Process and apparatus for the production of artificial grass

Information

  • Patent Application
  • 20080083103
  • Publication Number
    20080083103
  • Date Filed
    October 04, 2006
    18 years ago
  • Date Published
    April 10, 2008
    16 years ago
Abstract
The invention describes a process and an apparatus for the production of highly crimped polymer strips which are suitable for use in artificial turf surfaces, for example for football pitches, hockey pitches, tennis courts or golf courses, and are characterized by a high degree of strength, a large volume and a high elasticity. The texturing of the polymer strips is carried out by means of a stuffer box, wherein the polymer strips are laid on a cooling godet immediately after the stuffer box.
Description

BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows diagrammatically the device for carrying out the process.



FIG. 2 shows in section along A-A of FIG. 1 the stuffer box and the cooling godet with a suction device.





DETAILED DESCRIPTION OF THE EMBODIMENTS

In the present process, a polymer material in the form of strips 10, 0.5 to 1.5 mm wide and with a linear density of 250-1200 dtex, is processed. PA (polyamide), PP (polypropylene) HDPE (high density polyethylene) or LLDPE (linear low density polyethylene) are used for example as polymeric materials. The strips 10 are further processed either fed from a creel or direct on leaving the extruder.


For further processing, four to ten strips 10 are bundled into a multifilament and thermally stretched or shrunken by up to 20% over two heating godets 11 and 12.


The strips 10 are then subjected to a hot-air texturing process in a stuffer box 13, wherein the strips 10 are pressed into a box and knocked against the fibre plug forming there. The filaments buckle up against one another. The stuffer box has a lateral inlet for a hot-air texturing nozzle 21 and an air outlet zone 23. The resulting structure is thermoset while still in the box with hot air from the texturing nozzle 21. A three-dimensional, sawtooth-shaped crimp structure forms. Stuffer boxes customary in the trade can be used in the process.


To stabilize the texturing, the compressed and crimped strips 10 are taken up by a cooling godet 14 immediately after the texturing. The cooled strips 10 are drawn off from the cooling godet 14 by a draw-off godet 16 and fed to a spooling machine. The degree of texturing is limited by the speed ratio of the cooling godet 14 to the draw-off godet 16, the speed ratio of the draw-off godet 16 to the second heating godet 12, and the air pressure in the stuffer box 13.


The discharge end of the stuffer box is arranged as near as possible to the surface of the cooling godet 14, and the stuffer box 13 ends just a few millimetres above the cooling godet 14. The filament strip 10 leaving the stuffer box 13 is conducted radially onto the cooling godet 14. In addition, there is mounted laterally on the stuffer box 13 an air nozzle 18 which directs an air jet at an angle of approximately 45° to the longitudinal axis of the discharge end of the stuffer box 13 and the surface of the cooling godet 14 onto the point at which the filament strip 10 leaves the stuffer box 13 and is laid on the cooling godet 14. The laying of the filament strip 10 on the cooling godet 14 is thereby supported.


As shown in FIG. 2, the cooling godet 14 has a suction device 15. Arranged on the outside of the cooling godet 14 is a radial guide groove 25 with small openings 26 through which air is sucked in from the outside and which ensure an air throughput sufficient for cooling. The radius of the guide groove 25 is matched to the textured material. The filament strips 10 generally rest against the cooling godet 14 on a circular arc of less than 360°, e.g. approximately 180°. Incorporated into the cooling godet 14 is an upright cover 19 which shields from the inside the part of the guide groove 25 on which no filament strips lie. Unnecessary consumption of suction air and an unnecessary reduction of the negative pressure in the cooling godet 14 are thereby avoided. Wrapping of the filament strips 10 around the cooling godet 14 is also avoided thereby because the textured filament strips drop down from the cooling godet 14 as from the beginning of the cover 19 due to their own weight and the absence of the suction.


The textured strips 10 are held and cooled by the suction air at the cooling godet 14 in their guide groove 25 in the desired segment of e.g. approximately 180° on the periphery of the cooling godet 14. The cooling quickly reduces the temperature to below the glass-transition temperature with the result that the texture of the fibres is fixed by the onset of crystallization.


The speed ratios of the godets are variable and can be adjusted according to the desired degree of texturing. Particularly important here is the speed ratio between the second heating godet 12, the cooling godet 14 and the draw-off godet 16, as this determines the degree of texturing. The cooling godet 14 travels by the factor 5 to 20 slower than the second heating godet 12 and the draw-off godet 16 travels by the factor 2 to 4 slower than the second heating godet 12.


The speed difference between extrusion and spooling is 5-35%, wherein the extrusion speed is 1.05 to 1.35 times greater than the spooling speed. Production speeds of 100-500 m/min. can thus be reached.


The thus-obtained fibres can then be bundled as fibre groups and anchored on dimensionally stable backing fabric, whereby an artificial turf surface with high elasticity, an optimum recovery capacity and high wear resistance is obtained.


EXAMPLE

Six extruded polyamide strips 10 are stretched by 10% at 160° C. over the two heating godets 11 and 12 with a thread tension of 4000 g. The stretched strips 10 are then compressed and crimped in the stuffer box 13 with a texturing pressure of 5 bar and thermoset at 120° C. texturing nozzle temperature. There is a back shrinkage of 35%. The textured strips 10, supported by an air jet from the lateral air nozzle 18, are laid tensionless on the cooling godet 14 and held, cooled and transported further in the guide groove of the cooling godet 14 by the air jet from the suction device 15. The temperature at the cooling godet 14 corresponds to the ambient temperature. The cooled strips 10 are taken up by the draw-off godet 16 and fed to the spooling machine, wherein the spooling tension is 300 g. The speed difference between extrusion and spooling is 25% and thus compensates for the back shrinkage. A production speed of 400 m/min. is reached.


LIST OF REFERENCE NUMBERS




  • 10 strip


  • 11 first heating godet


  • 12 second heating godet


  • 13 stuffer box


  • 14 cooling godet


  • 15 suction device


  • 16 draw-off godet


  • 18 air nozzle


  • 19 upright cover


  • 21 texturing nozzle


  • 23 air outlet zone


  • 25 guide groove


  • 26 openings


Claims
  • 1. A process for the production of textured filament strips for artificial grass, comprising the steps of stretching or shrinking filament strips between two heating godets;texturing the filament strips in a stuffer box;drawing off the textured filament strips over a cooling godet and laying the textured filament strips on the cooling godet immediately after the texturing; andspooling the textured filament strips.
  • 2. The process according to claim 1, wherein the filament strips are fed approximately radially to the cooling godet.
  • 3. The process according to claim 1, wherein the step of laying of the textured filament strips on the guide groove is supported by an air nozzle arranged laterally on the stuffer box, the air jet of which is directed at the discharge point of the stuffer box.
  • 4. The process according to claim 1, wherein air for cooling is sucked by means of a suction device through openings mounted in the guide groove.
  • 5. The process according to claim 1, wherein the spooling speed is 100-500 m/min. and the extrusion speed is up to 35% greater than the spooling speed.
  • 6. The process according to claim 1, wherein the filament strips are stretched between the heating godets up to 20%.
  • 7. The process according to claim 1, wherein the polymer material comprises the polymers polyamide, polypropylene, HDPE (high density polyethylene) and LLDPE (linear low density polyethylene).
  • 8. The process according to claim 1, wherein up to ten strips are processed simultaneously and the strips are 0.5-1.5 mm wide and have a linear density of 250-1200 dtex.
  • 9. The process according to claim 1, wherein the filament strip is a monofilament tape which is 1.5-8 mm wide and has a linear density of 500-8000 dtex.
  • 10. An apparatus for the production of textured filament strips for artificial grass, comprising: two heating godets for stretching or shrinking the filament strips;a stuffer box for texturing the filament strips; anda cooling godet downstream of the stuffer box, the cooling godet being arranged at as small as possible a distance from the end of the stuffer box.
  • 11. The apparatus according to claim 9, wherein an air nozzle is arranged laterally on the stuffer box, the air nozzle directing an air jet at the discharge point of the stuffer box.