The present disclosure relates generally to a process and apparatus for the separation of air to produce an oxygen product, and optionally a nitrogen product and/or argon product. More specifically, the present disclosure relates to a process and apparatus for the separation of air to produce an oxygen product, and optionally a nitrogen product and/or argon product using an improved heat exchange process and apparatus.
A well-known cryogenic process for the production of both oxygen and nitrogen is the double-column cycle. The double-column cycle process uses a distillation column system having a higher-pressure column, a lower-pressure column, and a reboiler-condenser, which thermally links the higher-pressure column to the lower-pressure column. Early versions of the double-column cycle produced both nitrogen and oxygen as vapors from the lower pressure column. More recently, it has become commonplace to withdraw the oxygen product from the distillation column system as a liquid, raise the pressure of the liquid oxygen by using either static head or a pump, and vaporize the oxygen in a main heat exchanger system, for example, by cooling and liquefying a compressed feed air stream. This technique for producing pressurized oxygen is often referred to as “internal oxygen compression” or “pumped-LOX” and is discussed in the literature.
Refrigeration is required in an air separation plant to compensate for heat leak around the plant and the production of liquid products such as liquid oxygen, liquid nitrogen, and liquid argon. Refrigeration can be provided by compressing, cooling and expanding part of the feed air using an air expander. This feed air stream is typically cooled in the main heat exchanger system to an intermediate temperature before sending the feed air stream to the expander. Refrigeration can also be provided by expanding a nitrogen-enriched vapor stream from the higher-pressure column. This nitrogen-enriched stream is warmed to an intermediate temperature in the main heat exchanger system and sent to a gaseous nitrogen (GAN) expander. The discharge from the GAN expander is then warmed to substantially ambient temperature in the main heat exchanger system.
It is known in the art that the most efficient way to transfer heat between the various warmer streams and various colder streams is to exchange heat between the streams in a single heat exchanger. In this way, each warmer stream can transfer heat to multiple colder streams at the same time. This practice is facilitated through the use of plate-fin heat exchangers, which can accommodate any number of streams.
However, as the total number of streams in the single heat exchanger becomes too great, it becomes advantageous, from a capital point of view, to carry-out the heat transfer in two or more heat exchangers in parallel. When this is done, the designer needs to decide which of the process streams to pass through which heat exchanger. The objective is to match the thermal performance of the multi-exchanger system to that of the single heat exchanger.
When using the pumped-LOX technique, it is common to split the main heat exchanger system into two parallel heat exchangers. These two heat exchangers are often called the high-pressure heat exchanger and the low-pressure heat exchanger. The high-pressure heat exchanger, as the name implies, contains some key higher-pressure streams, namely the boiling/warming oxygen fluid and the cooling/condensing pressurized air stream. One or more lower-pressure gas streams may also pass through the high-pressure heat exchanger for thermal balancing. The low-pressure heat exchanger cools the medium pressure air feed and warms various lower-pressure gas streams. Depending on cost and thermal efficiency, any remaining lower pressure streams can be distributed between the high-pressure and the low-pressure heat exchanger as desired. A split main heat exchanger design is disclosed in U.S. Pat. No. 4,555,256, incorporated herein by reference to the extent that the disclosure therein does not conflict with the teachings of the present application.
Several liquid streams are required to be sent from the higher-pressure column to the lower-pressure column. These streams include a liquid oxygen-enriched stream from the bottom, a liquid nitrogen-rich stream from the top, and a column side-stream liquid which is less-oxygen enriched than the columns bottoms. Due to the large pressure difference between the higher- and lower-pressure columns, it is well-known in the art to employ one or more subcoolers to subcool one or more of these liquid streams to improve overall efficiency by reducing flash losses from pressure reduction. The cooling is typically provided by heat exchange with one or more portions of a lower-pressure nitrogen-rich gas stream produced from the upper region of the lower-pressure column. The subcooler can also be divided into two separate subcoolers, and they can either be standalone heat exchangers, or integrated as part of the higher-pressure or the lower-pressure heat exchanger.
The selection of streams passed to either the higher- and lower-pressure heat exchangers can significantly impact the efficiency of the overall process and has been an active area of research in the art. A common method disclosed in the literature for thermally balancing the streams between the lower-pressure and higher-pressure heat exchangers is to split a low-pressure nitrogen-rich gas stream between the two heat exchangers. This low-pressure nitrogen-rich stream is typically a nitrogen-rich gas stream withdrawn from an upper region of the lower-pressure column, such as the so-called waste stream or the low-pressure nitrogen product stream.
Other related disclosures include FR2778971 and EP2824407, each incorporated herein by reference to the extent that the disclosure therein does not conflict with the teachings of the present application.
Industry desires to improve the efficiency of oxygen production processes from a cryogenic separation plant using a GAN expander, a split main heat exchanger system, and a split subcooler configuration.
The present disclosure relates to the separation of a compressed feed air stream to produce an oxygen product, and optionally nitrogen and/or argon products.
There are several aspects of the invention as outlined below. In the following, specific aspects of the invention are outlined. The reference numbers and expressions set in parentheses are referring to an example embodiment explained further below with reference to the figures. The reference numbers and expressions are, however, only illustrative and do not limit the aspect to any specific component or feature of the example embodiment. The aspects can be formulated as claims in which the reference numbers and expressions set in parentheses are omitted or replaced by others as appropriate.
Aspect 1. A process for the separation of a compressed feed air stream (105) to produce an oxygen product (170) and optionally a nitrogen product (180), the process comprising:
Aspect 2. The process according to aspect 1 wherein the pressure of the second portion (108a) of the compressed feed air stream (105) is less than the pressure of the first portion (107b) of the compressed feed air stream (105).
Aspect 3. The process according to aspect 1 or aspect 2
Aspect 4. The process according to any one of aspects 1 to 3 further comprising:
Aspect 5. The process according to any one of aspects 1 to 3 further comprising:
Aspect 6. The process according to any one of aspects 1 to 3 further comprising:
Aspect 7. The process according to any one of aspects 1 to 6 wherein the first portion (107c) of the compressed feed air stream (105) withdrawn from the second (colder) end of the first heat exchanger section (184) is expanded prior to being passed to the higher-pressure column (190) and/or the lower pressure column (188).
Aspect 8. The process according to any one of aspects 1 to 7 further comprising:
Aspect 9. The process according to aspect 8 wherein the second portion (108b) of the compressed feed air stream (105) withdrawn from the second (colder) end of the second heat exchanger section (186) and the third portion (109d) after expanding are blended prior to each being passed together to the higher-pressure column (190).
Aspect 10. The process according to any one of aspects 1 to 9 further comprising:
Aspect 11. The process according to aspect 10 wherein the first portion (152c) of the first fraction (152b) of the nitrogen-rich byproduct (150) is passed from the second (warmer) end of the first subcooler heat exchanger section (192) to the second (colder) end of the first heat exchanger section (184), heated in the first heat exchanger section (184), and withdrawn from the first (warmer) end of the first heat exchanger section (184) as the first nitrogen-rich discharge byproduct gas (162); the process further comprising:
Aspect 12. The process according to aspect 11
Aspect 13. The process according to any one of aspects 1 to 9 further comprising:
Aspect 14. The process according to any one of aspects 9 to 13, further comprising:
Aspect 15. The process according to any one of the preceding aspects wherein a nitrogen product (180) is produced, the process further comprising:
Aspect 16. The process according to any one of aspects 9 to 15, further comprising
Aspect 17. An apparatus for the separation of a compressed feed air stream (105) to produce an oxygen product (170) and optionally a nitrogen product (180), the apparatus comprising:
Aspect 18. The apparatus according to aspect 17 wherein the pressure of the second portion (108a) of the compressed feed air stream (105) is less than the pressure of the first portion (107b) of the compressed feed air stream (105).
Aspect 19. The apparatus according to aspect 17 or 18 wherein the second heat exchanger has a lower operating pressure rating than the first heat exchanger.
Aspect 20. The apparatus according to any one of aspects 17 to 19 wherein the second (colder) end of the second heat exchanger section (186) is operatively disposed to receive the at least a portion of the nitrogen-enriched fraction (128c) from the outlet of the expander 132.
Aspect 21. The apparatus according to any one of aspects 17 to 19
Aspect 22. The apparatus according to any one of aspects 17 to 21 further comprising:
Aspect 23. The apparatus according to any one of aspects 17 to 22 further comprising:
Aspect 24. The apparatus according to aspect 23
The ensuing detailed description provides preferred exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the ensuing detailed description of the preferred exemplary embodiments will provide those skilled in the art with an enabling description for implementing the preferred exemplary embodiments of the invention, it being understood that various changes may be made in the function and arrangement of elements without departing from the scope of the invention as defined by the claims.
The articles “a” and “an” as used herein mean one or more when applied to any feature in embodiments of the present invention described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated. The article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.
The adjective “any” means one, some, or all indiscriminately of whatever quantity.
The term “and/or” placed between a first entity and a second entity includes any of the meanings of (1) only the first entity, (2) only the second entity, and (3) the first entity and the second entity. The term “and/or” placed between the last two entities of a list of 3 or more entities means at least one of the entities in the list including any specific combination of entities in this list. For example, “A, B and/or C” has the same meaning as “A and/or B and/or C” and comprises the following combinations of A, B and C: (1) only A, (2) only B, (3) only C, (4) A and B and not C, (5) A and C and not B, (6) B and C and not A, and (7) A and B and C.
The phrase “at least one of” preceding a list of features or entities means one or more of the features or entities in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. For example, “at least one of A, B, or C” (or equivalently “at least one of A, B, and C” or equivalently “at least one of A, B, and/or C”) has the same meaning as “A and/or B and/or C” and comprises the following combinations of A, B and C: (1) only A, (2) only B, (3) only C, (4) A and B and not C, (5) A and C and not B, (6) B and C and not A, and (7) A and B and C.
The term “plurality” means “two or more than two.”
The phrase “at least a portion” means “a portion or all.” The at least a portion of a stream may have the same composition with the same concentration of each of the species as the stream from which it is derived. The at least a portion of a stream may have a different concentration of species than that of the stream from which it is derived. The at least a portion of a stream may include only specific species of the stream from which it is derived.
As used herein a “divided portion” of a stream is a portion having the same chemical composition and species concentrations as the stream from which it was taken.
As used herein a “separated portion” of a stream is a portion having a different chemical composition and different species concentrations than the stream from which it was taken.
As used herein, “first,” “second,” “third,” etc. are used to distinguish from among a plurality of steps and/or features, and is not indicative of the total number, or relative position in time and/or space unless expressly stated as such.
The term “depleted” means having a lesser mole % concentration of the indicated component than the original stream from which it was formed. “Depleted” does not mean that the stream is completely lacking the indicated component.
The terms “rich” or “enriched” means having a greater mole % concentration of the indicated component than the original stream from which it was formed.
As used herein, “indirect heat transfer” is heat transfer from one stream to another stream where the streams are not mixed together. Indirect heat transfer includes, for example, transfer of heat from a first fluid to a second fluid in a heat exchanger where the fluids are separated by plates or tubes.
As used herein, “direct heat transfer” is heat transfer from one stream to another stream where the streams are intimately mixed together. Direct heat transfer includes, for example, humidification where water is sprayed directly into a hot air stream and the heat from the air evaporates the water.
Illustrative embodiments of the invention are described below. While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
For the purposes of simplicity and clarity, detailed descriptions of well-known devices, circuits, and methods are omitted so as not to obscure the description of the present process and apparatus with unnecessary detail.
The present process and apparatus are described with reference to the figures, wherein like reference numbers refer to like elements throughout the figures. Reference numbers for common elements in the figures may be included without explicit description of the common element when discussing each figure. The understanding of the common elements is readily understood from the description of the elements in a related figure.
The compressed feed air stream 105 may be formed by compressing air 100 in a main air compressor 102 and removing impurities, such as CO2 and H2O from the air in adsorption unit 104.
The compressed feed air stream 105 is divided into two or more portions. A first portion 107a may be compressed in one or more booster compressors 110 and the compressed first portion 107b passed into a first (warmer) end of a first heat exchanger section 184. The first portion 107b is cooled in the first heat exchanger section 184, and subsequently withdrawn from a second (colder) end of the first heat exchanger section 184. The compressed first portion 107b may be at least partially condensed in the first heat exchanger section 184. The thermodynamic state of the fluid (107c) leaving the second (colder) end of heat exchanger section 184 is generally all liquid for any pressure below the critical pressure of air. For pressures greater than the critical pressure of air, the temperature is generally as cold or colder than the critical temperature (approximately −140° C.) and preferably below −160° C. The first heat exchanger section 184 may be part or all of a so-called higher-pressure heat exchanger. The higher-pressure heat exchanger may be a so-called plate-fin heat exchanger or any other type of suitable heat exchanger known in the art.
The first portion 107c withdrawn from the second (colder) end of the first heat exchanger section 184 is passed to a multi-column separation system comprising a lower-pressure column 188 and a higher-pressure column 190. The first portion 107c may be passed to the higher-pressure column 190 and/or the lower-pressure column of the multi-column separation system. The first portion 107c may be a liquid stream, a supercritical dense fluid, or a partially condensed stream. In
A second portion 108a of the compressed feed air stream 105 is passed into a first (warmer) end of a second heat exchanger section 186. The pressure of the second portion 108a of the compressed feed air stream 105 may be less than the pressure of the first portion 107b of the compressed feed air stream (105). The second portion 108a is cooled in the second heat exchanger section 186, and subsequently withdrawn from a second (colder) end of the second heat exchanger section 186. The thermodynamic state of the fluid leaving the second (colder) end of the second heat exchanger section 186 is generally subcritical pressure, typically 4 to 10 atmospheres pressure, and generally no more than 10 mole % liquid, and preferably no more than 3 mole % liquid. The second heat exchanger section 186 may be part or all of a so-called lower-pressure core heat exchanger. The lower-pressure core heat exchanger may be a so-called plate-fin heat exchanger or any other type of heat exchanger known in the art.
The lower-pressure heat exchanger may have a lower operating pressure rating than the higher-pressure heat exchanger. As a result, the lower-pressure heat exchanger may be a lower cost unit than the higher-pressure heat exchanger. Capital cost savings for the heat exchanger system can be achieved for heat exchanger systems using a higher-pressure heat exchanger and a lower-pressure heat exchanger as compared to a heat exchanger system where all of the heat exchangers are rated for higher pressure operation.
The first heat exchanger section 184 and the second heat exchanger section 186 are part of physically and thermodynamically separate heat exchangers. A first heat exchanger comprises first exchanger section 184 and the second heat exchanger comprises the second heat exchanger section 186. The first heat exchanger may be rated for higher pressures than the second heat exchanger. Though it is obvious to one of ordinary skill in the art, the first heat exchanger section is also physically and thermodynamically separate from the second heat exchanger section.
The second portion 108b withdrawn from the second (colder) end of the second heat exchanger section 186 is passed to the higher-pressure column 190 of the multi-column separation system.
As shown in
While booster compressor 110 and booster compressor 114 are shown as separate machines in
The third portion 109c withdrawn from the position intermediate the first (warmer) end and the second (colder) end of the first heat exchanger section 184 may be expanded in an expander 116 where it is further cooled, while producing work. The third portion 109d after expanding may be passed to the higher-pressure column 190 and/or the lower-pressure column 188. Expander 116 may be a dissipative, generator-loaded, or process-loaded expander.
As shown in
As shown in
The higher-pressure column 190 and the lower-pressure column 188 are each distillation-type columns. They can be constructed of systems and materials that are well known in the art (for example: sieve trays, bubble-cap trays, valve trays, random packing, structured packing). The higher-pressure column 190 is so-called “higher-pressure” because it has an operating pressure higher than the lower-pressure column 188. The lower-pressure column 188 is so-called “lower-pressure” because it has an operating pressure lower than the higher-pressure column 190. The multi-column separation system may also include one or more additional columns for producing an argon byproduct. At least one additional column may be a standalone column, or part of the lower pressure column 188 where a physical barrier is installed in the lower-pressure column to separate the sections in the lower pressure column.
As shown in
As shown in
The nitrogen-enriched fraction 128a withdrawn from the higher-pressure column 190 is passed to the second (colder) end of the first heat exchanger section 184, heated in the first heat exchanger section 184, and withdrawn from a position intermediate the first (warmer) end and the second (colder) end of the first heat exchanger section 184.
The nitrogen-enriched fraction 128b withdrawn from the position intermediate the first (warmer) end and the second (colder) end of the first heat exchanger section 184 is expanded in an expander 132 to produce work and reduce the pressure of the nitrogen-enriched fraction 128b. Expander 132 may be a dissipative, generator-loaded, or process-loaded expander.
At least a first portion 128e of the expanded nitrogen-enriched fraction 128c is passed to the second (colder) end of the second heat exchanger section 186, heated in the second heat exchanger section 186, and withdrawn from the first (warmer) end of the second heat exchanger section 186. In the embodiments shown in
In the embodiments shown in
As shown in
The first fraction 152a of the nitrogen-rich byproduct 150 may be passed to a first (colder) end of a first subcooler heat exchanger section 192, heated in the first subcooler heat exchanger section 192, and withdrawn from a second (warmer) end of the first subcooler heat exchanger section 192.
In the embodiments shown in
In the embodiments shown in
In the embodiment shown in
In the embodiments shown in
The advantage of blending the first fraction 152b of the nitrogen-rich byproduct 150 with the nitrogen-enriched fraction 128c from the expander 132 is to provide the greatest flexibility to control the flow split of streams 128c and 152b between the first heat exchanger section 184 and the second heat exchanger section 186. This flexibility will lead to the most efficient operation.
As shown in each of the embodiments of
The second fraction 151b of the nitrogen-rich byproduct 150 may be passed from the second (warmer) end of the second subcooler heat exchanger section 194 to the second (colder) end of the second heat exchanger section 186, heated in the second heat exchanger section 186, and withdrawn from the first (warmer) end of the second heat exchanger section 186 as a second nitrogen-rich discharge byproduct gas 158.
In an alternative embodiment, a low pressure nitrogen product can be produced by withdrawing a nitrogen-rich gas stream (not shown) from the top end of upper region of the lower-pressure column 188, optionally heating this nitrogen-rich gas stream in the first subcooler heat exchanger section 192 and/or second subcooler heat exchanger section 194, or a third subcooler heat exchanger, and subsequently heating the nitrogen-rich gas stream further in the first heat exchanger section 184 and/or the second heat exchanger section 186. In this case, the nitrogen-rich byproduct 150 may be removed from the lower-pressure column 188 as a vapor-side draw from a location in the upper region below where the nitrogen-rich gas stream is withdrawn. If the flow rate of the nitrogen-rich gas stream is of sufficient magnitude, one of the first fraction 152a of the nitrogen-rich byproduct 150 and the second fraction 151a of the nitrogen-rich byproduct 150 may be eliminated and replaced with this nitrogen-rich gas stream.
As shown in each of the embodiments of
Though not shown, it is well known in the art to produce gaseous nitrogen product 180 using an alternate technique called pumped-LIN. With this technique, an additional liquid is withdrawn from stream 144, optionally pumped to a pressure greater than that of the higher-pressure column (190) and may be subsequently passed to the second (colder) end of the first heat exchanger section 184, heated in the first heat exchanger section 184, and subsequently withdrawn from the first (warmer) end of the first heat exchanger section 184 as a gaseous nitrogen product 180.
The nitrogen-rich fraction 127 or a first portion 140 of the nitrogen-rich fraction 127 withdrawn from the top end of the higher-pressure column 190 may be passed to a reboiler-condenser 142 of the multi-column distillation system. The nitrogen-rich fraction 127 or a first portion 140 of the nitrogen-rich fraction 127 may be condensed in the reboiler-condenser 142, and withdrawn from the reboiler-condenser 142 as nitrogen-rich liquid 144. The reboiler-condenser 142 thermally couples the lower-pressure column 188 and the higher-pressure column 190.
A large part (greater than 40 mole %) of the nitrogen-rich liquid (144) is returned to the top of the higher-pressure column 190 as reflux. A part 146 of the nitrogen-rich liquid (144) may be passed to a second (warmer) end of the second subcooler heat exchanger section 194, cooled in the second subcooler heat exchanger section 194, and withdrawn from the first (colder) end of the second subcooler heat exchanger section 194. The part 146 of the nitrogen-rich liquid (144) withdrawn from the first (colder) end of the second subcooler heat exchanger section 194 may be passed to the top end of the lower-pressure column 188 as reflux. Alternatively, a part 146 of the nitrogen-rich liquid (144) may be passed to a second (warmer) end of the first subcooler heat exchanger section 192, cooled in the first subcooler heat exchanger section 192, and withdrawn from the first (colder) end of the first subcooler heat exchanger section 192.
While the figures show stream 146 which is passed through the second subcooler heat exchanger section 194 being formed from the stream withdrawn from the reboiler-condenser, this stream may alternatively be taken from an intermediate location in the higher-pressure column. For example, stream 146 may be taken as a liquid draw from the location of stream 128a off-take. In such an event, all of the nitrogen-rich liquid (144) is returned to the top of the higher-pressure column 190 as reflux.
As shown in each of the embodiments of
The first subcooler heat exchanger section 192 may be structurally integrated with the first heat exchanger section 184.
The second subcooler heat exchanger section 194 may be structurally integrated with the second heat exchanger section 186.
The integration of the subcooler heat exchanger sections 192, 194 with the heat exchanger sections 184, 186 is described with reference to
In the embodiment shown in
The part 146 of the nitrogen-rich liquid fraction (144) is passed to the second (warmer) end of the second subcooler heat exchanger section 194 of the heat exchanger 386, bypassing the second heat exchanger section 186, and is withdrawn from the first (colder) end of the second subcooler heat exchanger section 194 of the heat exchanger 386. The second fraction 151a of the nitrogen-rich byproduct 150 is passed to the first (colder) end of the second subcooler heat exchanger section 194 of the heat exchanger 386 and is withdrawn from the first (warmer) end of the second heat exchanger section 186 of the heat exchanger 386. The expanded nitrogen-enriched fraction 128c, the second portion 152d of the first fraction 152a of the nitrogen-rich byproduct 150, and the second portion 129 of the nitrogen-rich fraction 127 are each passed to the second (colder) end of the second heat exchanger section 186 of the heat exchanger 386, bypassing the second subcooler heat exchanger section 194, and withdrawn from the first (warmer) end of the second heat exchanger section 186 of the heat exchanger 386. The second portion 108b of the compressed feed air stream is passed to the first (warmer) end of the second heat exchanger section 186 and is withdrawn from the second (colder) end of the second heat exchanger section 186 of the heat exchanger 386 bypassing the second subcooler heat exchanger section 194 of the heat exchanger 386.
This type of heat exchanger arrangement is commonly used to reduce capital costs. The heat transfer efficiency of the heat exchanger arrangement shown in
In the embodiment shown in
The first fraction 152a of the nitrogen-rich byproduct 150 is passed to the first (colder) end of the first subcooler heat exchanger section 192 of the heat exchanger 384. A first portion 152c of the first fraction 152b of the nitrogen-rich byproduct 150 passes from the second (warmer) end of the first subcooler heat exchanger section 192 of the heat exchanger 384 to the second (colder) end of the first heat exchanger section 184 and is withdrawn from the first (warmer) end of the first heat exchanger section 184 of the heat exchanger 384 as the first nitrogen-rich discharge byproduct gas 162. A second portion 152d of the first fraction 152b of the nitrogen-rich byproduct 150 is withdrawn from the second (warmer) end of the first subcooler heat exchanger section 184 of the heat exchanger 384 bypassing the first heat exchanger section 184. The nitrogen-enriched fraction 128c and the oxygen-rich fraction 166 are each passed to the second (colder) end of the first heat exchanger section 184 of the heat exchanger 384, bypassing the first subcooler heat exchanger section 192, and withdrawn from the first (warmer) end of the first heat exchanger section 184 of the heat exchanger 384.
This type of heat exchanger arrangement is commonly used to reduce capital costs. The heat transfer efficiency of the heat exchanger arrangement shown in
In the embodiment shown in
In the embodiment shown in
The apparatus according to the present disclosure comprises a multi-column distillation system comprising a lower-pressure column 188 and a higher-pressure column 190, a first heat exchanger, a second heat exchanger, and an expander 132.
The first heat exchanger comprises a first heat exchanger section 184. The first heat exchanger section 184 has a first (warmer) end and a second (colder) end. The first (warmer) end is operatively disposed to receive a first portion 107b of the compressed feed air stream 105. The apparatus may comprise a booster compressor 110 and the first (warmer) end may be operatively disposed to receive the first portion 107b from a booster compressor 110. At least one of the lower-pressure column 188 or the higher-pressure column 190 is operatively disposed to receive the first portion 107c of the compressed feed air stream 105 from the second (colder) end of the first heat exchanger section 184. The second (colder) end of the first heat exchanger section 184 is operatively disposed to receive an oxygen-rich fraction 166 from the lower-pressure column 188 and the first (warmer) end of the first heat exchanger section 184 is operatively disposed to discharge the oxygen product 170. The second (colder) end of the first heat exchanger section 184 is operatively disposed to receive a nitrogen-enriched fraction 128a from the higher-pressure column 190.
The second heat exchanger comprises a second heat exchanger section 186. The second heat exchanger may have a lower operating pressure rating than the first heat exchanger. The second heat exchanger section 186 has a first (warmer) end and a second (colder) end. The first (warmer) end is operatively disposed to receive a second portion 108a of the compressed feed air stream 105. The pressure of the second portion 108a of the compressed feed air stream 105 may be less than the pressure of the first portion 107b of the compressed feed air stream 105. The higher-pressure column 190 is operatively disposed to receive the second portion 108b of the compressed feed air stream 105 from the second (colder) end of the second heat exchanger section 186.
The expander 132 has an inlet and an outlet. The inlet of the expander 132 is operatively disposed to receive the nitrogen-enriched fraction 128b withdrawn from a position intermediate the first (warmer) end and the second (colder) end of the first heat exchanger section 184.
As shown in
As shown in
As shown in
As shown in
The first subcooler heat exchanger section 192 has a first (colder) end and a second (warmer) end. The first (colder) end of the first subcooler heat exchanger section 192 may be operatively disposed to receive a first fraction 152a of a nitrogen-rich byproduct 150 from the upper region of the lower-pressure column and discharge the first fraction 152b from the second (warmer) end of the first subcooler heat exchanger section 192. The second (colder) end of the first heat exchanger section 184 may be operatively disposed to receive the at least a portion of first fraction 152b from the second (warmer) end of the first subcooler heat exchanger section 192.
The second subcooler heat exchanger section 194 has a first (colder) end and a second (warmer) end. The first (colder) end of the second subcooler heat exchanger section 194 may be operatively disposed to receive a second fraction 151a of the nitrogen-rich byproduct 150 and discharge the second fraction 151b from the second (warmer) end of the second subcooler heat exchanger section 194. The second (colder) end of the second heat exchanger section 186 may be operatively disposed to receive at the second fraction 151b from the second (warmer) end of the second subcooler heat exchanger section 194.
As shown in
Computer simulations for various heat exchanger configurations were conducted using Aspen Plus®.
The basis for the simulations are as follows:
Some key results are summarized in Table 1.
The results shown in the 1st column, Case 1, corresponds to the process shown in
The results shown in the 2nd column, Case 2, represents the prior art and corresponds to the process shown
The results shown in the 3rd column, Case 3, corresponds to an embodiment of the invention as shown in
The results shown in the 4th column, Case 4, are for a comparative case shown in
The results shown in the 5th column, Case 5, correspond to an embodiment of the invention as shown in
Number | Name | Date | Kind |
---|---|---|---|
3086371 | Schilling et al. | Apr 1963 | A |
4133662 | Wagner | Jan 1979 | A |
4254629 | Olszewski | Mar 1981 | A |
4400188 | Patel et al. | Aug 1983 | A |
4555256 | Skolaude et al. | Nov 1985 | A |
5092132 | Marshall | Mar 1992 | A |
5341646 | Agrawal | Aug 1994 | A |
5355682 | Agrawal et al. | Oct 1994 | A |
5934104 | Fidkowski | Aug 1999 | A |
5956974 | Agrawal et al. | Sep 1999 | A |
6233970 | Smith, IV et al. | May 2001 | B1 |
20050126221 | Ha et al. | Jun 2005 | A1 |
20060169000 | Judas | Aug 2006 | A1 |
20110214453 | Alekseev | Sep 2011 | A1 |
20160231053 | Asse et al. | Aug 2016 | A1 |
20170211879 | Igra | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
1767884 | Mar 2007 | EP |
2924407 | Jan 2015 | EP |
1439066 | May 1966 | FR |
2711778 | May 1995 | FR |
2778971 | Nov 1999 | FR |
Entry |
---|
EPO Search Report (EP19177393) dated Jan. 30, 2020, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20190368811 A1 | Dec 2019 | US |