of which is expressly incorporated by reference herein.
The invention concerns a process for noise reduction in the inner and external areas of multi-engine propeller-driven aircraft.
The propellers in multi-engine propeller-driven aircraft constitute the primary noise source of inner and external noise levels. Due to the periodic operations, the noise emission of a propeller is very powerful. The frequency of the basic sound pitch is normally a function of t he number of blades and the rotation speed of the propeller. The basic sound pitch of today's propeller-driven aircraft has a low frequency. A reduction of the internal noise therefore requires, for example, the utilization of a high mass to increase the sound insulation of the fuselage structure of the aircraft. This high mass would be damaging to the performance of the aircraft. In addition, high noise levels in the outer skin of the fuselage increase the mechanical/dynamic strain on the structure.
U.S. Pat. Nos. 4,900,226 and 4,150,855 relate to control systems based on synchrophasing the propellers. In these systems, the vibrations are measured after they have reached the fuselage cabin and based upon these measurements the frequency and the phase of the plane propellers are adjusted so as to minimize the vibrations and the noise in the cabin.
It is an object of the invention to create improved processes and systems with which the noise emissions of the propeller can be significantly lowered and with which, for example, the mass necessary for sound insulation is simultaneously reduced.
This object is attained with a process for noise reduction in multi-engine propeller-driven aircraft, wherein the parameters of at least two of the propellers are adjusted with respect to each other with regard to frequency, amplitude, and phase in such a way that the sound fields of the propellers are attenuated or extinguished completely by interference in an area of a nearest fuselage of the aircraft. Advantageous features of preferred embodiments of the invention are described herein and in the claims.
In the process for the reduction of noise in propeller-driven aircraft according to the invention, the parameters of at least two of the propellers are tuned in such a way with respect to each other with regard to frequency, amplitude, and phase that the sound fields of these propellers are attenuated or in the ideal case even completely extinguished by interference in a critical area of the fuselage structure of the aircraft, at which a maximum noise level occurs due to the direct noise emission of the propellers
The process according to the invention is applicable in principle to all propeller configurations as long as there is a fuselage structure in the configuration of the propeller that is directly affected by the airborne noise of at least two propellers. Such configurations are, for example:
In an advantageous exemplary embodiment of the invention of a four engine propeller-driven aircraft with two propellers mounted on each wing, the parameters of the two engines mounted on the same wing (inner and outer engine) are adjusted with respect to each other as follows. The noise emissions of the inner and outer propeller are adjusted in such a way that at least the sound field of the basic sound pitch in amplitude and phase of the inner propeller overlaps the sound field of the basic sound pitch in amplitude and phase of the outer propeller in the area nearest to the critical fuselage surface of the aircraft so that the noise level is significantly attenuated or in the ideal case even fully extinguished by interference.
The following preconditions must be met:
a) the frequencies of the basic sound pitches of the inner and outer propeller must correspond exactly;
b) the amplitudes of the basic sound pitches of the inner and outer propeller must by approximately equal in the critical fuselage area; and
c) the pressure fluctuations in the basic sound pitches of the inner and outer propeller must be phase shifted by approximately 180°.
These preconditions can be fulfilled in the preferred exemplary embodiment of the invention with a four engine propeller-driven aircraft with two propellers mounted on each wing under the following conditions:
In addition, the basic sound pitch amplitudes of the propellers can be coordinated, among other things, by varying:
The requisite phase positions of the sound fields can be adjusted with respect to each other in the case under discussion (the product of the rotation speed and the number of propeller blades is constant, that is, a constant blade sequence frequency) by fine tuning the current blade position angles of the propellers (for example, adjustment of the blade phase angle or the phase differences in the propeller blade sequence), so that the sound fields are overlapped as mentioned above by a phase shift of approximately 180° in the area of the critical fuselage surface. These adjustments can be actively controlled and operated.
Additional options for adjustment of the phases of the sound field in the area of the critical fuselage surface are:
The process according to the invention can also be applied taking into consideration several propeller sound pitches (basic sound pitch and harmonics).
The process according to the invention has the following advantages:
Other objects, advantages and novel features of the present invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings.
The process according to the invention is explained in more detail for a four engine propeller-driven aircraft with two propellers on each wing with reference to the figures.
For different multi-engine configurations where a respective plurality of propeller sound fields impact the fuselage at the same location, corresponding adjustments of the engines are made so that the sound fields overlap and attenuate at the noise level at the fuselage critical point
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
102 12 036 | Mar 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4900226 | de Vries | Feb 1990 | A |
5150855 | Kaptein | Sep 1992 | A |
5453943 | Magliozzi | Sep 1995 | A |
5789678 | Pla | Aug 1998 | A |
Number | Date | Country | |
---|---|---|---|
20040018086 A1 | Jan 2004 | US |