The and apparatus off intended or unintended leaks, gushers and flows of gas, mud, petroleum, other fluids and finely divided solids on land, on the seabed, or near land or the seabed, whereby the sealing apparatus may redirect the flow of fluid or gas to pipes, tanks or other holding or transporting means or vessels.
This did not function on the British Petroleum leak, and over time the conventional method of sealing with a cap on the pipe protruding from the well did function. During the many unsuccessful trials, weeks went by and the leaking petroleum continued to spill out into the sea.
Method and apparatus for sealing underwater fluid spills, & redirects fluid to ships. Sealing spills in the past (e.g. BP in Gulf) was by pouring fast-setting cement on the spill. For BP the cement dispersed! Invention uses cement indirectly and securely over impervious, weighted curtain.
Summary of the Apparatus and Method: The sealing apparatus is best described as a curtain, composed of layers of the strongest materials available and heavily weighted on its circumference. The curtain can be laid on or over the leak in one layer or successive layers. The method consists of optionally roughly preparing the base of the seabed, or the ground if the leak is on land, to give the sealing curtain a good base for laying it over the leak. The first curtain is laid over the leak, and then in stages, cement is poured inside of the weighted circumference. This method allows for the curtain to be weighted down with cement with none or very little of it being blown away by the forces of liquid or gas exiting the leak (
Description of the Apparatus using the British Petroleum (BP) Gulf of Mexico oil spill example: The curtain will be used to create a firm but flexible base on which to dump cement into the wellhead area. The device has the form and some other characteristics of the contraceptive diaphragm. The diaphragm was designed to keep sperm out, but the curtain will keep the oil or gas within the area and will stop almost all of the leakage. Depending on the spill volume and pressure, the curtain can be designed to accept venting tube-connections that are valves that can reroute almost all of the oil or gas leaking underwater to the surface via multiple pipes or flexible tubes. If these valve connectors are used on the first curtain, then the second and subsequent curtains will require through-channels with stopcocks for each connection; auto-connects between curtains are foreseen for this purpose, and would be easier to attach underwater.
Description of the Method using the BP oil spill example for both underwater and land leaks: A thick, flexible and impervious shaped curtain, heavily weighted around the edge, will be placed over the spewing wellhead, pipe or pipeline. Cement is poured inside a lip created by the weights on the complete circumference of the curtain. Initially, only about ¾ of the circumference would be filled with cement, allowing oil or gas to continue exiting the curtain unimpeded. Curtain portions weighted with lead but un-weighted with cement may flutter roughly. Even before the concrete is set, the final quarter of the curtain will be slowly filled. When the oil exiting that quarter begins to diminish, as measured outside of the curtain visually or by instruments, the curtain's existing cement donut may now be further weighted with cement, without overstressing the central part directly over the pipe or wellhead (this pipe existed at the wellhead in the BP example, and with this instant curtain method would have been trimmed). A self-expanding framework will be placed near the wellpipe if the wellpipe would be damaged or if it might damage the curtain material (Ref. 1). Now it is time to very slowly weight with cement the remaining sector of the curtain as well as some or all of the curtain's surface.
When completely weighted and almost sealed, a second but larger curtain may be placed over the site. A self-expanding framework is attached to the second curtain to prevent a heavy cement deposit from damaging the first curtain's central area. Cement can now carefully be placed over the second curtain and its environs. Obviously, cement can later be laid according to experience to even keep light seepage from occurring. See below under ‘Preparation for laying the curtains’ for ideal preparation of the seabed with respect to a good ground fit.
Construction of the curtain: A layered curtain, having exceptional strength and preferably with a round shape, is used for the invention (
It is understood that common materials used everywhere will be used; heavy duty nylon weave might be used to wrap up the peripheral weights, heat-welding, sewing, riveting will be used for connecting flanges, etc.
There are two radial reinforcements that may be required to ensure that the curtain remains circular at the weighted lip, and that the complete curtain surface remains robust. The first is a set of flexible, spring-loaded bars that allow the somewhat folded curtain to sink more rapidly from the water surface and to keep it circular over the well pipe. It is opened before the seabed is reached. For land applications, it will aid in transporting the weighted curtain to its destination wellhead and when placing the curtain near or within a drilling rig (Ref. 1) The second curtain includes a web of steel cables that will ensure that the curtain has even more strength than the materials described above (Ref. 2). The cables might be used for quick adjustment of the rim to be somewhat out-of-round if the seabed or land conditions require it. Both of the reinforcement apparatus are “heavy-duty”, otherwise they would be considered ubiquitous and require no further description here.
For lifting of the curtain, a standard, deep-throated hook is attached to the center of the curtain by using heavy-duty upper and lower flanges in the standard or usual manner (
Preparation for laying the curtains: A manned or remote vehicle creates a relatively flat ring around the leak on which to place the curtain's weighted edge. This is obviously quite imprecise, but the more level, flatter, bulge-free the ring, the better will be the seal. This step can be repeated for a second or subsequent rings. To prepare either ring that might be too uneven, semi-automatic interlocking steel plates, similar to those used in WWII for instant runways, might be laid on selected parts of the ring (
It is therefore the object of the invention to provide a process and apparatus to seal any underwater or land spill or gusher, whether the spill or gusher was intended or unintended, and independent of the type of exiting fluid, mud, gas or any other type of escaping material. The foregoing objects are achieved with the instant invention, which provides for the handling of underwater or on-land escaping material, no matter what its physical state of being sealed, or if redirection of some or all of the material is in process. Redirection is a part of the invention, but temporarily functioning as a holding vessel, or other standard ecological processes are not claimed.
The invention provides for a rapid solution for sealing spills, since all materials used for the construction of the curtain are readily available, and all of the individual materials can be stored for years until use. Even though the finished curtain is extremely heavy, any of the world's heavy-duty aircraft can transport together a small curtain and all elements for a large curtain to any port nearby a spill. The large curtain can be erected and prepared for transport to the local spill site within two days if a medium-sized crane is available.
Perhaps the most important element in the invention is shown clearly in
1. Example of radial spring-loaded bars used in a patent to protect a submarine from an enemy submarine-launched mine. German Patent P 39 20 187.2 “Seemine” (Underwater Mine) granted to Steve Cordell Jun. 21, 1992 Specification Column 3 Line 17 to Line 29
2. Example of web of steel cables used in U.S. Pat. No. 5,146,045 “Underwater Mine” granted to Steve Cordell Sep. 8, 1992 Drawing Sheet 7 of 8 FIG. 7
3. Examples of heavy-duty curtains, without and with Neoprene layers: