In the present process, a polymer material in the form of strips 10, 0.5 to 1.5 mm wide and with a linear density of 250-1200 dtex, is processed. PA (polyamide), PP (polypropylene) HDPE (high density polyethylene) or LLDPE (linear low density polyethylene) are used for example as polymeric materials. The strips 10 are further processed either fed from a creel or direct on leaving the extruder.
For further processing, four to ten strips 10 are bundled into a multifilament and thermally stretched or shrunken by up to 20% over two heating godets 11 and 12.
The strips 10 are then subjected to a hot-air texturing process in a stuffer box 13, wherein the strips 10 are pressed into a box and knocked against the fibre plug forming there. The filaments buckle up against one another. The stuffer box has a lateral inlet for a hot-air texturing nozzle 21 and an air outlet zone 23. The resulting structure is thermoset while still in the box with hot air from the texturing nozzle 21. A three-dimensional, sawtooth-shaped crimp structure forms. Stuffer boxes customary in the trade can be used in the process.
To stabilize the texturing, the compressed and crimped strips 10 are taken up by a cooling godet 14 immediately after the texturing. The cooled strips 10 are drawn off from the cooling godet 14 by a draw-off godet 16 and fed to a spooling machine. The degree of texturing is limited by the speed ratio of the cooling godet 14 to the draw-off godet 16, the speed ratio of the draw-off godet 16 to the second heating godet 12, and the air pressure in the stuffer box 13.
The discharge end of the stuffer box is arranged as near as possible to the surface of the cooling godet 14, and the stuffer box 13 ends just a few millimetres above the cooling godet 14. The filament strip 10 leaving the stuffer box 13 is conducted radially onto the cooling godet 14. In addition, there is mounted laterally on the stuffer box 13 an air nozzle 18 which directs an air jet at an angle of approximately 45° to the longitudinal axis of the discharge end of the stuffer box 13 and the surface of the cooling godet 14 onto the point at which the filament strip 10 leaves the stuffer box 13 and is laid on the cooling godet 14. The laying of the filament strip 10 on the cooling godet 14 is thereby supported.
As shown in
The textured strips 10 are held and cooled by the suction air at the cooling godet 14 in their guide groove 25 in the desired segment of e.g. approximately 180° on the periphery of the cooling godet 14. The cooling quickly reduces the temperature to below the glass-transition temperature with the result that the texture of the fibres is fixed by the onset of crystallization.
The speed ratios of the godets are variable and can be adjusted according to the desired degree of texturing. Particularly important here is the speed ratio between the second heating godet 12, the cooling godet 14 and the draw-off godet 16, as this determines the degree of texturing. The cooling godet 14 travels by the factor 5 to 20 slower than the second heating godet 12 and the draw-off godet 16 travels by the factor 2 to 4 slower than the second heating godet 12.
The speed difference between extrusion and spooling is 5-35%, wherein the extrusion speed is 1.05 to 1.35 times greater than the spooling speed. Production speeds of 100-500 m/min. can thus be reached.
The thus-obtained fibres can then be bundled as fibre groups and anchored on dimensionally stable backing fabric, whereby an artificial turf surface with high elasticity, an optimum recovery capacity and high wear resistance is obtained.
Six extruded polyamide strips 10 are stretched by 10% at 160° C. over the two heating godets 11 and 12 with a thread tension of 4000 g. The stretched strips 10 are then compressed and crimped in the stuffer box 13 with a texturing pressure of 5 bar and thermoset at 120° C. texturing nozzle temperature. There is a back shrinkage of 35%. The textured strips 10, supported by an air jet from the lateral air nozzle 18, are laid tensionless on the cooling godet 14 and held, cooled and transported further in the guide groove of the cooling godet 14 by the air jet from the suction device 15. The temperature at the cooling godet 14 corresponds to the ambient temperature. The cooled strips 10 are taken up by the draw-off godet 16 and fed to the spooling machine, wherein the spooling tension is 300 g. The speed difference between extrusion and spooling is 25% and thus compensates for the back shrinkage. A production speed of 400 m/min. is reached.